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Abstract 
 

A study on RC deep beams and wall-type piers behavior is presented in this paper 
by means of finite element analysis along with experimental evaluation. Although the 
application of those two structures is different but their behavior is similar if shear 
dominates the failure mode. In both members, shear resisting mechanism is improved by 
means of arch action which increase shear capacity of the member. Shear span to depth 
ration a/d has an important role in shear resisting mechanism where in member’s shear 
capacity can be improved substantially. In this study investigated members have a range of 
a/d=0.5, 1.0 and 1.5.  

  
Introduction 
 

The primary objective of this study is to investigate behavior of underground 
structures subjected to up filled materials weight as well as seismic excitation. It is found, 
however, that in such structures, members are likely to behave similar to RC deep beams 
since span to depth ratio will be small. During an earthquake it is evident that a shear force 
is produced in structure’s circumference leads to shear deformation of entire structure 
associated with earth pressure in lateral and vertical direction (Fig.1). Such loading results 
large section in resisting members which in span to depth ratio will be likely similar to 
deep beams definition. This is the main objective of the study to investigate behavior of 
those members experimentally and analytically for engineering practical purpose and 
improvement of current design codes dealing with design of underground structures. Three 
sets of specimens comprise of nineteen RC beams are investigated in this study. The beams 
have shear span to depth ratio between 0.5 and 1.5 and effective depth size from 400 mm 
to 1400 mm. The longitudinal tensile reinforcement ratio is kept almost constant in about 
2% for all specimens while lateral reinforcement (stirrups) ratio varies by 0.0%, 0.4% and 
0.8% in shear span. A codified study on foregoing experiment is presented elsewhere 
[Salamy at al, 2005]. 

 
In order to perform nonlinear finite element analysis on RC members, proper 

models for concrete material and cracked concrete should be carefully selected. So far a 
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wide range of material models have been proposed by researchers during recent decades. 
The obstacle in any analysis is how to select the model fits best to the given problem in 
among large number of available models. It is noted, however, there is no consensus on 
what model results the best. In other words each model suits perhaps only particular 
problem. In original study, smeared crack model is examined by means of the fixed crack 
and the rotating crack approach. It is found that the rotating crack model results closer to 
experiment response than that of the fixed crack model. The latter approach suffers 
discrepancy in shear retention factor definition which is left to be analyzer choice. The 
problem manifests itself when shear failure dominates mode of failure which in significant 
sensitivity to the choice of shear retention factor is resulted. Although sensitivity of the 
results to shear retention factor is believed to be negligible in flexural mode of failure 
[Kwak, H., and Flippou F.C., 1990] but it is evident that variation of this factor has 
significant effect on results. In this paper only the results of analyses by means of the 
rotating crack model are presented. Fracture mechanics concept is utilized in order to 
eliminate sensitivity of response to mesh discretization which is usually observed in 
simulation of highly nonlinear material such as concrete and other type of brittle materials. 
The results of this study are also used to investigate behavior of RC wall-type piers under 
cyclic loads as well which are supposed to behave like deep beams if bending capacity 
cannot be achieved. In such case shear failure is the most probable failure mode the 
structure may experience. Two specimens of wall-type piers have been tested and analyzed 
here by means of the finite element method presented in the first part and will be presented 
at the end of this paper. 

Specimens Details  

Nineteen RC beams tested in this study with geometric characteristic and material 
properties given in Fig.2, Table 1 and Table 2. In Table 1, pw, ps, fy, Ast and Asc are shear 
span, stirrups ratio, longitudinal tensile reinforcement ratio and their yield stress, cross 
section area of tensile and compressive rebar respectively. All specimens, with or without 
stirrups in shear span, have a minimum lateral reinforcement in mid-span and out of span. 
Despite absence of shear stress in this part, which in the first look implies un-necessities of 
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FIG.1. UNDERGROUND STRUCTURES UNDER SEISMIC LOAD 



TABLE 1. STEEL PROPERTIES OF SPECIMENS

Beam 
wρ
 

%

stρ
% MPa

f y

 

Ast 
Asc Stirrups 

B2 0.0  
B3 0.4 D6@65 
B4 0.8 D10@75 
B6 0.0  
B7 0.4 D6@65 
B8 0.8 D10@75 

B10-1 
B10-2 

0.0  

B11 0.4 D6@65 
B12 0.8

2.02 376 
5D22 

 
2D10 

D10@75 
B10.3-1 388 
B10.3-2

0.0 2.11
372 

9D25 
2D16 

B13-1 

B13-2 
0.0 2.07 398 10D32 

2D13 

B14 0.0

 

B17 0.4
2.04 398 14D32 

4D13 D13@100

B15 0.0 1.99 402 18D35 
2D13 

B16 0.0 394 
 

B18 0.4
2.05
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18D41 
2D13 D16@120
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FIG.2. DETAIL OF SPECIMENS WITH AND WITHOUT STIRRUPS (UNIT: MM) 

shear reinforcement, they may delay 
or in some case prevent the 
propagation of diagonal crack to 
compression zone. Since all 
specimens tested here have a 
minimum amount of stirrups at 
mid-span, it is however not possible to 
investigate lateral reinforcement effect 
located in that region.  
 

In Table 2, b is specimen width, 
a/d and cf ′ are shear span to depth ratio 
and compressive stress respectively. 
Maximum load capacity and related 
deflection as well as shear crack 
initiation load and maximum 
deflection are noted as Pmax, sh

crP , 

peakδ and maxδ respectively. Other 
geometrical parameters of Table.2 are 
schematically determined in Fig.2. All 
specimens are subjected to four points 
monotonic static load condition.  
 
Size effect study 

 
The results of experiments confirmed existence of size effect on shear strength of 

tested specimens. Test specimens cover a wide range of effective depth from 400mm to 
1400mm. Variation of average shear stress taking into account concrete compressive 



 strength ( 3../ cu fdbV ′ ) in terms of effective depth is shown in Fig.3. To eliminate a/d effect 
on ultimate shear stress of the beams, only a/d=1.5 is considered here. According to size 
effect investigation and theories it is evident that as the effective depth increases, the shear 
strength of the section decreases. The regression line is assumed to be a power function of 
effective depth d. The equation is round off and rewritten in the following form:  

 
)()( 22.0−= dvf u λ                                                                                           (1) 

 
where in coefficientλ  is a function of a/d ratio, reinforcement ratio and member’s 
boundary condition. Since the three aforementioned parameters are constant for the beams 
used to produce Fig.3, 77.4=λ is found to best fit to the experiment data points. In order 
to investigate practical aspects of size effect in design of structures, two Japanese design 
codes JSCE (Japan Society of Civil Engineers) and JRA (Japan Road Association) are 

TABLE 2. GEOMETRIC AND MATERIAL PROPERTIES OF SPECIMENS 
 

Geometry size (mm) 
Beam a/d 

L c a d h b bs MPa
fc′ uP  

KN 

sh
crP  

KN )(mm

peakδ

B2 1550 525 3.16 

B3 
36.2 

1536 625 4.78 

B4 

0.5 700 200 

31.3 1951 700 1.85 

B6 1050 400 2.77 

B7 
31.3 

1181 400 2.58 

B8 

1.0 1100 400 

37.8 1501 600 3.26 

B10-1 29.2 616 325 3.82 

B10-2 23 703 278 5.28 

B11 29.2 1025 350 15.96

B12 

1500

300 

600 

400 475 240 100

31.3 1161 300 7.05 

B10.3-1 37.8 1960 700 6.62 

B10.3-2 
2250 450 900 600 675 360 150

31.15 1787 527 8.62 

B13-1 31.63 2985 500 11.87

B13-2 
3000 600 1200 800 905 480 200

24 2257 807 9.33 

B14 31 3969 1100 9.27 

B17 
3750 750 1500 1000 1105 600 250

28.7 5214 1600 11.92

B15 4500 900 1800 1200 1305 720 300 27 5390 1500 11.91

B16 27.3 5975 1900 10.57

B18 

1.5 

5250 1050 2100 1400 1505 840 350
23.5 8396 2400 15.79

 



employed to be evaluated with test results. According to JSCE, shear stress varies in terms 
of 4

1

d  while JRA proposed definition can be estimated by a function of 3
1

d  to take into 
account size of specimen. Although the foregoing expression of Fig.3 is a crude 
approximation of size effect but it agrees well with that of proposed by JSCE code. There 
is, however, not a significant differences between JSCE and JRA size effect expression as 
can be seen in Fig. 4 and both expressions are attributed to a reasonable estimation of 
member depth effect. Size effect coefficient represents increase or decrease of shear 
strength in terms of effective depth. The maximum values for this coefficient set 1.0 and 
1.5 by JRA and JSCE code respectively. In other words, in spite of JSCE code, which 
attributes 50% increase in shear strength capacity to size effect, JRA however does not 
allow any increase in shear strength for smaller effective depth. One reason for this might 
be the fact that JRA is usually dealing with structures with large components most of them 
larger than one-meter depth but JSCE should cover wider range of element size since it is 
to design various structures too. It is however noted that JRA accepts 40% higher shear 
strength for members with smaller depth ( mmd 300≤ ) where in linear design concept is 
applied (Part-IV, p.148). 

Finite Element Simulation 

The constitutive behavior of concrete is represented by a smeared crack model, 
which in the damaged material still continuum. Analytical scheme and finite element mesh 
discretization is shown in Fig.5. According to concrete crack model, two approaches can 
be highlighted as fixed crack and rotating crack theory. In the fixed crack model, once 
crack initiates in a finite element, the crack direction is calculated according to the 
principal stress direction. The crack direction is kept constant during further load 
increments and considered as the material axis of orthotropy. As a general case, principal 
stress directions need not to be coincide with axes of orthotropy and can rotate during 
loading process. This assumption produces a shear stress in crack surface. In order to 
prevent the effects of this artificially existed shear stress in the analysis, a shear retention 
factor as a reduction coefficient is always applied in this model. This factor can be either 
of a constant coefficient or varies during analysis as a function of crack width. 

0

1

2

200 600 1000 1400
Effective depth d (mm)

22.077.4)( −= dvf u

0

1

2

200 600 1000 1400
Effective depth d (mm)

22.077.4)( −= dvf u

   

0

1

2

0 2 4 6 8 10
d (m)

Si
ze

 ef
fe

ct 
co

ef
fic

ien
t

JRA
JSCE
Experiment (Eq.1)

 
FIG.3 EFFECTIVE DEPTH VERSUS SHEAR FUNCTION     FIG.4 EFFECTIVE DEPTH VERSUS 

3/)( cuu fbdVvf ′=  FOR AV=0 AND A/D=1.5                           SIZE EFFECT COEFFICIENT 

 



Complication of this model manifests itself in definition of this parameter particularly 
when a constant value is assigned for entire analytical procedure.   

 
Alternatively, rotating crack model is presented where the direction of the principal 

stress coincides to the direction of the principal strain. Since crack direction rotates 
according to the principal stress direction, no shear stress is generated on the crack surface 
and just two principal components need to be defined. In order to prevent consequent effect 
of shear retention factor definition in analysis, only the rotating crack approach is adopted 
in the present study as finial results. Specimens are partly modeled by FEM due to the 
symmetric geometry with 2D elements in plane-stress condition. Steel reinforcement is 
modeled as an elastic perfect plastic material with no hardening after the yield point. 

Concrete models 

Concrete constitutive models are assumed in a fracture type material framework 
with constant released fracture energy during cracking process with a characteristic length 
parameter which is material property. This assumption eliminates mesh size effect 
accomplishes a mesh objective analysis.  

Concrete in Tension 

Concrete in tension is modeled by constitutive model suggested by Hordijk (1991) 
with a constant value of fracture energy shown in Fig.6. Concrete in tension before 
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cracking is assumed to be linear elastic. After cracking however, a softening branch forms 
and it is assumed that the descending path follows an exponential function of crack width 
derived experimentally and shown below  
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where w is the crack opening; wc is the crack opening at the complete release of stress 
which is a function of fracture energy Gf defined by Equation 3; and σ  is the normal stress 
in crack and ft is the tensile strength of concrete in one dimension system or effective 
tensile strength in two dimension system. Values of the constants are, c1 =3, c2 =6.93. 
 

t

f
c f

G
w 14.5=                                                                               (3) 

 
Tensile strength of concrete (for those specimens with no test results) and also 

tensile fracture energy Gf, Japan Society of Civil Engineers (JCSE, 2002) 
recommendations (Eq.4 and 5) are applied. 

 

)(23.0 3
2

MPaff ct ′=                                                           (4)  
 

3131
max .)(10 cf fdG ′=                                                      (5 )  

 
where dmax is maximum aggregate size in mm and GF is fracture energy in N/m. 
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Concrete in Compression 

Concrete in compression is supposed to follow a parabolic rout that has been 
modified (Feenstra, 1993) to take into account fracture energy of concrete (Fig.7). 
Following equations are representing this model, which in equivalent stress is determined 
in terms of equivalent strain. 
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Consequent to the length parameter association, ultimate strain will be a function 

of compressive fracture energy, length parameter h, cf ′  and also eε as below  
 

e
c

c
u fh

G
εε

48
115.1 −

′
=                                                               (8) 

 
Through this model concrete is assumed to be linear elastic up to 

cf ′
3
1  therefore pre-peak 

energy will be taken into account by a correction factor 
eε48

11 in Eq.8. Furthermore, the 

concept of Modified Compression Field Theory (Vecchio et al, 1986) is associated in 
analyses by means of concrete compressive strength softening due to the lateral tensile 
cracks (Fig.7 right). 

Load Capacity 

 Figure 8 shows ultimate loads predicted by analysis over test results ratios. The 
results show acceptable as well as consistent numerical prediction for beams with a/d > 0.5, 
which in most of the predictions fall below load capacities obtained by experiment. In 
contrast, for a/d=0.5, at least two specimens B2 and B3, analyses have predicted higher 
load capacity with extremely lower displacement than the experiment. It is expected, 
however, that for beams with very low a/d ratio, sliding bond model as well as employing 
an interface element between supporting plate and concrete body will correct analytical 
response to a certain level. The latter will eliminate undesired steel plate stiffness 
contribution to the entire structure stiffness matrix and also eliminates stress concentration 
in adjacent elements. Averaged ratio for a/d=0.5 is 1.11 and for a/d>0.5 is 0.86 (Fig.8). The 
results for at least a/d>0.5 shows very acceptable prediction with about 15% safety margin.  
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FIG.10. DETAIL OF SPECIMENS

 
Experiment showed that shear crack initiated at about 40% of the ultimate load and 

full shear crack will be formed approximately in 0.5Pu but still beam sustained load 
capacity to about 80-90% of the ultimate load. Afterward shear cracks were severely 
widened and extended to compressive zone. Shear sliding of concrete pieces around shear 
crack could be clearly observed with bare eyes. This point is considered the ultimate 
capacity of beam in shear by a number of design codes, which the beam is in serious 
irreversible circumstances. According to this definition if numerical analysis is aiming to 
produce results for practical application such as RC member design, in average having 

.80.0 ExpAnalysis PP ≈ can be considered as a quite satisfactory result.  

Crack Patterns 

Crack patterns depicted in Fig.9 shows very accurate prediction by analysis where 
in almost all important cracks are captured. In the rest of the specimens also predicted 
cracks were in good agreement with experiment. This implies that adopted finite element 
analysis of this study can be adequately applied for damage evaluation of underground 
structures under seismic loads. Analytical crack patterns 
are drawn in shadow of experimental cracks (black lines) 
for better evaluation. It is noted however that in analysis 
all cracks are shown in figures without any filter where 
crack width is presented in five colored levels. 
  
Wall-type piers under cyclic load 
 

It is well explained by quite number of 
experimental investigations that for members with small 
shear span to depth ratio, conventional shear resistance 
mechanism yields very conservative prediction. 
Experiment results of this study also confirmed formation 
of shear resistance mechanism similar to that observed in 
deep beams. Two RC walls have been tested in Public 
Works Research Institute during the year 2004 in order to 
investigate shear behavior of such members under cyclic 
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FIG.9. B14 CRACK PATTERNS OF ANALYSIS AT ULTIMATE STATE VERSUS EXPERIMENT
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load condition. Existence and development of diagonal cracks have been measured by two 
displacement transducers installed in locations with highest possibilities of shear cracks 
occurrence.  

 
Test specimens comprise of two RC walls with shear span to depth ratio of 1.5 

under one and two directional cyclic loads. Longitudinal and lateral rebar are smeared out 
all over the wall in order to produce a smooth distribution of stress over the member. 
Structural detail of specimens is shown in Fig.10 and Fig.11 illustrates envelope of cyclic 
responses of both specimens in positive direction. It is observed that in one-directional 
loading condition (No.1), shear reinforcement yielded in higher level of load than wall 
No.2. In contrary, longitudinal reinforcements who represent bending capacity of the 
member yielded in almost identical load level. This implies that shear capacity of the 
member is more sensitive to loading pattern than that of bending. 
 

Analytical predictions in two cases 
of monotonic and cyclic (envelope is 
shown here) are compared with test results 
in Fig.12 for wall No.2. The results are in 
good agreement with experiment. 
Deterioration of load capacity in cyclic 
load is clearly seen in this figure where in 
peak load is slightly smaller in comparison 
with monotonic load condition. As for 
post-peak regime, cyclic load response 
experiences a sudden decrease just a few 
cycles after the peak which is also 
attributed to progressive deterioration of bond between steel and concrete.  

Conclusion 

Investigation on RC deep beams behavior and their modeling with nonlinear finite 
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element analysis is presented in this paper. The material model proposed by Hordijk and 
Feenstra are applied for concrete in tension and compression respectively in fracture 
mechanics framework to eliminate mesh dependency of the results. The applied methods 
with the rotating crack model, however, could predict RC deep beams response to 
monotonic static load with acceptable accuracy. In most of the specimens predicted peak 
loads have been lower than their relative test results. This ensures a safety margin for 
design of RC members if load capacity of the member is the major concern of design. 
Predicted crack patterns are also evaluated by experiment observation. The main findings 
of this paper are drawn as follows: 
  
1. Pre-peak regime could be properly captured by the applied material models and finite 

element analysis.  
2. Correlation between predicted cracks by analysis and monitored during test process is 

suitably adjusted. Almost all important cracks including those of tensile cracks on 
upper face of the beam near to the end region are very well predicted. The predicted 
crack patterns therefore can be well utilized for damage evaluation of RC members. 

3. The method can be applied for larger number of RC elements in the form of parametric 
study to avoid time consuming and costly experimental works. 

4. Acceptable results have also been obtained by applying the presented finite element 
method in prediction of RC wall-type pier behavior with shear failure potential. 

References 

Feenstra, P.H., “Computation aspects of biaxial stress in plain and reinforced concrete”, 
PhD thesis, Delft University of Technology, 1993. 

Hordijk, D.A., Local approach to fatigue of concrete, PhD thesis, Delft University of 
Technology, 1991. 

Japan Society of Civil Engineers, “Standard specifications for concrete structures”, 
Structural performance verification (in Japanese), Tokyo, March, 2002, pages 67 and 190. 

Kwak, H., and Flippou F.C., Finite element analysis of reinforced concrete structures 
under monotonic loads, Report No. UCB/SEMM-90/14, Department of Civil Engineering, 
University of California Berkeley, Nov. 1990, pp.32-35. 

Salamy, M.R., Kobayashi, H., Unjoh, Sh., Kosa, K. and Nishioka, T., “A code-based 
comparative study on RC deep beams behavior with shear span to depth ratio between 0.5 
and 1.5", 8th Symposium on Ductility Design Method for Bridges, Tokyo, Feb. 1-2, 2005 
pp. 293-298. 

Vecchio, F. and Collins, M.P., The modified compression field theory for reinforced 
concrete elements subjected to shear, ACI structural journal, V.3, No.4, 1986, pp. 219-2 


