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Abstract 
 
Field data from experiments where damage has been introduced systematically 

to a structure are difficult to find yet essential for validation of damage detection 
algorithms used in structural health monitoring. Such an experiment was recently 
conducted by Vibration Consulting Engineers in Vienna, Austria and the data were 
made available to the authors. In this paper, the results from the analysis of the data 
are summarized and the efficacy of the damage detection algorithms is assessed. It is 
found that in most cases the algorithms are able to identify the damage. Good results 
are obtained when damage is quantified and localization can be explained. 

 
Introduction 

 
Structural health monitoring (SHM) for civil engineering applications is taking 

advantage of the latest technologies in sensors, wireless networks, and data analysis 
methods to protect civil infrastructure and preserve life safety.  SHM consists of 
damage diagnosis and residual life prognosis.  The goal of damage diagnosis is to 
detect, localize, and quantify structural damage arising from a variety of sources, 
including long-term degradation such as corrosion and short-term events such as 
earthquakes, and then to inform decision-makers about the proper responsive action.  
Interest in using wireless sensing networks for structural health monitoring has 
increased as more research demonstrates successful application to increasingly 
complex structures.  Wireless networks are desirable, because they are cheaper and 
easier to install and maintain than equivalent wired networks.  However, they require 
that the power consumption be minimal thus making it necessary to limit data 
transmission. 

 
One method of detecting damage in a structure is by measuring the structure’s 

vibration characteristics through strain or acceleration.  The premise is that changes to 
structural properties caused by damage will change the way a structure responds to 
ambient motions.  Recent research has shown that statistical signal processing and 
pattern recognition techniques can be used to diagnose damage successfully (e.g., 
Nair et al., 2006, Nair and Kiremidjian, 2006, Sohn et al, 2001).  The advantage of 
using statistical methods is that a single vibration time history can be analyzed 
independently of all other signals collected elsewhere in the structure.  This allows 
damage detection algorithms to be embedded at the sensor level, resulting in 
significant savings in power and computational time, both of which are necessary for 
the implementation of a fully wireless network.  This method has been successfully 
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applied to numerically simulated damage to an experimental structure, such as the 
ASCE Benchmark Structure (Nair et al. 2006).  However, computer simulations and 
even small-scale laboratory test structures cannot fully duplicate the dynamic 
response of actual structures.  More importantly, the input ambient vibrations imposed 
on actual structures are much more random and unpredictable than those used in most 
computer and laboratory simulations. 

 
In order to test the effectiveness of damage detection algorithms on actual 

structures a suitable experiment must be designed.  Such an experiment either requires 
a full or near full-scale test involving large facilities or an actual structure that can be 
subjected to controlled damage tests.  For this reason, suitable experimental data are 
difficult to find.  However, recent progressive damage tests performed on the Z24 
Bridge in Switzerland (Wenzel, 2003) provide a large amount of experimental data 
with which damage detection algorithms can be tested.  

 
The purpose of this study is to test the robustness of the damage detection 

algorithm based on autoregressive time series modeling and statistical pattern 
recognition techniques, which were developed by Nair et al. (2006), Nair and 
Kiremidjian (2007) and Sohn et al. (2001), in detecting and quantifying structural 
damage induced by pier settlement, using acceleration data from the Z24 Bridge 
progressive damage test.  In addition, several modifications have been made to the 
original algorithm to enable more robust diagnosis.  This paper is organized in the 
following manner.  First, the statistical pattern recognition methods for damage 
detection are summarized.  A new damage measure based on the Mahalanobis 
Distance is introduced.  Next, the bridge and data acquisition project are discussed.  
Finally, the results obtained from testing the algorithm on the Z24 Bridge data are 
presented and discussed. 

 
Overview of Damage Detection Algorithm 

 
Statistical pattern recognition based damage detection algorithms depend on the 

hypothesis that a structure’s vibration time history will change with the onset of 
damage (Sohn et al. 2001, Nair et al. 2006).  Because the time histories have complex 
signatures making them difficult to compare, it is desirable to extract features from 
the signal referred to as damage sensitive features (DSFs), with which damage can be 
tracked.  Nair et al. (2006) have shown that decreases in a structure’s stiffness due to 
damage will result in changes to AR coefficients for acceleration time series collected 
under ambient vibrations.  Thus AR coefficients are an appropriate DSF. 

 
Damage is evaluated according to a pattern classification framework.  A pattern 

classification algorithm, according to Sohn et al. (2001) involves the following steps: 
(i) evaluation of a structure’s operational environment, (ii) acquisition of structural 
response measurements and data processing, (iii) extraction of features that are 
sensitive to damage, and (iv) development of statistical models for feature 
discrimination.  In this study the structural response measurements are acceleration 
time histories, and the DSFs are AR coefficients.  Two methods for feature 
discrimination are proposed.  Hypothesis testing using a t-test is performed as 



 

specified by Nair et al. (2006).  In addition, a new multivariate damage measure (DM) 
based on the Mahalanobis Distance is proposed.  The DM is also capable of 
measuring damage extent.  However, identifying damage location is complicated and 
is beyond the scope of this paper.  Each step in the damage detection algorithm is 
explained in further detail in the following sections. 

 
Data Preprocessing 

 
Data preprocessing is done to remove or minimize dependence on variable 

environmental conditions and to identify conditions where sensors have probably 
malfunctioned. Acceleration time series collected from field experiments often show a 
drift in the signal.  Linear drift is simple to correct.  Nonlinear drift, however, is 
significantly more difficult to identify and correct (see Boore et al. 2006).  In this 
paper, time series exhibiting nonlinear drift were discarded while those exhibiting 
linear drift were detrended.  Linear drift can be removed by fitting a line to the signal 
using least squares methods and then subtracting that line from the signal, thus 
removing the trend.   

 
After detrending, additional preprocessing is done to minimize the dependence 

on load and environmental conditions.  Sohn et al. (2001) show that normalizing and 
standardizing the acceleration time history by: 

 
(1) 

 
 
where µ is the mean of the signal and σ is its standard deviation, is required in 

order to minimize the effect of load and environmental conditions on the AR 
coefficients.  All time histories examined in this study are filtered using Eq. 1 prior to 
application of the AR model.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

σ
µ)(x(t)x(t) −

=

0 50 100 150 200 250 300 350 400
-12

-10

-8

-6

-4

-2

0

2
x 10-4

A
cc

el
er

at
io

n 
(g

)

Time (s)

Figure 1 - Example of Corrupt Time History



 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 1. Examples of corrupt signals 

 
As with all experiments, sensors may malfunction and produce corrupt data.  

Review of the data collected at the Z24 Bridge show that 298 out of approximately 
4,000 acceleration time histories collected during the test were corrupted, representing 
only 7% of the database.  Figures 1a and b show two examples of corrupt time 
histories.  The signal in Fig. 1a appears to be clipped, while the signal in Fig. 1b is 
also clipped but at a constant value across the signal.  As stated earlier, however, the 
majority of data did not display such problems and could be used in this analysis.  
Identification and correction of corrupted time histories, whether possible or not, is 
beyond the scope of this paper.  Because the damage detection algorithm is a local 
sensor based algorithm, discarding corrupt signals does not affect the results presented 
in this paper. 

 
Feature Extraction Using the Autoregressive Model 

 
The AR model was presented in great detail in Nair et al. (2006) but is briefly 

summarized here for clarity.  Let xi(t) be acceleration data from sensor i.  xi(t) is 
divided into different chunks xij(t) where i denotes the sensor number and j denotes 
the chunk.  xij(t) is standardized and normalized as described in the previous section.   

 
Once preprocessing is complete, the optimal AR order must be estimated. In 

previous studies the autoregressive moving average (ARMA) model was used for 
modeling the vibration signal (Nair et al. 2006 and Nair and Kiremidjian, 2007). 
When analyzing the data, it was observed that results obtained from using the AR 
algorithm are not significantly different than those obtained using an ARMA 
algorithm.  Therefore, to simplify the computations, the AR algorithm is used.   

0 50 100 150 200 250 300 350 400
-6

-4

-2

0

2

4

6

8

10
x 10-5

A
cc

el
er

at
io

n 
(g

)

Time (s)

Figure 2 - Example of Corrupt Time History



 

The AR model is given by the following equation: 
 

(2) 
 
 
where xij(t) is the normalized acceleration signal of the jth chunk of the ith 

sensor, αk is the kth AR coefficient, p is the AR model order, and eij(t) is the residual 
term.  The Burg algorithm (Brockwell and Davis, 2003) is used to estimate the AR 
coefficients.  Running the AR model on each chunk from a single sensor produces N 
vectors of AR coefficients of length p, where N is the total number of chunks from 
one sensor.  Thus, it follows that 

 
(3) 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Variation of AR coefficients with data chunk size 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Analysis for optimal AR order 
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The optimal chunk length is determined by calculating the mean and standard 
deviation of the AR coefficients at different chunk length, and then determining at 
which point they begin to stabilize.  Fig. 2 shows a plot of the mean of the 1st AR 
coefficient at varying chunk lengths.  A chunk length of 400 was found to be optimal 
in this study.  The optimal AR order can be estimated using the Akaike Information 
Criterion (AIC) as described in Nair et al. (2006).  The optimal order is found to be in 
the range of 6-8 as shown in Fig. 3.  In this study, an AR order of 8 is used.   

 
The data are also tested for stationarity. For that purpose the residuals are 

investigated and the autocorrelation function of the residuals is estimated. It is found 
that with all the data, the time series appear to be stationary and the residuals are 
independent and identically distributed.  

 
Feature Discrimination 

 
The next step is to determine whether the feature vector has migrated from an 

undamaged baseline case to a potentially damaged state referred to as the test case.  If 
the feature vector is determined to have migrated sufficiently in a statistically 
significant sense, then it is concluded that damage has occurred.  It should be noted 
that for each baseline or test case, it is not merely one feature vector but rather N 
feature vectors that are being tracked.  Thus, it is desirable to determine whether the 
cluster mean has migrated.  This can be done using a standard t-test.   

 
However, it is far from clear what level of confidence is necessary in order to 

conclude that damage has occurred.  Previous research has shown that the use of q 
values representing the confidence level for migration of the mean values may 
overstate the significance of results by a large amount. Therefore, in order to develop 
a robust damage detection algorithm, some form of supervised learning must be used, 
with which the algorithm is trained using known damaged and undamaged data sets in 
order to develop a damage threshold beyond which it is concluded that damage has 
occurred.  For this reason, calculating the q values and levels of confidence is not 
necessary.  The t-statistic itself is used as a damage measure, and it represents a 
difference between population means weighted by the population standard deviations 
and the size of both data sets.   

 
In order to perform the calculations, the proper damage sensitive feature must 

be formulated.  As stated before, the DSF is a function of the AR coefficients, but 
defining this function is not trivial.  After extensive study of the data, it was observed 
that the first AR coefficient alone is sufficient to capture the migration of the feature 
vectors.  More complex combinations of AR coefficients tested did not significantly 
improve the performance of the algorithm, at least for the single variable t-test.   

 
Figs. 4 and 5 show how the 1st AR coefficient varies with different amount of 

pier settlement at two different locations on the bridge deck. Figure 4 shows the 
variation of the 1st AR coefficient for the sensor located at mid-span of the bridge. 
Figure 5 shows the 1st AR coefficient for the east abutment. The bridge pier simulated 
settlement of 20mm, 40mm, 80mm and 95mm. The different symbols correspond to 



 

the base case (no settlement) and the different settlement values. There are N AR 
values for each settlement case and the baseline case corresponding to each data 
stream.  The mean value of the 1st AR coefficient for each case is shown as a straight 
line. It can be observed that the mean value changes from the base line to each 
settlement case. The test procedure is described in greater detail in the application 
section of this paper. 
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Figure 4. Variation of 1st AR coefficient with damage on mid-span sensor. 
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Figure 5. Variation of 1st AR coefficient with damage on east abutment sensor. 

 



 

Another method of measuring the migration of the feature vector clusters is by 
computing the centroid to centroid distance between the undamaged cluster and test 
cluster.  To do this, a new damage measure (DM) based on the Mahalanobis Distance 
is proposed.  The Mahalanobis Distance between two clusters is given by the 
equation: 

 (6) 
 
where X and Y are the centroids of each cluster, and Σ is the covariance matrix 

of one of the clusters.  In order to take into account both clusters’ covariance matrices 
and their cross covariance matrix, the DM is given by the equation: 

 
             (7) 

where  
 (8) 
 
 
µundamaged is the centroid of the undamaged data set, µdamaged is the centroid of 

the damaged data set, Σundamaged is the covariance matrix of the damaged data set, 
Σdamaged is the covariance matrix of the damaged data set, and Σcross is the cross 
covariance matrix between each data set.  In this application, the covariance and cross 
covariance matrices are reduced to scalars since only one AR value is used. 
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Figure 6. Clouds of the first three AR coefficients for the undamaged and 
damaged case. Blue are the undamaged data and red are the damaged data. 

 
It is observed that the magnitude of the first three AR coefficients is 

significantly larger than the magnitude of subsequent AR coefficients; therefore only 
the first three AR coefficients are kept and the others are discarded.  Thus it follows 
that the DM is a measure of distance between two clusters in 3 dimensional AR 
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coefficient space.  Figure 6 shows a plot of AR coefficient clouds from two separate 
damage setups. The value of the DM increases as the clouds migrate with damage. 
 

Again, in order to detect damage, a form of supervised learning must be used, 
where the algorithm is trained to recognize damaged and undamaged data sets and 
thus develops a threshold value beyond which it is concluded that damage has 
occurred.  Also note that the magnitude of the DM can be used to measure damage 
extent.  This will be explained in further detail in the section presenting algorithm 
results. 

 
Damage Detection Algorithm Summary 

 
In summary, the damage detection algorithm is composed of the following 

steps: 
1. Collect acceleration data from sensors located on an undamaged structure 
2. Compute and store the AR coefficients as described above, including data 

preprocessing 
3. Collect acceleration data from the same sensors at some later point in time 
4. Compute the AR coefficients as described above, including data preprocessing 
5. Perform feature discrimination techniques – calculate the t-statistic or the DM 

and compare the result with a previous training set – to determine whether the 
AR coefficient cluster has migrated sufficiently to conclude that damage has 
occurred 

 

 
 

Figure 7: The Z24 Bridge with the Koppigen Pier circled 
 
Application of Damage Algorithm to the Z24 Bridge in Switzerland 

 
The damage detection algorithm was tested on data collected from a 

progressive damage test on the Z24 Bridge in Switzerland.  The purpose of this study 
is to test the efficacy of the damage detection algorithm described above in 



 

discriminating between different controlled damage states to which the bridge was 
subjected.    

 
Before its demolition, the Z24 Bridge spanned the A1 Berne-Zurich motorway 

linking Koppigen with Utzenstorf in Switzerland.  The three-span structure had a total 
length of 58 m, subdivided in three spans of 14, 30 and 14 m, respectively.  The 
superstructure consisted of a two-cell closed box girder with tendons in the three 
webs. Both main piers were built as concrete diaphragms, fully connected with the 
superstructure.   

 
Prior to its demolition, the bridge was subjected to a number of progressive 

damage tests, one of which was induced pier settlement.  In order to simulate 
settlement, one section of one pier was cut away and replaced by mechanical jacks, 
which were gradually lowered. 

 
Damaged was introduced to the structure by gradually settling the Koppigen 

pier up to 95mm.  The location of the pier is circled in Fig. 7.  This settlement 
produced cracks in the deck as shown in Fig. 8.  The cracks marked in red occurred 
when the settlement increased from 40 to 80mm.  The cracks marked in blue occurred 
when the settlement increased from 80 to 95mm. 
 

 

 
 

Figure 8: Cracks in the Z24 bridge after settlement 
 

Acceleration data were recorded by sensors at various locations on the bridge, 
at ambient vibration conditions, after the bridge was subjected to each damage setup.  
Data were collected at a sampling rate of 100 Hz.  Figure 9 shows the locations of the 
accelerometers on the bridge deck and piers.  Acceleration was collected in the 
longitudinal, transverse, and vertical direction; however, because the damage 
detection algorithm compares characteristics of ambient vibrations, only results using 



 

vertical acceleration signals are presented.  Results for longitudinal and transverse 
acceleration data are not appreciably different from the results for vertical 
accelerations.   
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 9: Location of Sensors Across Bridge Deck 
 
In this paper, results are presented from the following six structural 

configurations: 
Setup 1:  The original untouched structure. 
Setup 2: The structure after the pier settlement mechanism was installed in 

the Koppigen pier – used as the baseline 
Setup 3:  20mm settlement in the Koppigen pier 
Setup 4: 40mm settlement in the Koppigen pier 
Setup 5: 80mm settlement in the Koppigen pier – cracks shown in red 
Setup 6: 95mm settlement in the Koppigen pier – cracks shown in blue 

 
Setup 2 is chosen as the baseline undamaged case, because all induced pier 

settlement occurs relative to that structural configuration.  However, it is worth 
pointing out that large differences in the vibration characteristics of Setup 1 and Setup 
2 indicate that the installation of mechanical jacks did change the structural 
characteristics of the bridge. 

 
Table 1 shows the results of the application of the proposed damage detection 

algorithm to the Z24 Bridge data, using the t-test as the feature discrimination 
method, for the four damage setups compared to the undamaged baseline.  In order to 
reduce the amount of data, only results from one out of every five sensors, evenly 
spaced across the bridge, deck are presented (although some are missing due to sensor 
malfunction).  It is evident that the magnitude of the t-statistic does not increase 
monotonically as the level of pier settlement increases.  By visual inspection, it is easy 
to see that the magnitude of the t-statistic corresponds roughly to the distance between 
population means. 

 
Tables 2 shows the results of the damage detection algorithm using the damage 

measure as the method for feature discrimination.  The results correspond roughly 
with those found using the t-statistic.  Thus both methods in this case are shown to 



 

have roughly equivalent results.  Also, the results found using only the first AR 
coefficient do not change appreciably when the second and third AR coefficients are 
included. 

 
Table 1 – T-Statistic Values for Various Sensor Locations 

 
Pier Settlement 

Location 20 mm 40 mm 80 mm 95 mm 
101 -8.4728 -8.0544 -17.775 -14.068 
201 -1.8652 -1.6071 0.26049 -5.8201 
301 -10.775 -14.978 -13.209 -14.382 
106 2.9852 -0.86767 -2.0425 5.6667 
206 -0.47826 3.3337 -1.1282 2.7624 
306 0.57788 3.2537 2.013 4.2237 
116 -27.757 -13.18 -30.266 -24.061 
216 -24.014 -1.7335 -17.844 -17.839 
316 -28.605 -8.1421 -24.704 -27.053 
121 -15.285 -1.1558 -25.361 -20.213 
221 -8.9989 -7.864 -10.476 -10.015 
321 -14.587 -3.2537 -21.144 -21.191 
126 -20.17 -6.1549 -26.831 -19.308 
226 -16.57 -13.627 -15.946 -12.091 
326 -18.886 -0.21813 -21.485 -15.859 
131 -26.102 -18.821 -38.7 -22.382 
331 -29.84 -14.171 -43.926 -29.577 
136 2.5772 8.7144 -6.4161 -1.9511 
236 0.65151 -3.5583 0.15119 -2.1021 
336 0.56665 15.422 -2.617 -2.0823 
141 -33.215 -24.431 -34.981 -31.556 
241 11.4 5.227 5.3618 8.9447 

 
 

Table 2 - DM Values for Various Sensor Locations 
 

Pier Settlement 
Location 20 mm 40 mm 80 mm 95 mm 

101 1.3672 1.4605 2.2543 1.4984 
201 2.8148 1.6477 2.315 2.0303 
301 1.8038 1.2464 1.7412 1.5377 
106 0.65756 1.017 0.48665 0.6316 
206 0.52101 0.44036 0.47101 0.47405
306 0.4377 0.31049 0.57926 0.49879
116 2.2801 1.5579 2.6068 2.0127 
216 2.3229 0.94676 2.0415 1.9726 
316 2.3958 0.69174 1.9713 2.432 
121 1.3982 0.38262 2.3657 2.0281 



 

221 1.4601 0.74145 1.3769 1.3197 
321 1.367 0.31342 2.0755 1.9498 
126 1.8446 1.3021 1.9623 1.7476 
226 1.9327 1.3421 1.7605 1.3974 
326 1.6008 0.035737 1.6585 1.3607 
131 2.0923 2.329 3.283 1.8576 
331 2.4946 1.2983 3.8846 2.5527 
136 0.41529 2.1663 1.4386 0.57049
236 0.60495 2.9938 0.91662 0.62481
336 0.58715 1.4109 1.072 0.54924
141 2.8593 2.7104 3.8384 2.8578 
241 1.0373 4.4565 2.0956 1.0589 

 
Again, it is observed that the damage measure does not increase monotonically 

with pier settlement.  This is because of the occurrence of cracking in the bridge 
girder between 40 and 80 mm pier settlement and again between 80 and 95 mm 
settlement.  The presence of cracking reduces the built up stresses in the bridge girder.  
Therefore, the 80 mm pier settlement case should be considered as another completely 
different damage case, instead of a more extreme version of the 20 and 40 mm 
damage cases.  Likewise, the 95 mm damage case should be considered as a separate 
damage case, although it is reasonable to expect, and the results confirm, that it is 
similar to the 80 mm case. 
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Figure 10. Damage measure, DM for different pier settlements 
 

Figure 10 shows how the DM varies as pier settlement increases, for a typical 
sensor near the east abutment.  One way of interpreting the results is that as the pier 
settlement occurs initially stresses build up in the bridge girder, which cause the DSFs 
to migrate.  At 40 mm settlement, the DSF migrates farther.  However, once cracking 
occurs between 40 and 80 mm settlement, the stresses are released and the DSF 
returns to near-undamaged levels.  Note that this effect only occurs in the east span 
sensor and pier settlement occurs in the east pier.  By observing the way different 



 

sensors respond to damage by location in the structure, it may be possible to develop a 
procedure to localize damage.  Again this would most likely have to be done by some 
sort of supervised learning process.  Without additional data and testing, it is not 
feasible to explore this topic further in this study. 

 
Conclusion 

 
This study demonstrates that a damage detection algorithm based on a pattern 

classification framework can detect structural changes caused by damage, using data 
collected from a real structure.  However, it is emphasized that the damage detection 
algorithm proposed, in practice will require a training data set in order to better 
distinguish between damaged and undamaged samples.  In practice, this may be 
difficult to accomplish because of the high expense involved with intentionally 
damaging an existing structure.  Nevertheless, a library of various structures’ 
responses to different damage patterns can be built over time for purposes of training 
damage detection algorithms.  This may be used in order to diagnose and eventually 
localize damage. 

 
In addition, it is emphasized that the response of the DSF to a given damage 

pattern changes significantly with the location of the sensor on the structure. (Where 
was this discussed or shown in the paper?)  Furthermore, the effects of damage to a 
large structure are often complex.  Increasing levels of one type of damage may not 
result in a monotonically increasing damage measure; therefore, the migration of 
DSFs must be handled carefully.   
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