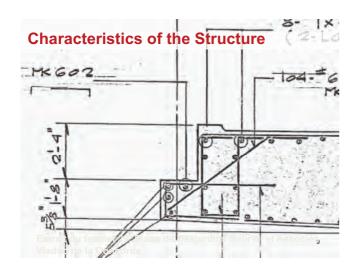
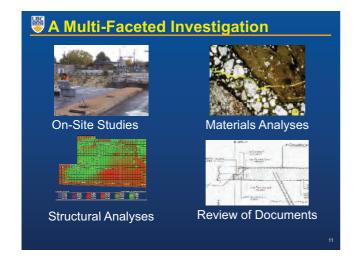

Chronology:


- September 30, 2006 Collapse of the southeast side of the overpass;
- October 1, 2006 Beginning of the police investigation;
- October 6, 2006 Appointment of the commissioners (Johnson, Nicolet & Couture);
- October 18, 2007 Publication of the report.

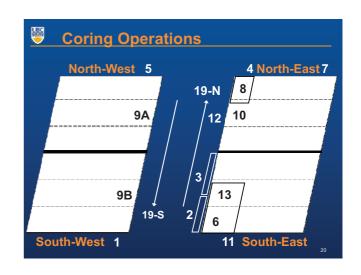


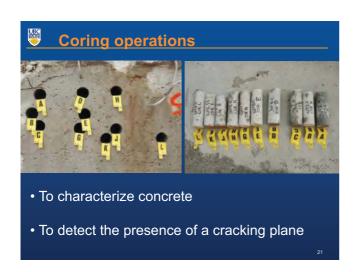
Concrete Mixture Design

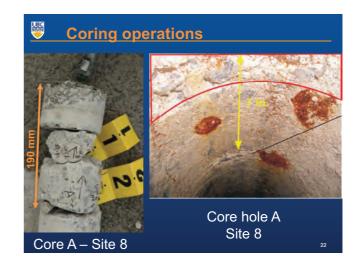
TABLEAU E-4.2

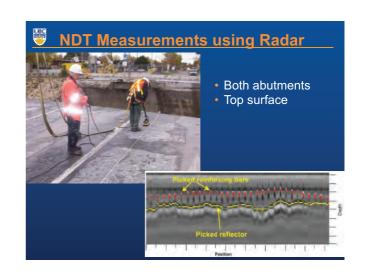
Affalssement 3" ± 2" sauf classe D Pourcentage d'air occlus en volume: ± 1%		Béton coulé dans l'air et exposé às									Bito
		air			SETT			sals degivrents			dans 1°ess
Oros ográgats	bodes	1 ½	3/4	1	1 1	3/4	1	11	3/4	1	1 1
Repport maximum waw/einent		.96	.56	.56	.50	.50	.50	.45	.45	,45	_45
Ciment minimum	1b	480	525	570	525	570	610	570	610	655	700
Air ceelus	,st	4.5	6	7	4.5	6	7	5	6.5	7.5	
Type		À		В			C			D	

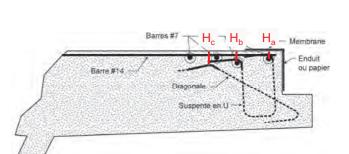
10











Reinforcing Bar Location - West

The 3 Main Causes of the Collapse:

1. Improper rebars installation during construction

The incorrect placement of the U-shaped hangers and diagonal bars created a zone of weakness that extended deep inside the thick slab.

Phase 3

Material Characterization

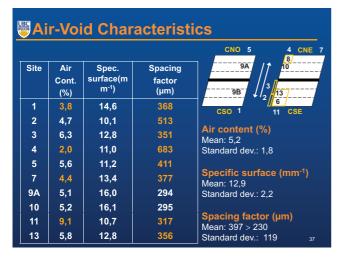
Main objectives

- To characterize the properties of concrete (on cores extracted from « sound » areas)
- To identify the cause(s) of the concrete degradation along the rupture plane

Compressive Strength Determination (CSA A23.2-9C)

Site	Cores	Orientation	Results
1	3	Horizontal	28,7 MPa
	2	Vertical	28,2 MPa
3	3	Vertical	31,3 MPa
4	3	Horizontal	40,5 MPa
5	3	Horizontal	31,3 MPa
	3	Horizontal	27,3 MPa
9A	3	Vertical	27,7 MPa
9B	3	Vertical	30,7 MPa
10	3	Vertical	35,1 MPa
11	3	Horizontal	29,4 MPa
13	2	Vertical	31,6 MPa
Girders	6	Variable	51,4 MPa

Compression Mean: 31,1 MPa Spec. = 27,8 MPa at 28 days


👺 Petrographic Examination

- Porous concrete (W/C ≈ 0,55)
- Well hydrated concrete
- Very few microcracks
- No signs of ASR

Frost attack was identified as the main cause of concrete degradation at the vicinity of the rupture plane.

The 3 Main Causes of the Collapse:

2. Low quality of concrete

The concrete used for the construction of the abutments did not have the necessary characteristics to resist freezing and thawing cycles in presence of de-icing chemicals.

The 3 Main Causes of the Collapse:

3. Improper rebar detailing during design

In the structure as designed, the concentration of numerous rebars on the same plane in the upper part of the abutment created a plane of weakness where horizontal cracking could occur.

The 3 Main Causes of the Collapse

- 1. Improper rebars installation during construction
- 2. Low quality of concrete
- 3. Improper rebar detailing during design

Influence of the Collapse:

All structures built at that time using the same structural system were all taken out of service....

Trial of the Collapse

Although it was a police investigation, no one was found criminally responsible..

Compensation for the Victims

Compensation was paid to the victims of the collapse. Total compensation for the survivors of the 5 deceased was about \$1.5 million.

Responsibility of Road administrators

Significant new funding is now available for periodic condition assessment, health monitoring and research.

Required Future Research

Development of advanced tools for health monitoring and condition assessment of structure.

Creation of a strategic network on this topic.

Infrastructure Crisis in Canada

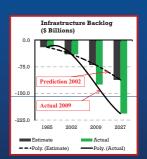
Infrastructure Deficit

Infrastructure Deficit Hypothesis: A decline in the public capital formation (i.e. infrastructure) lowers private sector productivity and, therefore, lowers a nation's real income and weaken its competitiveness

Infrastructure in Canada

59% of Canada's infrastructure is more than 40 years old

As per Statistics Canada, 37 years is the expected average life of a structure in Canada.


Figure 1 Infrastructure in Canada

- There are approximately 10,000 deficient bridges with a total repair /strengthening cost of \$44 billion.
- ■There are 4000 parking garages needing immediate attention.

Infrastructure in Canada

Canada's current infrastructure deficit is \$125 billion (and growing annually by \$2 billion), which is 6-10 times the level of all annual government infrastructure budget combined.

Prediction in 2002 which has already proven to be an underestimation

Why are we in such dire straits?

- Deterioration and aging of structural systems due to weather, fatigue, pollution, structural settlement and now global warming;
- Construction mistakes;
- Code changes (structural dynamics, seismic design, etc.);
- Loading changes; and
- Functional Obsolesce.

Influence of Global Warming on Concrete Structures

- ■Increase in atmospheric CO₂ levels from 370 ppm to 1000 ppm
 - ♣ Increased Corrosion Rates
 - Increased Corrosion Rate
 Increased Carbonation
- ■Increase in temperature by over 5°C
 - Increased Shrinkage
 - Porous Microstructure and High Permeability
 - Increased Corrosion Rates
- Increased Water Levels
 - ♣ Increased Saturation
 - Greater Scour

* Damage

- Cracking
- Cracking
 Fatigue
- Excessive Displacements/ Settlement
- Scour
- Foundation Issues

* Deterioration

- Rebar Corrosion
- · Water absorption
- AAR/Freeze-Thaw/Scaling
- · Overall integrity

Elimitations of Current Inspections

- Condition states still based solely upon visual inspection
- Invisible deterioration, damage or distress not detected or measured
- Operational performance not measured
- · Vulnerability and reliability not adequately addressed

Canadian Research Objectives

- To improve safety (and security) of concrete bridges through an accurate assessment of bridge condition and performance.
- Develop advanced health monitoring tools based on remote/onsite measurements that are periodic/continuous.
- Relate health monitoring findings to structural condition.
- Use advanced modeling tools to reliably forecast bridge performance, maintenance needs, etc. esp. in the light of impending global warming.

