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ABSTRACT

A common assumption in modeling soil-structure interaction is that the foundation is rigid. This reduces
the complexity of the problem (i.e. the number of additional degrees of freedom for accounting for the
interaction), and makes it possible to present general results that can be used for different structures (the
substructure approach for linear models). In reality, building foundations are flexible. This paper presents
an analysis of the consequences of this assumption, using a simple structural model: an elastic circular
wedge supported by a flexible circular foundation embedded into a half-space and excited by incident pane
SH-waves. The problem is solved by expansion of the motion in all three media (wedge, foundation and
half-space) in cylindrical wave functions (Fourier-Bessel series). The structural model is simple, but
accounts for both differential motions of the base and for the effects of soil-structure interaction. Usually,
structural models in earthquake engineering consider either differential ground motion, but ignore soil-
structure interaction, or consider soil-structure interaction, but for a rigid foundation, thus ignoring
differential ground motion. This study attempts to find how stiff the foundation should be relative to the
soil so that the rigid foundation assumption in soil-structure interaction models is valid. The shortest
wavelength of the incident waves considered in this study is one equal to the width of the base of the
wedge. It is concluded that, for this model, a foundation with same mass density as the soil but 50 times
larger shear modulus behaves as ‘“rigid”. For ratio of shear moduli less than 16, the rigid foundation
assumption is not valid. Considering differential motions is important because of additional stresses in
structures that are not predicted by fixed-base and rigid foundation models.

1. INTRODUCTION

For structures on multiple supports or on extended flexible foundations, it is important to consider the
effects of differential ground motion because of excitation of anti-symmetric modes of vibration and
additional stresses (to those predicted by synchronous motion) in the structure due to non-classical “modes”
of vibration and quazi-static deformations which are the largest near the base (Todorovska and Lee, 1989;
Todorovska and Trifunac, 1989; 1990a,b; Trifunac and Todorovska, 1997). Another consequence of the
finite flexibility of the soil is the soil-structure interaction, which refers to modification of the ground
motion due to scattering of the incident waves from the foundation and radiation of energy from the
structure into the soil. Due to increased complexity of the problem, models usually consider either one of
these two effects and ignore the other effect. Studies that include both are rare. For example, Iguchi and
Luco (1982) and Liou and Huang (1994) present impedance functions for a flexible circular disk
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foundation with a rigid core (where the forces from the structure are applied) and for in-plane incident
waves. They conclude that a consequence of the rigid-foundation assumption is that the radiation damping
is exaggerated, in particular for shorter wavelengths of the incident waves.

This paper summarizes the results of Hayir et al. (2001) and Todorovska et al. (2001), who considered a
simple structure - a wedge, supported respectively by a half-space but with a flexible interface between the
structure and the half-space, or by a flexible foundation embedded into a half-space and excited by plane
SH-waves. All the contact surfaces and media are flexible and transmit waves from one medium to the
other. This paper attempts to find how stiff a foundation should be relative to the soil for the rigid
foundation assumption in similar soil-structure interaction models to be valid.

2. MODEL

The two-dimensional (2D) model consists of a circular wedge, supported by a flexible circular foundation
embedded in a half-space. Perfect bond is assumed at the contact surfaces. All the three media are linear,
elastic, homogeneous and isotropic, with shear wave velocities and shear Bspgyli B, e, Bs and Ls.

Figure 1 shows a vertical cross-section of the model. The wedge has center of curvature atnadiinsO

bp and angle &. The boundary between the foundation and the half-space has center of curvature also at
0O,, and radiud:. The model is symmetric about the vertical line through points O andh@h are the

origins of the two Cartesian coordinate systerig;z and x;-y;-z;, used to describe the motion of the
system. Axey andy; project into points on the plane shown in Figure 1 and point towards the reader.
Associated to these two Cartesian coordinate systems are cylindrical coordinate Ry&tgmusdR;-6;-y;

as shown in Figure 1. The distance between the origins of these two coordinate systerhsasd, . The
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Figure 1 The model.



half-width of the base of the dike is=bsinf,, and of the foundation isaz =bg sinf, where

_1 bcosh . - T
O =coslb—°. We will use@ as characteristic length of the model. The excitation is a plane SH-

F
wave with frequency, angle of incidencg, amplitudeu,, and displacement in tlyedirection

U ® =ug exd ke (xsiny - zcosy) - i wt] (1)
wheret is time andks = w/Bs is the wave number of shear waves in the half-space.

2.1 Equation of Motion and Boundary and Continuity Conditions

The wedge (dike, structure), foundation and half-space will respond by anti-plane matidns ©, and
U ©, such that they all satisfy the wave equation

RV +azu 1 9w

= 7> 2
ox*  9z2  p? at? @)
subject to the following zero-stress boundary conditions
o§)=0 at R>arand BZig 3)
of)=0 ata <R<a and6=i7—2T (4)
o) =0 at R <b and 6, =16, (5)
where
_HoU

Oy = —— 6

¥ Rog ©)

DisplacementsU (D),U(F) and u® also have to satisfy the continuity of stresses and displacements
conditions at the contact surface

u®=y® gt R = b and -0,<0, <6, )
agfy) :a@ atR =b and -6, <6, <6, ®)
u®=y® gt R =be and -0, <6, <6, ©)
J@ :ag)y atR, =br and -6 <6, <6, (10)
where
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2.2 Representation of the Motion in the Half-Space and in the Structure

The motion in the half-space can be represented as a sum of the free-field th8ticend perturbatiori)
® due to waves scattered from the wedge

ub =y yy® (12)

The free-field motion is the sum of the incident wavé’, and the wavé) © reflected from the half-space
surface, if the structure were not there

U(ff):U(i)+U(f) (13)
The reflected wave is

ul) =y, exd ks (xsiny + zcosy) - i wt] (14)

The free-field motiord ™ satisfies the zero-stress condition (3). Then, the scattered field must also satisfy
the zero-stress condition (3) as well as the wave equation (2), and it should be an outgoing wave. Such
motion can be represented by the following Fourier-Bessel series [Trifunac, 1971]

u® (R 6)=u, i [AnR H (k,R)cos2n8 + BRH Y (kR)sin(2n +1)9]exp(—i wt) (15)

whereA® and BR are unknown coefficients and ®() is the Hankel function of the first kind and order
n. The displacement of the foundation can be represented as

U= [ AT HElkeR) codzne)+ 87 HE k- Risn(zn+1p (16)

+CFH (ke R) cod2n0)+ D7 H P, (ke R)sin(2n+1)p Jexp-i wt)

whereA® , BF , CF and DR are unknown coefficients ant ? () is the Hankel function of the second

kind and orden. The representation of displacement in the structure that satisfies automatically the zero—
stress condition (4) is

© 5 0 _ .
u®)(R,,6,)=u, Z %A\? J,n(koRy) cosljjn%ﬂg B2 3, (Ko Ry) sm@Zn +1)% 6, %exp(—l wt)(17)
n= 0 0

whereA? and B are unknown coefficients.

2.3 Solution

The representations of the motions in the structure and in the half-spade™j.&l ® andU @, are such

that the zero-stress conditions on the outer boundaries are automatically satisfied. The unknown
coefficients are then determined from the continuity of displacements and stresses conditions (7) through
(11). Matching these continuity conditions requires same representatich®ru ®, U ® andu ©,

Such a representation is expansion in Fourier-Bessel serigsantl 6, with period 2t We follow the
procedure we used in our previous paper on response of a dike to SH-waves where the dike is in direct
contact with the half-space (Hayir et al., 2001). To avoid repetition, in the following, we present only the



representations of motion, and expressions that are new or that differ from our earlier paper. The

expansions of) ¥ andU © are

U0 =y, expl k. d cosy)S ., (=), (k.R, )cosm(@, +y)expl=i wt)

m=
u= ug exp(-i ks dcosy)S em ()™ (ksRy )cosm(B; —y)exp(-i wt)

where

1, m=0

S =
m m>0

The representation of transformed® is

UR(R,6,)=ug i i H® (ks Rl)[AnR P (ksd)cosmé, + BRQ,, , (ksd)sin mel] exp-iat)

and ofu ® is

o

(ke R) [C Pnn (ked)cosmé, +DF Q. (ked)sin mell}exr(—iwt)

where P,,, (s) and Qy,, (s) are

Prn(9)= 22 Pran ()4 (27 31206

Qmyn (S) = %n [J m+2n+1 (S) - (_ 1)2n+1 JIm-2ns1 (S)]

iH( (ke R) [An Prn (ked)cosm8; +BF Qun (ke d)smmel]
(

(18)

(19)

(20)

(21)

(22)

(23)

g O : 0.
The expression fou (°) s transformed by expandirrgpajn%@lg and sm%Zn +1)%915 in egn (13)
O O

o O
in Fourier series of periodr2 This leads to

U (D)(Rl!el): Uo ZD Z)[AnD JZn(kb Rl)M m,n COSMOy + By ‘]2n+1(kb R1)Nm,n sin mel]exr(—iax) (24)

where

m
1
M= = coa:?rnﬁelgposmel do,

(25a)



17 m U
Npp == Ising2n+l)—91[pinm61d61 (25b)
nJ 0O 20, 0O

The above Fourier expansion assumes extensiod (Bt beyond the domain of the structure, i.e. on
[— m, n], to minimize the Gibb's effects & = +6,. After evaluation of the integrals

0
0
S L n=m=0
M. =0 1+ sinan—— O tanm 3 m=2n—" (262)
"D 5 W00 2o 20,
- 708 mrOm 0 nd m
E( " 5|n[2nn—D/D—— E +nm—1U0 m#2n—
a
0
O 0, n=m=0
0 00 a
Npn = % 1- sin[2(2n + 1)ni[/[2(2n + l)ﬂi[,] m= (2n + 1)L (26b)
a 20,00 20, 0 20,
0 D D 2 0
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The stresses are

0(R.0,)=-20Hs § S ART, (3.k, Ry)Pp o0 (kedl)cosmd,
ke Ry HE &

+ BsTm (3! ks R1)Qm,2n+1 (ksd)sm m91 (27)
+To (L ksRy )& (~1)™ explik sd cosy)cosm(g, +y)
+T(@L kR ), ()™ expl-ik od cosy)cosm(g; —y)

cF)(R,,6,)=-20 ZZ}AH Ton (3. kp R)M , cOSME,

Ke Ry &
+B} Ty (8 kp RN, sinmé,
+C/ T, (4,kp ROM ,, cOsSME, (28)
+Dy Tona(4 kp RN, SinmE,

(Rl 91 kog{l Ho ZZAﬂ Ton l-kD Rl) mn COSMO; + BnD T2n+1(1v Kp Rl)Nm,n sinmé, (29)
D &

where



0J,(s), j=1

L RN N C R o e @
() =4

and the normalization stress is

Oy = HUg Kpug (31)

The continuity conditions imply the following system of equations to be solved for the unknown
coefficients of expansion of the motion in the half-space, foundation and the wedge,

o B
OaRO
0. : .0 EjA?D% E O .
E" [Wn%m]zw E %]Q:F o o = H\/rﬁymhxl[l (32)
s R.DNDD §TL
Jr-45=
E : El'1><1
where
i,
mn I4x4
B 0 Jon (ka)M m,n -H rr%)(kF b) F>m,n (de) - Hr(nZ)(kF b)pm,n (de) B
H H
% 0 T2n(1' kD b)Mm,n __me(‘?" ka)Pm,n(de) _M_me(4’ ka)Pm,n(de)B
0 D y 0
D—Hr(rll)(kst)Pmn(ksd) 0 Hr%)(kaF)Pm,n(de) Hr(Tf)(kaF)Pm,n(de) O
a u u a
E}-Tm(3, kst)Pm,n(ksd) 0 _me(gkabF)Pm,n(de) _f-I-m(‘?”kaF)Pm,n(de)[j
8 Hs Hs 4
(33)
O 0 O
from} 4 ° - (34)
m2T g g (kebe )cosmy[(—i)m exp ksdcosy)+i_m expl(-i ksdcosy)] 0
BT (L kg b Jcosmy [(— i)™ expli ke d cosy)+i™e KA exg(-ik, d cosy)]H
and
g : B
RO
O. : O BTDE E o -
B“ B/\/fﬁ;ym]4x4 S EDBT: o o = H\/l’ﬁsym}4x1[| (35)
E' Enx = nF[| = x1
" ?Dnﬁmé
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where

bNasme -
mn - I4x4

B 0 ‘J2n+1(kb b) Nm,n -H r(%)(kF b)Qm,n (kF d) -H r(nZ) (kF b)Qm,n(kF d) B
H H
B 0 T2n+1(lr I(b b) Nm,n - u_me (31 kF b)Qm,n (kF d) - u_me (4! kF b)Qm,n (kF d)g
0 D Y 0
E'_'r(%)(ks bF )Qm,n (ksd) 0 Hr(T]{)(kF bF )Qm,n (de) Hr(ﬁ)(kl: bF )Qm,n (de) B
T, (3 ke b ) (k) 0 T @k be)Qmalked) £ T, (3 ke b )Qua ke )
8 Hs Hs Bica
(36)
O 0 0
oo, = ° | (37
mo T QeI (ke be )sin my[i M exp(-i ks dcosy)-(-i)™exdli ks d cosy)] 7
BRy (L kg be )sin my[i M exp(—i ke d cosy)— (~i)™ expli ks d cosy)]H
The displacement for the rigid-base model of the dike for driving m(ﬂimexp(— iwt) is
©) _ oy, JokoR) /.
U 2Uq ‘]O(kbb) exp( m):) (38)
3. RESULTS AND ANALYSIS
As dimensionless frequency we use
_ 2a _wa (39)

BT mBs

which is the ratio between the width of the wedge and the wavelength of shear waves in the half-space. If
not indicated otherwise, the amplitude of the incident wave,is . The calculations were done using

Matematica 4.0 interpreter on PC. We show results for a wedge softer than the halfspage €1/ 16
and pp / p, =1/ 4), for a foundation thickness such that /b =4/3, and density such that: / p, = .1
We vary the foundation rigidity, fromug / ug =1 (same rigidity as the half-space) tg- / u, =50 (stiff

foundation compared to the half-space), and show how the results are affected by the stiffness of the
foundation. The angle of the wedge is alw&, =150 . In this paper, we illustrate how the relative

stiffness of the foundation varies with / g only. A more detailed and general study of the overall
stiffness of the foundation for the model in Figure 1 would include dependengg ép., pp/ps.

Up / s, and on the geometry of the foundation and its embednbentl{ and 26,). We leave analyses
of these dependences for future work.

3.1 Accuracy

A computational limitation of this method, based on expansion in cylindrical wave functions and requiring
numerical solution of a truncated infinite system of equations, is that the system becomes singular for



number of terms in the series in egns (18), (19), (22) and (24) grater than some value. The maximum
number of terms (for which the system of equations is numerically stable) depends on dimensionless
frequency, impedance contrasts, angle of incidence, and angle of the wédgéh2 accuracy of the

results also depends on the point where the motion is evaluated (the accuracy is the worst near lower
corners of the wedge). For higher the maximum number of terms becomes too small for a desired
accuracy to be achieved. In this paper, we show resultg £dr, incident angley =0° and 45°, and for

angle of the wedge6, =150 . For smallern, the results converge also for larger incident angles than

45 and for smaller wedge angle, but are not sufficiently accurate or diverge=far(see Figs 2 and 3 in

Hayir et al., 2001).

Tables 1 and 2 show the upper bounds for the displacement and stress residuals, respectively along the
contact surface between the wedge and the foundation and between the foundation and the half-space, for
four values ofn (= 0.25, 0.5, 0.75 and 1), fgr=0° and 90°, and for three values of the ratja- / ug

(=1, 16 and 50). It can be seen that the error is the largest #dr, and along the boundary with the
largest impedance contrast (wedge-foundation tfet 11, =50).

Table 1 Upper bounds for normalizetisplacement and stress residuals along the contact surface between
the wedge and the foundatio®(=Db ), for unit amplitude incident waves, for a “soft” structure relative to

the half-space g / us =1/ 1@&nd pp / pg =1/ 4), and for three values of foundation stiffness relative to
the one of the half-space.

He s =1, pelps=1
y =0° y =90°
r’ N SU ga SU ga

0.25 4 3.6x18 6.1x10° 1.0x10° 9.2x10°

0.50 5 4.3x18 5.8x10’ 8.0x10° 1.8x10°

0.75 6 5.0x18 1.3x10* 7.3x10° 2.3x10"

1.00 7 4.46x10 1.4x10° 2.1x10° 7.5x10°

Melps =16, pelps=1
y=0° y =90°

n N SU ga SU ga
0.25 3 7.8x18 1.1x10 2.1x10° 3.0x10°
0.50 4 2.7x10 6.4x10° 7.6x10° 4.2x10°
0.75 5 1.2x18 2.6x10° 1.1x10" 1.0x10"
1.00 5 3.0x19 1.1x10° 3.2x10° 3.8x10°

Mg/ ps =50 and pg [ ps = 1
y =0° y =90°

r’ N SU 80 SU ga
0.25 3 2.1x10 8.04x10 3.3x10* 2.4x10°
0.50 4 3.1x18 3.8x10° 1.1x10" 4.0x10"
0.75 4 2.8x10 4.4x10° 7.7x10° 2.2x10°
1.00 5 4.7x18 8.5x10° 1.3x10* 2.4x10°

* Normalization factor for displacements is the amplitude of the incident wayesndi for the stresses is

0o = Hp Kplp -




Table 2 Upper bounds for normalizedisplacement and stress residuals along the contact surface between
the foundation and the half-spac&, (=bg ), for unit amplitude incident waves, for a “soft” structure

relative to the half-spaceui / 1 =1/ 1énd pp / ps =1/ 4), and for two values of foundation stiffness
relative to the one of the half-space.

Mg lps =16, pp/lps=1
y=0° y =90°
n N £U 80 SU ga
0.25 3 1.62x18 4.6x10™ 1.46x10 1.84x10’
0.50 4 1.82x10 8.03x10° 1.6x10° 2.6x10°
0.75 5 7.3x10 2.0x10° 1.0x10° 3.0x10°
1.00 5 5.43x10 4.81x1¢° 2.9x10° 6.6x10°
Mg /s =50 and pe /ps = 1
y =0° y =90°
r’ N £U ga SU ga
0.25 3 8.04x18 8.28x10° 1.8x10° 2.4x10°
0.50 4 2.2x10 6.9x10° 7.3x10" 2.0x10°
0.75 5 3.2x16 4.02x1¢° 1.1x10 3.9x10*
1.00 5 1.6x10 3.5x10° 1.6x10° 2.48x10°

* Normalization factor for displacements is the amplitude of the incident wayesndi for the stresses is
0o = Hp KpUyp -

3.2 Transfer-Functions of the Soil-Foundation-Structure System Response

Although the lower boundary of the wedge is not closed (energy flows both ways through the contact
surface with the foundation, and also through the contact surfaces between the foundation and the half-
space), and its motion is not a superposition of its fixed-base frequencies, the motion of the system exhibits
sharp variations near the fixed-base frequencies of the wedge. These frequencies can be determined from
the representation of the wedge response by eqn (17), as the zelp&gb , and those in the interval

n0O(0)) are

nt® = zeros ofJ, (kpb )

n=0 n=1 n=2 =3
0.37 0.58 0.78 0.98
0.85

Which of these frequencies is seen in the response depends on the symmetry of the displacement
amplitudes of the incident waves and of the location of the point where the response is evaluated. For
example, for vertically incident waves, only the symmetric terms in the expansion in eqn (17) are excited,
and the frequencies foreven only can be seen. For inclined incidence, both symmetric and anti-symmetric
terms contribute to the response. However, even then, along the vertical axis of symmetry

. 0 . :
(6, = 0),S|ng2n +1)%91[|:0 and only the terms with evencontribute to the response. At the top of
g o O

the wedge,R, =0 only then=0 term contributes to the response fas=0 for n=1).
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Figure 2 shows the transfer-functions between the relative displacement at the top of thdﬂ&‘ad@]d

the average motion along the contact surface between the wedge and the fouhﬂg,%n,and the
incident wave, for a vertically incident wave. The relative wedge response on the top was evaluated as
U™ =uTP -UB9T whereU ™ is the absolute displacement of the top. The solid line corresponds to

s 50
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Figure 2 Top: Transfer-function between the displacement of the wedge top (relative to the average motion
along the base) and the displacement of the incident wave for vertical incidence. Bottom: Transfer-function
between the average displacement of the base of the wedge and the displacement of the incident wave for
vertical incidence.
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a foundation with same material properties as the half-space, and the segmented lines correspond to
foundations withug / u = 4, 16 and 50. It can be seen thHf' has distinctive peaks near the first and
second zeroes al,(kpb) (nearn =0.37 and 0.85). The peaks are shifted towards higher frequencies for
stiffer foundations, as the overall structure-foundation stiffness relative to the soil becomes larger. In the
transfer-function forU2°7T  a small “peak” near the first zero of,(kpb) can also be seen (near

n =0.78). For stiffer foundations, the transfer-function WfC™ looks very much like those published

for rigid foundations (Trifunac, 1972). For a “surface” foundatign ( t;=1), the transfer-function near

the first fixed-base frequency is very similar to those for rigid foundations (has a sharp minimum), but near
the second fixed-base frequency it has a peak and then a minimum. This figure also shows how the
foundation filters progressively more of the high frequencies of the incident waves when it is stiffer relative

to the soil (the backbone of the2°T amplitudes is smaller).

Figures 3a and b show the displacements on the free surface of the half space and along the base of the
structure for a structure “softer” (bottom) and “harder” (top) than the half-sgagé (s = an8Ql/16

and pp/ ps =1/ 4and 1), for two incident angleg £ 0 and45’), and for the case when the foundation

and half-space have same material properties, i.e. the structure is supported directly by the half-space.
|[UJug is shown for —3 <«/a < 3 and for 0.X n < 1.0. It is seen that the displacement pattern is more
complex for largem and fory = 45 incidence. The displacement amplitudes on the half-space surface
oscillate about the free-field amplitude (=2).

Figure 4 shows three-dimensional plots of the transfer-function between the motion along the base of the
wedge (i.e. the contact surface between the wedge and the foundation) and the incident wave (with
y = 45°), extended to the left and to the right to include part of the foundation and half-space stress-free
surface. The four surfaces correspond to different foundation rigidity, increasing progressively from left to
right and from top to bottom. For softer foundatiop(/ ;=1 and 4), variations in the transfer-function
associated with all the fixed-base frequencies listed above can be noticed, while for a very stiff foundation,
noticeable are only variations associated with the frequencies=fr(i.e. the fixed-base frequencies
excited by synchronous translation of the base. This figure can be used to infer how large the
rigiditycontrast between the foundation and the soil should be for the common assumption made in soil-
structure interaction modeling that the foundation is rigid is valid. This figure suggesjsgtihat, should

grater than about 20 (fopg/ps = )1 If the foundation is more flexible than that, soil-structure

interaction models with a rigid-foundation assumption will not model the consequences of differential
motion of the ground and may underestimate the stresses in the structure.

Figure 5 shows the transfer-functions between the motion of three points at the base of the wedge (left
corner, mid point and right corner) and the incident wave, for the four values of foundation stiffness
considered in Figures 2 and 4. This figure is included to explain further the relationship between variations
of the three-dimensional surfaces shown in Fig. 4 and the fixed-base frequencies of the wedge. In the
transfer-function for the left corner, variations can be noticed associated with all the five fixed-base
frequencies of the wedge that fall within the frequency range considered. In the transfer-function for the
mid point, variation associated only with the symmetric fixed-base modes are seen (two z&jasndf

one zero ofJ,). In the transfer-function for the right corner, also there are variations associated with all

the five fixed-base frequencies of the wedge (like for the left corner). The amplitudes are smaller because
this point is in the “shadow” zone. However, the difference in amplitudes between the motion of the corner
facing the incident wave and the one in the “shadow” zone diminishes when the foundation is very stiff.
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Stresses at R , = 0.3b @ N =1

I lo, y|/cro y=0" | 0R1y|/0
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y=0°

0

0, (degrees) 0, (degrees)

Figure 6 Stresses(g'fy) (left) andagfy) (right) in the wedge alondr, = 0.3b, for dimensionless frequency

n=1 and incident angley =0°, 45 and 90°. The different curves correspond to four values of
foundation rigidity relative to the soilg / u,=1, 4, 16 and 50.
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3.3 Stresses due to Differential Motions

Differential motions of the base or individual supports of structures lead to additional stresses to those
estimated assuming synchronous excitation of the base. For our model, shaken by synchronous excitation

of the base, the stres‘sgfy) =0. In Figure 6 (left), we compare this stress evaluated dRpnQ.3b for

different rigidities of the foundationug /i, =1, 4, 16 and 50. In Figure 6 (right), we show stre%py).

The plots at the top middle and bottom correspond to incident apgid® , 45 and 9C¢°. In all plots,
n=1. Itis seen that both stresses are of the same order of magnitude, and are small for a very stiff

foundation, ug / ugs=50, but not for a flexible foundation. The streséﬁDy) is up to 10 times larger
for pg / ugs=1 than for ug / u,=50. Even forug / u =16, agfy) can be about four times larger than for

e | 11, =50.
4. CONCLUSIONS

A common assumption in soil-structure interaction analyses is that the foundation is rigid. This leads to
ignoring differential ground motions and its effects on the structure. The validity of this assumption is
difficult to tests due to the lack of adequate seismic instrumentation of structures documenting these
deformations during strong earthquake shaking. Other models, on the other hand, consider differential
motions but ignore the inertia interaction. In this paper, using a simple structural and foundation model, a
circular wedge supported by a flexible foundation embedded into a half-space, both differential motions
and soil-structure interaction are considered.

The question this paper attempted to answer is how rigid the foundation has to be, relative to the soil, for
the rigid foundation assumption to be valid approximately. The results suggest that fpr,=50 the

foundation behaves as rigid, but fog / 1 <16 it does not.

Considering differential motion is important for design, because of additional stresses caused by quazi-
static deformations of the structure. The results in this paper show that, for a flexible foundatm@)the

stress in the structure is of the same ordea%) stress, while it is zero for fixed-base models and near

zero for very stiff foundations, which reduce significantly the effects of differential ground motion. The
results for the transfer-function of the average motion along the base of the structure show that flexible
foundations are not efficient in scattering short wavelengths and thus do not shield the structure from being
excited. This conclusion, reached for anti-plane incident waves, is in qualitative agreement with the one
reached by lguchi and Luco (1982) who computed impedances for a flexible disk foundation with a rigid
core excited by in-plane incident waves.
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