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ABSTRACT 

A common assumption in modeling soil-structure interaction is that the foundation is rigid. This reduces 
the complexity of the problem (i.e. the number of additional degrees of freedom for accounting for the 
interaction), and makes it possible to present general results that can be used for different structures (the 
substructure approach for linear models).  In reality, building foundations are flexible.  This paper presents 
an analysis of the consequences of this assumption, using a simple structural model: an elastic circular 
wedge supported by a flexible circular foundation embedded into a half-space and excited by incident pane 
SH-waves.  The problem is solved by expansion of the motion in all three media (wedge, foundation and 
half-space) in cylindrical wave functions (Fourier-Bessel series).  The structural model is simple, but 
accounts for both differential motions of the base and for the effects of soil-structure interaction.  Usually, 
structural models in earthquake engineering consider either differential ground motion, but ignore soil-
structure interaction, or consider soil-structure interaction, but for a rigid foundation, thus ignoring 
differential ground motion.  This study attempts to find how stiff the foundation should be relative to the 
soil so that the rigid foundation assumption in soil-structure interaction models is valid. The shortest 
wavelength of the incident waves considered in this study is one equal to the width of the base of the 
wedge. It is concluded that, for this model, a foundation with same mass density as the soil but 50 times 
larger shear modulus behaves as “rigid”.  For ratio of shear moduli less than 16, the rigid foundation 
assumption is not valid. Considering differential motions is important because of additional stresses in 
structures that are not predicted by fixed-base and rigid foundation models.     
 
1. INTRODUCTION 

For structures on multiple supports or on extended flexible foundations, it is important to consider the 
effects of differential ground motion because of excitation of anti-symmetric modes of vibration and 
additional stresses (to those predicted by synchronous motion) in the structure due to non-classical “modes” 
of vibration and quazi-static deformations which are the largest near the base  (Todorovska and Lee, 1989; 
Todorovska and Trifunac, 1989; 1990a,b; Trifunac and Todorovska, 1997).  Another consequence of the 
finite flexibility of the soil is the soil-structure interaction, which refers to modification of the ground 
motion due to scattering of the incident waves from the foundation and radiation of energy from the 
structure into the soil.  Due to increased complexity of the problem, models usually consider either one of 
these two effects and ignore the other effect. Studies that include both are rare. For example, Iguchi and 
Luco (1982) and Liou and Huang (1994) present impedance functions for a flexible circular disk 
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foundation with a rigid core (where the forces from the structure are applied) and for in-plane incident 
waves.  They conclude that a consequence of the rigid-foundation assumption is that the radiation damping 
is exaggerated, in particular for shorter wavelengths of the incident waves.   

This paper summarizes the results of Hayir et al. (2001) and Todorovska et al. (2001), who considered a 
simple structure - a wedge, supported respectively by a half-space but with a flexible interface between the 
structure and the half-space, or by a flexible foundation embedded into a half-space and excited by plane 
SH-waves. All the contact surfaces and media are flexible and transmit waves from one medium to the 
other. This paper attempts to find how stiff a foundation should be relative to the soil for the rigid 
foundation assumption in similar  soil-structure interaction models to be valid.         

2. MODEL 

The two-dimensional (2D) model consists of a circular wedge, supported by a flexible circular foundation 
embedded in a half-space.  Perfect bond is assumed at the contact surfaces. All the three media are linear, 
elastic, homogeneous and isotropic, with shear wave velocities and shear moduli βD, µD, βF, µF, βs and µs.  
Figure 1 shows a vertical cross-section of the model.  The wedge has center of curvature at point O1, radius 
bD and angle 2θ0.  The boundary between the foundation and the half-space has center of curvature also at 
O1, and radius bF.  The model is symmetric about the vertical line through points O and O1, which are the 
origins of the two Cartesian coordinate systems, x-y-z and x1-y1-z1, used to describe the motion of the 
system.  Axes y and y1 project into  points on the plane shown in Figure 1 and point towards the reader.   
Associated to these two Cartesian coordinate systems are cylindrical coordinate systems R-θ-y and R1-θ1-y1 
as shown in Figure 1. The distance between the origins of these two coordinate systems is 0cosθbd = . The
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Figure 1  The model. 
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half-width of the base of the dike is 0sinθba = , and of the foundation is FFF ba θsin= , where 

F
F

b

b 01 cos
cos

θ
θ −= .  We will use a  as characteristic length of the model.  The excitation is a plane SH-

wave with frequency ω, angle of incidence γ, amplitude u0, and displacement in the y–direction  

( ) ( )[ ]tizxkuU s
i ωγγ −−= cossinexp0  (1) 

where t is time and ssk βω=  is  the wave number of shear waves in the half-space. 

2.1 Equation of Motion and Boundary and Continuity Conditions 

The wedge (dike, structure), foundation and half-space will respond by anti-plane motions, U (D), U (F), and 
U (s), such that they all satisfy the wave equation 
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subject to the following zero-stress boundary conditions  

( ) 0=s
yθσ    at  aR > F and  

2

πθ ±=  (3) 

( ) 0=F
yθσ    at  FaRa <<  and  

2

πθ ±=  (4) 

( ) 0
1

=D
yθσ    at  bR <1  and  01 θθ ±=  (5) 

where   

θ
µσθ ∂

∂= U

Ry   (6) 

Displacements ( )DU , ( )FU  and ( )sU  also have to satisfy the continuity of stresses and displacements 
conditions at the contact surface 

U (D) =U (F)     at bR =1  and  010 θθθ ≤≤−  (7) 

( ) ( )F
yR

D
yR 11

σσ =    at bR =1  and  010 θθθ ≤≤−  (8) 

U (F) =U (s)     at FbR =1  and  FF θθθ ≤≤− 1  (9) 

( ) ( )s
yR

F
yR 11

σσ =    at FbR =1  and  FF θθθ ≤≤− 1  (10) 

where 

1
1 R

U
yR ∂

∂= µσ   (11) 
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2.2 Representation of the Motion in the Half-Space and in the Structure 

The motion in the half-space can be represented as a sum of the free-field motion, U (ff), and perturbation, U 
(R), due to waves scattered from the wedge   

 ( ) ( )Rffs UUU += )(  (12) 

The free-field motion is the sum of the incident wave, U (i), and the wave U (r) reflected from the half-space 
surface, if the structure were not there  

 ( ) ( )riff UUU +=)(  (13) 

The reflected wave is  

( ) ( )[ ]tizxkuU s
r ωγγ −+= cossinexp0 .

 (14) 

The free-field motion U (ff) satisfies the zero-stress condition (3). Then, the scattered field must also satisfy 
the zero-stress condition (3) as well as the wave equation (2), and it should be an outgoing wave.  Such 
motion can be represented by the following Fourier-Bessel series [Trifunac, 1971] 

( )( ) ( ) ( ) ( ) ( ) ( )[ ] ( )tinRkHBnRkHAuRU
n
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+ exp12sin2cos,
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where R
nA  and R

nB  are unknown coefficients and ( )( ).1
nH   is the Hankel function of the first kind and order 

n.   The displacement of the foundation can be represented as 
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where F
nA , F

nB , F
nC  and R

nD  are unknown coefficients and ( )( ).2
nH  is the Hankel function of the second 

kind and order n.   The representation of displacement in the structure that satisfies automatically the zero–
stress condition (4) is  

( )( ) ( ) ( )tinRkJBnRkJAuRU
n
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D ωθ
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0
1

0
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0
12011 (17) 

where D
nA  and D

nB  are unknown coefficients. 

2.3 Solution 

The representations of the motions in the structure and in the half-space, i.e. U (ff), U (R) and U (D), are such 
that the zero-stress conditions on the outer boundaries are automatically satisfied. The unknown 
coefficients are then determined from the continuity of displacements and stresses conditions (7) through 
(11).  Matching these continuity conditions requires same representation for U (ff), U (R), U (F) and U (D).  
Such a representation is expansion in Fourier-Bessel series of R1 and θ 1 with period 2π.   We follow the 
procedure we used in our previous paper on response of a dike to SH-waves where the dike is in direct 
contact with the half-space (Hayir et al., 2001).   To avoid repetition, in the following, we present only the 
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representations of motion, and expressions that are new or that differ from our earlier paper.  The 
expansions of U (i) and U (r) are  

( ) ( ) ( ) ( ) ( ) ( )timRkJidkiuU sm
m

m
ms

i ωγθεγ −+−= ∑
∞

=

expcoscosexp 11
0

0  (18) 

( ) ( ) ( ) ( ) ( ) ( )timRkJidkiuU sm
m

m
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∞

=

expcoscosexp 11
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0  (19) 

where  
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The representation of transformed ( )RU  is 
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and of U (F)  is 
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where ( )sP nm,  and ( )sQ nm,  are  
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The expression for ( )DU  is transformed by expanding 
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in Fourier series of period 2π.  This leads to  
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The above Fourier expansion assumes extension of ( )DU  beyond the domain of the structure, i.e. on 
[ ]ππ ,− , to minimize the Gibb’s effects at 01 θθ ±= .  After evaluation of the integrals 
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The stresses are  
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where  
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and the normalization stress is  

00 ukFFµσ =  (31) 

The continuity conditions imply the following system of equations to be solved for the unknown 
coefficients of expansion of the motion in the half-space, foundation and the wedge, 
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The displacement for the rigid-base model of the dike for driving motion ( )tiu ω−exp2 0 is  

( ) ( )
( ) ( )ti

bkJ

RkJ
uU

b

bD ω−= exp2
0

10
0                 (38) 

3. RESULTS AND ANALYSIS 

As dimensionless frequency we use    

ss

a

T

a

πβ
ω

β
η == 2

                 (39) 

which is the ratio between the width of the wedge and the wavelength of shear waves in the half-space.  If 
not indicated otherwise, the amplitude of the incident wave is 10 =u . The calculations were done using 

Matematica 4.0 interpreter on PC.  We show results for a wedge softer than the half-space ( 16/1/ =sD µµ  

and 4/1/ =sD ρρ ), for a foundation thickness such that 3/4/ =bbF , and density such that 1/ =sF ρρ . 

We vary the foundation rigidity, from sF µµ / 1=  (same rigidity as the half-space) to sF µµ / =50 (stiff 

foundation compared to the half-space), and show how the results are affected by the stiffness of the 
foundation. The angle of the wedge is always °= 1502 0θ .  In this paper, we illustrate how the relative 

stiffness of the foundation varies with sF µµ /  only.  A more detailed and general study of the overall 

stiffness of the foundation for the model in Figure 1 would include dependence on sF ρρ / , sD ρρ / , 

sD µµ / , and on the geometry of the foundation and its embedment (bbF /  and 02θ ).  We leave analyses 

of these dependences for future work. 

3.1 Accuracy 

A computational limitation of this method, based on expansion in cylindrical wave functions and requiring 
numerical solution of a truncated infinite system of equations, is that the system becomes singular for 
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number of terms in the series in eqns (18), (19), (22) and (24) grater than some value. The maximum 
number of terms (for which the system of equations is numerically stable) depends on dimensionless 
frequency, impedance contrasts, angle of incidence, and angle of the wedge, 2θ0.  The accuracy of the 
results also depends on the point where the motion is evaluated (the accuracy is the worst near lower 
corners of the wedge).  For higher �, the maximum number of terms becomes too small for a desired 
accuracy to be achieved.  In this paper, we show results for 1≤η , incident angle °= 0γ  and °45 , and for 

angle of the wedge °= 1502 0θ .  For smaller η , the results converge also for larger incident angles than 

°45 and for smaller wedge angle, but are not sufficiently accurate or diverge for 1=η  (see Figs 2 and 3 in 

Hayir et al., 2001). 

Tables 1 and 2 show the upper bounds for the displacement and stress residuals, respectively along the 
contact surface between the wedge and the foundation and between the foundation and the half-space, for 
four values of η  (= 0.25, 0.5, 0.75 and 1), for °= 0γ  and °90 , and for three values of the ratio sF µµ /  

( 1= , 16 and 50).  It can be seen that the error is the largest for 1=η , and along the boundary with the 

largest impedance contrast (wedge-foundation, for sF µµ / =50).   

Table 1  Upper bounds for normalized* displacement and stress residuals along the contact surface between 
the wedge and the foundation ( bR =1 ), for unit amplitude incident waves, for a “soft” structure relative to 

the half-space ( 16/1/ =sD µµ  and 4/1/ =sD ρρ ), and for three values of foundation stiffness relative to 

the one of the half-space.  

1/ =sF µµ ,  1/ =sF ρρ  
°= 0γ  °= 90γ   

η  
 

N 
Uε  σε  Uε  σε  

0.25 4 3.6×10-9 6.1×10-8 1.0×10-8 9.2×10-9 

0.50 5 4.3×10-8 5.8×10-7 8.0×10-8 1.8×10-6 

0.75 6 5.0×10-6 1.3×10-4 7.3×10-6 2.3×10-4 

1.00 7 4.46×10-5 1.4×10-3 2.1×10-3 7.5×10-2 

16/ =sF µµ  ,  1/ =sF ρρ  
°= 0γ  °= 90γ   

η  
 

N 
Uε  σε  Uε  σε  

0.25 3 7.8×10-8 1.1×10-7 2.1×10-5 3.0×10-5 

0.50 4 2.7×10-5 6.4×10-5 7.6×10-4 4.2×10-3 

0.75 5 1.2×10-3 2.6×10-3 1.1×10-1 1.0×10-1 

1.00 5 3.0×10-4 1.1×10-3 3.2×10-3 3.8×10-3 

50/ =sF µµ  and 1/ =sF ρρ  
°= 0γ  °= 90γ   

η  
 

N 
Uε  σε  Uε  σε  

0.25 3 2.1×10-6 8.04×10-6 3.3×10-4 2.4×10-3 

0.50 4 3.1×10-3 3.8×10-3 1.1×10-1 4.0×10-1 

0.75 4 2.8×10-4 4.4×10-4 7.7×10-3 2.2×10-2 

1.00 5 4.7×10-2 8.5×10-2 1.3×10-4 2.4×10-3 

* Normalization factor for displacements is the amplitude of the incident waves, u0, and for the stresses is 

00 ukDDµσ = . 
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Table 2 Upper bounds for normalized* displacement and stress residuals along the contact surface between 
the foundation and the half-space ( FbR =1 ), for unit amplitude incident waves, for a “soft” structure 

relative to the half-space ( 16/1/ =sD µµ  and 4/1/ =sD ρρ ), and for two values of foundation stiffness 

relative to the one of the half-space.  

16/ =sF µµ  ,  1/ =sF ρρ  
°= 0γ  °= 90γ   

η  
 

N 
Uε  σε  Uε  σε  

0.25 3 1.62×10-9 4.6×10-11 1.46×10-7 1.84×10-7 

0.50 4 1.82×10-7 8.03×10-8 1.6×10-5 2.6×10-5 

0.75 5 7.3×10-4 2.0×10-3 1.0×10-3 3.0×10-3 

1.00 5 5.43×10-6 4.81×10-6 2.9×10-5 6.6×10-5 
 

50/ =sF µµ  and 1/ =sF ρρ  
°= 0γ  °= 90γ   

η  
 

N 
Uε  σε  Uε  σε  

0.25 3 8.04×10-6 8.28×10-6 1.8×10-5 2.4×10-5 

0.50 4 2.2×10-5 6.9×10-5 7.3×10-4 2.0×10-3 

0.75 5 3.2×10-6 4.02×10-6 1.1×10-4 3.9×10-4 

1.00 5 1.6×10-3 3.5×10-3 1.6×10-5 2.48×10-5 

* Normalization factor for displacements is the amplitude of the incident waves, u0, and for the stresses is 

00 ukDDµσ = . 

 3.2 Transfer-Functions of the Soil-Foundation-Structure System Response 

Although the lower boundary of the wedge is not closed (energy flows both ways through the contact 
surface with the foundation, and also through the contact surfaces between the foundation and the half-
space), and its motion is not a superposition of its fixed-base frequencies, the motion of the system exhibits 
sharp variations near the fixed-base frequencies of the wedge.  These frequencies can be determined from 
the representation of the wedge response by eqn (17), as the zeros of )( bkJ Dn , and those in the interval 

)1,0(∈η  are   

FB
nη  =  zeros of )( bkJ Dn  

n=0 n=1 n=2 n=3 

0.37 0.58 0.78 0.98 

0.85    

Which of these frequencies is seen in the response depends on the symmetry of the displacement 
amplitudes of the incident waves and of the location of the point where the response is evaluated.  For 
example, for vertically incident waves, only the symmetric terms in the expansion in eqn (17) are excited, 
and the frequencies for n even only can be seen. For inclined incidence, both symmetric and anti-symmetric 
terms contribute to the response.  However, even then, along the vertical axis of symmetry 

( 01 =θ ), ( ) 







+ 1

02
12sin θ

θ
π

n =0 and only the terms with even n contribute to the response.  At the top of 

the wedge, 01 =R  only the n=0 term contributes to the response (as 0=nJ  for 1≥n ).   
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Figure 2 shows the transfer-functions between the relative displacement at the top of the wedge, relU , and 

the average motion along the contact surface between the wedge and the foundation, BOT
avU , and the 

incident wave, for a vertically incident wave. The relative wedge response on the top was evaluated as 
BOT
av

TOPrel UUU −= , where TOPU  is the absolute displacement of the top.  The solid line corresponds to
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Figure 2 Top: Transfer-function between the displacement of the wedge top (relative to the average motion 
along the base) and the displacement of the incident wave for vertical incidence. Bottom: Transfer-function 
between the average displacement of the base of the wedge and the displacement of the incident wave for 
vertical incidence.   
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a foundation with same material properties as the half-space, and the segmented lines correspond to 

foundations with sF µµ / = 4, 16 and 50.  It can be seen that relU  has distinctive peaks near the first and 

second zeroes of )(0 bkJ D  (near =η 0.37 and 0.85).  The peaks are shifted towards higher frequencies for 

stiffer foundations, as the overall structure-foundation stiffness relative to the soil becomes larger. In the 

transfer-function for BOT
avU , a small “peak” near the first zero of )(2 bkJ D  can also be seen (near 

78.0=η ).   For stiffer foundations, the transfer-function of BOT
avU  looks very much like those published 

for rigid foundations (Trifunac, 1972). For a “surface” foundation ( sF µµ / =1), the transfer-function near 

the first fixed-base frequency is very similar to those for rigid foundations (has a sharp minimum), but near 
the second fixed-base frequency it has a peak and then a minimum.  This figure also shows how the 
foundation filters progressively more of the high frequencies of the incident waves when it is stiffer relative 

to the soil (the backbone of the BOT
avU  amplitudes is smaller).   

Figures 3a and b show the displacements on the free surface of the half space and along the base of the 
structure for a structure “softer” (bottom) and “harder” (top) than the half-space ( 50/ =SD µµ  and 1/16 

and 4/1/ =SD ρρ  and 1), for two incident angles (γ = 0 and °45 ), and for the case when the foundation 

and half-space have same material properties, i.e. the structure is supported directly by the half-space.  
|U|/u0 is shown for –3 < x/a < 3 and for 0.2 ≤ η ≤ 1.0.  It is seen that the displacement pattern is more 
complex for larger η and for γ = 45° incidence.  The displacement amplitudes on the half-space surface 
oscillate about the free-field amplitude (=2). 

Figure 4 shows three-dimensional plots of the transfer-function between the motion along the base of the 
wedge (i.e. the contact surface between the wedge and the foundation) and the incident wave (with 

°= 45γ ), extended to the left and to the right to include part of the foundation and half-space stress-free 

surface. The four surfaces correspond to different foundation rigidity, increasing progressively from left to 
right and from top to bottom.  For softer foundation, ( sF µµ / =1 and 4), variations in the transfer-function 

associated with all the fixed-base frequencies listed above can be noticed, while for a very stiff foundation, 
noticeable are only variations associated with the frequencies for n=0 (i.e. the fixed-base frequencies 
excited by synchronous translation of the base.  This figure can be used to infer how large the 
rigiditycontrast between the foundation and the soil should be for the common assumption made in soil-
structure interaction modeling that the foundation is rigid is valid. This figure suggests that sF µµ /  should 

grater than about 20 (for 1/ =sF ρρ ).  If the foundation is more flexible than that, soil-structure 

interaction models with a rigid-foundation assumption will not model the consequences of differential 
motion of the ground and may underestimate the stresses in the structure.  

Figure 5 shows the transfer-functions between the motion of three points at the base of the wedge (left 
corner, mid point and right corner) and the incident wave, for the four values of foundation stiffness 
considered in Figures 2 and 4.  This figure is included to explain further the relationship between variations 
of the three-dimensional surfaces shown in Fig. 4 and the fixed-base frequencies of the wedge.  In the 
transfer-function for the left corner, variations can be noticed associated with all the five fixed-base 
frequencies of the wedge that fall within the frequency range considered.   In the transfer-function for the 
mid point, variation associated only with the symmetric fixed-base modes are seen (two zeros of 0J  and 

one zero of 2J ).  In the transfer-function for the right corner, also there are variations associated with all 

the five fixed-base frequencies of the wedge (like for the left corner).  The amplitudes are smaller because 
this point is in the “shadow” zone. However, the difference in amplitudes between the motion of the corner 
facing the incident wave and the one in the “shadow” zone diminishes when the foundation is very stiff.  
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Figure 5 Transfer-functions of the displacement at three points on the base of the wedge (top: left corner, 
middle: mid point, bottom: right corner) relative to the displacement of the incident wave for incident angle 

°= 45γ .  The different curves correspond to different rigidities of the foundation ( sF µµ / =1, 4, 16 and 

50).   
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Figure 6   Stresses ( )D
y1θσ  (left) and ( )D

yR1
σ  (right) in the wedge along bR 3.01 = , for dimensionless frequency 

1=η  and   incident angles °= 0γ , °45  and °90 .  The different curves correspond to four values of 

foundation rigidity relative to the soil: sF µµ / =1, 4, 16 and 50. 
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3.3 Stresses due to Differential Motions 

Differential motions of the base or individual supports of structures lead to additional stresses to those 
estimated assuming synchronous excitation of the base.  For our model, shaken by synchronous excitation 

of the base, the stress ( ) 0
1

=D
yθσ .  In Figure 6 (left), we compare this stress evaluated along R1=0.3b for 

different rigidities of the foundation =sF µµ 1, 4, 16 and 50. In Figure 6 (right), we show stress ( )D
yR1

σ . 

The plots at the top middle and bottom correspond to incident angles °= 0γ , °45  and °90 .  In all plots, 

1=η .  It is seen that both stresses are of the same order of magnitude, and are small for a very stiff 

foundation, sF µµ / =50, but not for a flexible foundation. The stress ( )D
yR1

σ  is up to 10 times larger 

for sF µµ / =1 than for sF µµ / =50.  Even for sF µµ / =16, ( )D
yR1

σ
 
can be about four times larger than for 

sF µµ / =50.   
 

4. CONCLUSIONS 

A common assumption in soil-structure interaction analyses is that the foundation is rigid. This leads to 
ignoring differential ground motions and its effects on the structure.  The validity of this assumption is 
difficult to tests due to the lack of adequate seismic instrumentation of structures documenting these 
deformations during strong earthquake shaking.  Other models, on the other hand, consider differential 
motions but ignore the inertia interaction. In this paper, using a simple structural and foundation model, a 
circular wedge supported by a flexible foundation embedded into a half-space, both differential motions 
and soil-structure interaction are considered.   

The question this paper attempted to answer is how rigid the foundation has to be, relative to the soil, for 
the rigid foundation assumption to be valid approximately.  The results suggest that for sF µµ / =50 the 

foundation behaves as rigid, but for sF µµ / <16 it does not.   

Considering differential motion is important for design, because of additional stresses caused by quazi-

static deformations of the structure. The results in this paper show that, for a flexible foundation, the ( )D
y1θσ

 
stress in the structure is of the same order as ( )D

yR1
σ stress, while it is zero for fixed-base models and near 

zero for very stiff foundations, which reduce significantly the effects of differential ground motion.  The 
results for the transfer-function of the average motion along the base of the structure show that flexible 
foundations are not efficient in scattering short wavelengths and thus do not shield the structure from being 
excited.  This conclusion, reached for anti-plane incident waves, is in qualitative agreement with the one 
reached by Iguchi and Luco (1982) who computed impedances for a flexible disk foundation with a rigid 
core excited by in-plane incident waves.     
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