

Fuzzy Criteria for Evaluation of Water Resources Systems Performance

Slobodan P. Simonovic

Professor and Research Chair Department of Civil and Environmental Engineering Institute for Catastrophic Loss Reduction The University of Western Ontario

Banda Aceh - before

Flood Risk Management Workshop

Banda Aceh - after

New Orleans before

S.P. Simonovic

New Orleans after

S.P. Simonovic

New Orleans - flood

New Orleans –dike failure

Lake Pontchartrain pours through a breached levee into downtown New Orleans. After the city's defenses were damaged by Hurricane Katrina, local officials feared a steep death toll and planned to evacuate the thousands in shelters.

New Orleans – dike failure

S.P. Simonovic

Katrina help

S.P. Simonovic

Presentation outline

- Challenges
- Water resources systems performance
 - Change of paradigm
 - New performance measures
- A case study
 - London flood protection
- Conclusions

Challenges

- How to reduce the risk to water systems and in the same time obtain the social, environmental and economic benefits from the watershed areas under threat.
- How to improve our knowledge base
 - Prediction of hazardous events
 - Assessment of risk and vulnerability
 - Integrated use of structural and non-structural protection measures
 - Enhancement of preparedness

Risk definition

- Load and resistance concept
- Load /
 - a variable reflecting the behaviors of the system under certain external conditions of stress or loading
- Resistance r
 - a variable that describes the capacity of the system to overcome an external load

Risk definition

Failure or an incident

l > *r*

Safety or reliability

I≤ *r*

Risk definition

Set of performance measures

- Risk/reliability (how often?)
- Vulnerability (how much?)
- Resiliency (how long to recover?)
- Robustness (how able to adopt?)

Risk management confusion

- Inadequate distinction between three fundamental concepts of risk
 - Objective risk (real, physical)
 - Subjective risk (degree of belief)
 - Perceived risk (individual's feeling of fear)

Changing paradigm

S.P. Simonovic

Fuzzy membership shapes

S.P. Simonovic

New performance measures

New fuzzy measures for system performance evaluation

(*El-Baroudi and Simonovic, 2004-download from <u>www.slobodansimonovic.com</u>)*

- Combined fuzzy reliability-vulnerability
- Fuzzy robustness
- Fuzzy resiliency

New fuzzy performance measures

Western

New fuzzy performance measures

New fuzzy performance measures

Fuzzy membership function of a system state

Fuzzy reliability and vulnerability

Fuzzy reliability and vulnerability

The compatibility measure

$$CM_{S,L} = \frac{WOA_{S,L}}{WA_S}$$

- provides information about system reliability and vulnerability
- measure of proximity (overlap)

Fuzzy reliability and vulnerability

$\begin{aligned} \text{Reliability Index} = \frac{\max_{i \in K} \left\{ \text{CM}_1, \text{CM}_2, \dots, \text{CM}_i \right\} \times \text{LR}_{\max}}{\max_{i \in K} \left\{ \text{LR}_1, \text{LR}_2, \dots, \text{LR}_i \right\}} \end{aligned}$

Fuzzy robustness measure

Robustness Index = $\frac{1}{CM_1 - CM_2}$

Fuzzy resiliency measure

Fuzzy resiliency measure

$$\widetilde{T}(\alpha) = \left(\max_{j \in J} [t_{l_1}(\alpha), t_{l_2}(\alpha), \dots, t_{l_J}(\alpha)], \max_{j \in J} [t_{2_1}(\alpha), t_{2_2}(\alpha), \dots, t_{2_J}(\alpha)] \right)$$

Resilience Index =
$$\begin{bmatrix} \int_{t_1}^{t_2} t \ \widetilde{T}(t) \ dt \\ \int_{t_1}^{t_2} \widetilde{T}(t) \ dt \end{bmatrix}^{-1}$$

London flood protection case study

- Use of fuzzy performance measures
- Spatial extension of the concept
 - Calculation of measures at every point in space
 - Development of fuzzy performance maps
- City of London flood protection

London flood protection case study

Legend

Western

rel_id_land_u

ow: 0

W

Reliability Index

London flood protection case study

Resiliency Index

Western

London flood protection case study

Robustness Index

Conclusions

- Water resources systems are vulnerable to variety of hazards
- Main challenge diversity of uncertainty sources
- Probabilistic approach fails in case of human error, subjectivity, lack of history, etc.
- A fuzzy system reliability analysis offers an alternative approach

