I S S N 0 3 8 6 - 5 8 7 8

土木研究所資料 第 4311 号

土木研究所資料

ひび割れ損傷の生じた既設 PC 橋の調査 および実橋載荷試験

一明橋他1橋の調査および実橋載荷試験―

平成27年11月

国 立 研 究 開 発 法 人 土 木 研 究 所 構 造 物 メンテナンス 研究 センター 橋 梁 構 造 研 究 グ ル ー プ

Copyright © (2015) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I. この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行 したものである.したがって、本報告書の全部又は一部の転載、複製は、 国立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを 行ってはならない.

ひび割れ損傷の生じた既設 PC 橋の調査 および実橋載荷試験

―明橋他1橋の調査および実橋載荷試験―

構造物メンテナンス研究センター 橋梁構造研究グループ

上席研究員	木村	嘉富 ^{※1}
上席研究員	石田	雅博
主任研究員	花井	拓 ^{※2}
主任研究員	和田	圭仙*3
研究員	藤井	雄介
交流研究員	中島	道浩 ^{**4}
交流研究員	関重	€─郎※5
交流研究員	青柳	聖**6
交流研究員	関口	斉治

要旨

橋軸方向のひび割れが生じた供用中の橋梁から、竣工後およそ 30 年経過した明橋他 1 橋のプ レストレストコンクリート橋を対象に、橋軸方向のひび割れ発生状況やひび割れ深さ、採取した コアを用いてアルカリ骨材反応(以下、ASR)の有無に着目した調査を行った。また、明橋では 橋軸方向のひび割れによる構造性能への影響を確認するため荷重車による静的載荷試験を行っ た。これら一連の調査研究の結果について報告する。

キーワード:ひび割れ、プレストレストコンクリート橋、調査、ASR、載荷試験

- ※1:現 国土技術政策総合研究所 道路構造物研究部 道路構造物管理システム研究官
- ※2:現 本州四国連絡高速道路株式会社 長大橋技術センター 総括・防食グループ
- ※3:現 西日本高速道路株式会社 関西支社 構造技術課
- ※4:現 八千代エンジニヤリング株式会社 総合事業本部 インフラマネジメント部 技術第二課

※5:現 茨城県 土木部 道路維持課

※6:現 八千代エンジニヤリング株式会社 総合事業本部 構造・橋梁部 技術第四課

1. はじめに 1
2. ブレストレストコンクリート橋のひび割れ事例 2
2 阳桥
3. 労備
3.1 ····································
3.2.1 調杏概要 6
3.2.2 诉避风女
3.2.2 近因日先調査 3.2.3 権面けつり調査 23
3.3 詳細調杏 26
3 3 1 調杏概要 26
3.3.2 コア削孔調査 3.3.2 コア削孔調査 3.0
3 3 3 F縮砷度試驗 44
3 3 4 ASR 調杏 46
3 4 明橋の実橋載荷試験(静的載荷試験) 50
3 4 1 実橋載荷試験の概要 50
3 4 2 荷重車1台載荷試驗 55
3.4.3 荷重車2台載荷試驗 62
3 4 4 7Nび割れの構造性能への影響 71
4. 工橋
4.1 T橋の概要 72
4.2 指傷状況調査
4.2.1 調査概要
4.2.2 近接目視調查
4.2.3 橋面はつり調査
4.3 詳細調査
4.3.1 調査概要
4.3.2 コア削孔調査
4.3.3 圧縮強度試験 100
4.3.4 ASR 調査
5. まとめ 103
6. おわりに
参考文献および参考資料 105

目 次

巻末資料

CAESAR メンテナンス技術交流会 非破壊検査技術等を用いた調査

- ・ 橋軸方向のひび割れが生じた実橋の調査概要
- ・ iTECS 法によるひび割れ深さ調査
- ・ 広帯域超音波探査法によるひび割れ深さ調査
- ・ M. EYEチェッカーによる鉄筋破断非破壊調査
- ・ 赤外線サーモグラフィ法による調査
- 加速度計による振動計測
- ・ 載荷試験における非接触式変位・ひずみ計測

橋軸方向のひび割れが生じた実橋の補修事例

明橋の補修事例

1.はじめに

我が国おける道路橋の多くは、1960年頃からの高度経済成長期に集中的に整備されてき た。このため、建設後50年を経過する道路橋(橋長2m以上)の割合は、今後急速に増加する 傾向にあり、適切に道路橋の維持管理を行うにあたっては、高齢化や老朽化に伴う劣化損 傷への対策が求められている。

プレストレストコンクリート橋においては、近年、主桁に生じた橋軸方向ひび割れにつ いての報告がいくつか見られる。ひび割れの生じている橋梁の構造性能を評価するために は、そのひび割れが発生した要因、発生状態を分析し、発生したひび割れが構造性能へど のように影響しているかを反映しなければならないが、このひび割れ評価手法が明確にさ れていない。

そこで、橋軸方向ひび割れが生じているプレストレストコンクリート橋の性能評価手法 の確立に向けて、ひび割れの実態把握をするための調査が必要と考えられる。

本研究では、橋軸方向のひび割れが生じたプレストレストコンクリート橋2橋を対象に、 発生要因やひび割れの実態を把握するため、ひび割れ深さ、中性化深さ、鉄筋腐食状況、 桁内滞水状況、コンクリートの圧縮強度、ASRの有無について調査した。さらにそのうち1 橋に対して、構造性能への影響を把握するために荷重車による静的載荷試験を行った。

なお、今回の実橋における調査では、CAESAR^{**}メンテナンス技術交流会の活動の一環として、非破壊検査技術等を用いた調査を実施しており、その結果について巻末資料に掲載する。

※CAESAR:構造物メンテナンス研究センター(Center for Advanced Engineering Structural Assessment and Research)

2. プレストレストコンクリート橋のひび割れ事例

CAESAR において把握しているプレストレストコンクリート橋(以下、PC橋)の損傷事例 のうち、橋軸方向のひび割れが生じた事例について、表-2.1 に橋梁形式毎に整理した結 果を、写真-2.1 に主な損傷事例写真を示す。損傷事例における橋軸方向のひび割れは、 桁側面や桁下面の端部から中央部にかけて生じている状況であった。

このうち、ポストテンション方式の PC 橋(T橋)と、プレテンション方式の PC 橋(明橋)の2橋について3章以降に示す。

橋梁形式	橋名	竣工年	構造	主桁の主な損傷	管理者	借考
	Hill	昭和67年(1982)	2径間連続ポストテンション中空床加減	祝福祢御町・祝下にひびおれ	市町村	写直-2.1
	N語	昭和67年(1982)	2径間連続ポストテンション中空床算続	柘物評判両、 結両にひび割れ - ASR建設	市町村	写直-2.1
	HYA	昭和67年(1982)	2怪国連続ポストテンション中空床高橋	術論評測画にひび割れ	市町村	
	T着	昭和65年(1980)	2怪国連続ポストテンション中空床局話	結両のレンガ舗装に結構方向に多くのひびわれを確認。 板下 - 桁側両にひび割れあり	市町村	写直-2.1
	SHA	昭和64年(1979)	2径間連続ポストテンション中空床幕構	紙面のレンガ舗装に観頼方向に多くのひびわれを確認。 桁側面に多くのひび割れを確認	市町村	
	HDAN	昭和67年(1982)	P C会材付水型ラーメン語 (上部エ中空床記)	術輪部創画にひび割れ	市町村	
ホストテン	储	昭和67年(1982)	P C会材付 x 型ラーメン語 (上部エ中空床記)	指導評測画にひび割れ	市町村	写直-2.1
4500 AND	X 程	昭和64年(1979)	2+1径間有ヒンジポストテンション中空床版	- 1名間有ヒンジポストテンション中空床版 価値・板下にひび割れ、当業石灰、熔線にひび割れ		
多考例 イーレー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
	SOME	昭和63年(1978)	単純PCポス トテンションT桁構	指輪部側面にひび割れ	市町村	写直-2.1
	NI構	昭和67年(1982)	単純PCポストテンションT桁構(2連)	術輪評測画にひび割れ	県	写直-2.1
	SNE	昭和60年(1975)	地PCポストテンションT相語 指導部側面にひび割れ		8	
ポストテン ション方式 T桁構	ポストラン ション方式 T 桁構 多方図					
橋梁形式	橋名	竣工年	構造	主桁の主な損傷	管理者	備考
	NAIS	昭和59年(1984)	単純プレテンション中空床原稿	桁下両全体に結構方向のひび割れと雪水 - ASRの扱い	市町村	
	明語	昭和58年(1983)	単純プレテンション中空床原稿(2連)	桁側両 - 街下に多くのひび割れを確認 - ASR確認	市町村	写直-2.1
	峭	昭和60年(1985)	単純プレテンション中空床版稿	桁側面 - 桁下の全体にひび割れ - 雪水 - 道義石氏 - ASR強語	市町村	
	町構	昭和63年(1978)	単純プレテンション中空床版稿	桁側両・桁下の全体にひび割れ・雪水・道義石灰・ ASRの姿い	E	
	町橋	昭和64年(1979)	単純ブレテンション中空床原稿	柘伽画 - 桁下に多くのひび割れを確認 - 津害	B	
	化結	昭和63年(1978)	単純プレテンション中空床原稿	桁側面 - 桁下に多くのひび割れを確認 - 津害	8	
ノレテン ション方式 庄香業	I構	昭和68年(1983)	単純プレテンション中空床版構	柘伽両 - 桁下にひび割れを確認 - ASRの疑い	B	
	中川諸領道將	昭和62年(1977)	単純プレテンション፤柘康版構(3連)	桁下の全体にひび割れ - 室水 - 豊華石灰 - ASR確認		写直-2.1
	参考因			(衝図)		

表-2.1 PC 桁のひび割れ損傷事例

写真-2.1 損傷事例写真

3. 明橋

3.1 明橋の概要

明橋(あきらはし)は、茨城県常総市の新八間堀川を跨ぐ箇所(図-3.1.1)に架橋された橋長33.09mの単純プレテンション方式中空床版橋(2連)で、常総市管理の道路橋である。明橋の橋梁状況を写真-3.1.1に、橋梁概要を表-3.1.1に示す。架橋位置は沿岸部から50km程度離れた内陸部で、塩害の影響地域には該当しない。

本橋は、長寿命化修繕計画の作成にあたり、平成21年12月に管理者が実施した目視に よる損傷状況の調査において、以下の損傷が確認された。

【調査時に確認された主な損傷】

- ・ PC桁全体的に橋軸方向のひび割れ、外桁側面のひび割れ幅が最大で1.5mm。
- ・ ひび割れのほかに、漏水や遊離石灰。

図-3.1.1 位置図(国土地理院地図参照)

写真-3.1.1 橋梁全景(上流側より;左岸側 A1 橋台)

表-3.1.1 橋梁概要

3.2 損傷状況調査

3.2.1 調査概要

明橋の損傷状況調査では、平成23年11月に管理者が近接目視による損傷(ひび割れ位置・幅等)の観察・撮影を行った結果をもとに損傷を確認した。また、桁上面のひび割れ 状況については、平成24年10月に管理者が実施した橋面のはつり調査に立会い、確認した。

3.2.2 近接目視調查

平成 23 年 11 月の調査による損傷図を図-3.2.1 に、損傷写真を写真-3.2.1~写真-3.2.15 に示す。

(1) 桁側面のひび割れ状況

外桁側面には、橋軸方向のひび割れが全面にわたって多数見られ、ひび割れ幅は最大 2.0mmを越えていた(写真-3.2.2、写真-3.2.3)。主桁側面のひび割れ発生箇所は、目視 で確認できるほどコンクリートが膨張しておりASRが疑われる。また、中桁側面の一部に も橋軸方向のひび割れが見られ、白色の滲出物も見られた。これら白色の滲出物は、橋面 から雨水等が浸透したことにより滲出したものと考えられる。

(2) 桁下面のひび割れ状況

桁下面の橋軸方向のひび割れは、桁端部から支間中央にわたって見られ、主なひび割れ幅は0.3mm前後であった(写真-3.2.6、写真-3.2.10)。第1径間(A1~P1間)では外側の桁ほどひび割れが多く、第2径間(P1~A2間)では全体的にひび割れが見られた。また、桁の間詰め部からの遊離石灰や漏水跡、桁端部からの漏水跡が見られた。

(3) 橋面の状況

アスファルト舗装の一部に橋軸方向のひび割れが見られた。

	構造物名	明橋
	写真番号:	1
	A1-P1	上流側保護コンクリート
	ひび割れ	い状況
/ A Harrison la ser		
I I I I I I I I I I I I I I I I I I I		
	構造物名	明橋
	写真番号:	2
	A1-P1	上流側側面
	いい割れ	しての方
States and the states		
The second second second second		
	構造物名	明橋
	写真番号:	3
The second se	A1-P1	上流側保護コンクリート
e work	ひび割オ	<u>- 北京保護コンシン 1</u> ル状況
N		
A CONTRACTOR OF CO		

写真-3.2.1 損傷写真

	構造物名	明橋	
		写真番号:4	
		A1-P1 上流側側面	
	ひひ割れ状況		
	構造物名	明橋	
	写真番号:	5	
		A1-P1, P1-A2	
	上流側保護コンクリート		
	0.0.EJ1	5 1 7,77	
	構诰物名	明橋	
	写真番号:	6	
	P1-A2	P1_∆? ► 法侧侧面	
a line of the second	ひび割れ状況		
uda uda			

写真-3.2.2 損傷写真

	構造物名	明橋
	写真番号:	7
	P1-A2	上流側保護コンクリート
	ひび割れ	し状況
was a second second		
The second second second		
WILL A		
WO.Z		
	***	00.1%
	構 道 物 名	9
	子具宙 方:	0
	P1-A2 ひび割れ	上流側側面 レ状況
and the second s		
M PA MC4		
A BURNNY		
	構造物名	明橋
	写真番号:	9
	P1-A2	上流側保護コンクリート
	ひひ割れ	
and the second second		
wal		

写真- 3.2.3 損傷写真

	構造物名	明橋	
		10	
	P1-A2	上流側側面	
5mas 1was	ひひ割れ		
the second secon			
All the has had the			
-1-W=D/	構造物名	明橋	
	写真番号:	11	
W	P1-A2	上流側保護コンクリート	
and the second sec			
		The Berlin	
	構造物名	明橋	
	<u> </u>	12	
		A1-P1 床版 ひび割れ状況	
Rass - Contractor 2 10 10 10 10 10			

写真-3.2.4 損傷写真

	構造物名	明橋	
		13	
		A1P1 床版	
	ひび割れ	ひび割れ状況	
A HAR THIS			
A THE A			
15 all and a formation there and in a second			
	構造物名	明橋	
7-	写真番号:	14	
ALL AND ALL AND A CONTRACT	A1-P1 J	A1-P1 床版	
t III I I I I I I I I I I I I I I I I I	ひび割れ状況		
The strends and the state where the			
A set of the set of the set			
	構造物名	明橋	
	写真番号:	15	
		A1P1 床版	
		ひひ割れ状況	
A DESCRIPTION OF THE OWNER OWNER			
THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY ADDRESS OF THE REAL PRO			

写真- 3.2.5 損傷写真

	構造物名	明橋	
		写真番号:16	
	A1-P1 ひび割れ	末版 ↓状況	
the string 1995 - 19			
and the second s			
	構诰物名	明橋	
	写真番号:		
K. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A1P1 床版		
the the the	ひび割れ状況		
- WWWWW			
	構造物名 写直番号:	明橋	
	A1-P1	床版	
		し状況	

写真- 3.2.6 損傷写真

構造物名	明橋
写真番号: A1-P1 ひび割れ	19 末版 状況
構造物名 写真番号: A1-P1 ひび割れ	明橋 20 末版 -状況
構造物名 写真番号: A1-P1 ひび割れ	明橋 21 末版 -状況

写真- 3.2.7 損傷写真

	構造物名	明橋	
	写真番号 : A1-P1 ひび割れ	22 末版 状況	
	構造物名	明橋	
	写真番号:	23	
	A1-P1 床版		
with the second s	ひひ割れ	ひび割れ状況	
	構造物名	明橋	
	写真番号:	24	
		A1-P1 床版 7\7(割わけ況	

写真- 3.2.8 損傷写真

	構造物名	明橋		
		写真番号:25		
		A1-P1 床版		
	ひひ割れ状況			
	構造物名	明橋		
	与具番号:26			
		A1-P1 床版 ひび割れ状況		
	橫诰物名	明橋		
and a second state and the second states	写真番号:	27		
and and and the same and the same set	P1-A2 床版			
		ひび割れ状況		
IL ALL				

写真- 3.2.9 損傷写真

構造物名 写真番号: P1-A2 ひび割オ	明橋 28 末版 - 状況
構造物名 写真番号: P1-A2 ひび割れ	明橋 29 末版 以状況
構造物名 写真番号: P1-A2 ひび割れ	明橋 30 末版 状況

写真- 3.2.10 損傷写真

写真-3.2.11 損傷写真

	構造物名	明橋
	写真番号:34	
	P1-A2 床版	
	ひび割れ状況	
	構造物名	明橋
	写真番号:	35
	P1-A2 床版 ひび割わせ湯	
	0.0.834	
	排生物力	四场
	備坦初石 写直番号:	971回 36
	- P1-A2 床版 ひび割れ状況	
MANNINN M		

写真- 3.2.12 損傷写真

	構造物名	明橋
	写真番号:	37
	A1-P1	下流側側面
	ひび割れ	L状況
	構诰物夕	田棰
	写真番号:	
	Λ1_D1	下达刚刚五
	ひび割れ	トが、関連 し状況
	構造物名	明橋
	写真番号:39	
	A1-P1 てんてが実ませた	下流側側面
A CARLER AND		

写真- 3.2.13 損傷写真

	構造物名	明橋
	写真番号:	40
to the second se	A1-P1	下流側保護コンクリート
A A A A A A A A A A A A A A A A A A A	ひび割れ	し状況
	構造物名	明橋
	写真番号:	41
	P1-A2	下流側保護コンクリート
	ひび割れ	し状況
	構造物名	明橋
	写真番号:	42
	P1-A2	下流側側面
	いの割れ	1.1入沉
the providence of the second		

写真- 3.2.14 損傷写真

	構造物名	明橋
	写真番号:	43
	P1-A2 -	下流側側面
	ひび割れ	.状況
A Market A President A Preside		
A Contraction of the second se		
	構造物名	明橋
	写真番号:	44
	P1-A2	下流側側面
	ひひ割れ	.状况
AL TELEVILLE		
and the second s		
	構造物名	
	写真番号:	

写真- 3.2.15 損傷写真

3.2.3 橋面はつり調査

橋面のアスファルト舗装に橋軸方向のひび割れが見られたことから、平成24年10月に 管理者が実施した橋面はつり調査に立会い、桁上面の状況を確認した(図-3.2.2)。はつ り箇所における桁上面には、ひび割れ幅0.1~0.3mmの橋軸方向のひび割れが見られた(写 真-3.2.16、写真-3.2.17)。また、桁上面で剥離したコンクリート表面には、骨材周辺や 剥離面に沿って白色の滲出物(写真-3.2.18)が見られた。

図-3.2.2 橋面はつり調査(平成24年10月27日)

写真-3.2.16 はつり調査箇所 A

写真-3.2.17はつり調査箇所B(その1)

写真-3.2.18 はつり調査箇所 B (その2)

3.3 詳細調査

3.3.1 調査概要

調査項目と数量

明橋には、桁側面および桁下面に橋軸方向のひび割れが発生しており、そのひび割れ深 さによっては、主桁剛性の大幅な低下やスターラップの損傷等が懸念される。

このため、ひび割れ性状・発生原因を確認することを目的として、平成24年1月にコア 削孔による調査を行った。表-3.3.1に詳細調査項目を、表-3.3.2にコア採取による調査 数量を示す。

調查項目	調查方法
ひび割れ深さ調査	コア削孔箇所にて棒状スキャナ・CCDカメラ
中性化深さ調査	コア採取箇所にてフェノールフタレイン法
桁内滞水状況調査	コア削孔箇所にてCCDカメラ
圧縮強度/静弾性係数	採取コアによる圧縮強度試験
ASR調査	SEMによる反応性骨材観察、EDSによる構成元素の定性分析

表-3.3.1 コア削孔による調査項目および方法

※上記調査のほか、CAESAR メンテナンス技術交流会の活動の一環で、非破壊検査技術等 を用いた調査(鉄筋破断非破壊調査など)を実施した。結果は巻末資料参照。

表-3.3.2 コア削孔による調査数量

調査項目	コア仕様	明橋(箇所)
ひび割れ調査用(中性化含む)	削孔径25mm	8
桁内滞水状況調査	削孔径25mm	2
圧縮強度試験用	削孔径65mm	1
ASR調査用	削孔径65mm	1
棒形スキャナ(ひび割れ調査)	-	8

(2) 調査目的と方法

1) コア削孔調査(ひび割れ深さ・中性化深さ・桁内滞水状況)

a)外観ひび割れ調査(ひび割れ位置・幅)

ひび割れの発生状況を把握するため、「3.2 損傷状況調査」の損傷図および現地状況を もとに選定するコア削孔位置において、クラックスケールを用いて表面ひび割れ幅の計測 を行う。

削孔位置は、削孔前に電磁波レーダにより鋼材位置を確認し、鋼材位置を避けた位置と した。また、削孔径は、躯体への影響を最小限とするため、小口径(φ25mm)とした。

b)ひび割れ深さ・中性化深さ調査

桁側面に発生したひび割れが部材を貫通している場合には、重ね梁的な挙動により構造 性能の低下が懸念される。このため、採取したコアの観察および、棒形スキャナ・CCD カ メラを用いたコア削孔内の観察により、ひび割れ深さを調査する。また、ひび割れ深さと 中性化の深さの関係を確認するため、同削孔内の中性化深さ調査を行う。

c)桁内滞水状況調査

「3.2 損傷状況調査」のとおり、明橋では桁内側においても橋軸方向のひび割れが見られることから、桁内部(ボイド)の滞水が懸念される。このため、コア削孔を行い、CCDカメラ等を用いて桁内部の滞水調査を行う。なお、コア削孔位置は、滞水が生じている場合の水抜きを兼ねて桁下面とした。

2) 圧縮強度試験

ASR の特徴とされる静弾性係数の低下が生じていないか確認するため、コアを採取して 圧縮強度試験を実施する。

3) ASR 調査

主桁側面のひび割れ発生箇所は目視で確認できるほどコンクリートが膨張していること、 同様の損傷が生じた橋梁で ASR が確認されていることより、ASR が疑われるため ASR 調査 を実施する。

(3) 明橋の調査状況とコア採取位置

明橋の調査は、図-3.3.1に示すように、橋面において片側交互通行規制を行った上で、 橋梁点検車により近接して実施した。写真-3.3.1に調査状況を、図-3.3.2にコア採取位 置図を示す。なお、桁側面のコア採取は、下流側に添架物があるため全て上流側にて実施 した。

図-3.3.1 明橋の近接方法

a) 配筋調査

c) CCD 撮影

b) コア採取

d)棒状スキャナ撮影

写真-3.3.1 明橋の調査状況

図-3.3.2 明橋のコア採取位置図
3.3.2 コア削孔調査

コア削孔によるひび割れ深さ・中性化深さ・桁内滞水状況の調査結果を以下に示す。
表-3.3.3 に明橋のコア削孔調査結果を示す。図-3.3.5~図-3.3.12 に棒形スキャナの撮影画像および撮影画像から読みとったひび割れスケッチ図を示す。写真-3.3.3~写真-3.3.6 に CCD カメラによるコア削孔内の孔壁の状況を示す。

コア番号	削孔箇所		コア削孔長 (mm)	表面ひびわれ幅 (mm)	ひびわれ深さ (mm)	竣工図面による かぶり(mm)	中性化深さ (mm)	備考
No.1	第径間(A1-P1)1/8L付近	G10桁左側面	82	1.5	52	50	1mm未満	
No.2	第径間(A1-P1)1/4L付近	G10桁左側面	95	1. 2	(43)	50	1mm未満	ひび割れの先端は 孔壁下側へ進展
No.3	第径間(A1-P1)3/4L付近	G10桁左側面	85	1.3	(49)	50	1mm未満	ひび割れの先端は 孔壁上側へ進展
No.4	第2径間(P1-A2)1/4L付近	G10桁左側面	77	0.6	58	50	1mm未満	ひび割れの先端を コアにて確認
No.5	第2径間(P1-A2)3/4L付近	G10桁左側面	79	1.3	(47)	50	1mm未満	ひび割れの先端は 孔壁下側へ進展
No.6	第2径間(P1-A2)7/8付近	G10桁左側面	86	0. 3	52	50	1mm未満	
No.7	第1径間(A1-P1)3/4付近	G1桁右下面	130	_	-	_	1mm未満	桁内滞水調査
No.8	第2径間(P1-A2)1/4付近	G10桁左下面	140	-	-	-	1mm未満	桁内滞水調査

表-3.3.3 明橋のコア削孔調査結果

※No.2・No.3・No.5 ではひび割れが途中から孔壁外へ進展し、ひび割れ先端を確認することはできなかった。No.4 では棒形スキャナの機械的特性から先端部の約 30mm は撮影できないため、採取したコア(写真-3.3.2) からひび 割れ先端を確認した。

写真-3.3.2 No.4 採取位置でのコア外観

(1) ひび割れ深さ調査

桁側面のひび割れ深さ調査の結果、コア番号 No.1~No.6 のうち、ひび割れ先端を確認 した No.1・No.4・No.6の結果から、ひび割れ深さは 50mm 程度で、竣工図面によるスター ラップのかぶりは 50mm (図-3.3.3)、鉄筋探査によるスターラップのかぶりは 43~50mm であることから、ひび割れ深さは概ねスターラップ位置程度と考えられる。

また、表面ひび割れ幅とひび割れ深さには、図-3.3.4 に示すように相関が見られなかった。

図-3.3.3 削孔箇所の配筋概要 図-3.3.4 表面ひび割れ幅とひび割れ深さ

(2) 中性化深さ調査

コア削孔内における中性化深さ調査の結果、中性化深さは、いずれも表面からアルカリ 性を示す発色の反応が見られたことから、中性化はほとんど進行していない。

(3) 桁内滞水状況調査

桁内滞水状況調査の結果、桁下面からコア削孔した No.7・No.8 では、桁内に内型枠(発 泡スチロール)を確認した。削孔箇所からは、漏水等の水の存在が認められないことから、 桁内に滞水はしていないと考えられる。

図-3.3.5 棒形スキャナ撮影画像とひび割れスケッチ図(N0.1)

図-3.3.6 棒形スキャナ撮影画像とひび割れスケッチ図 (NO.2)

図-3.3.7 棒形スキャナ撮影画像とひび割れスケッチ図 (NO.3)

図-3.3.8 棒形スキャナ撮影画像とひび割れスケッチ図 (N0.4)

削孔箇所 No.5 (P1-A2 3/4L)

図-3.3.9 棒形スキャナ撮影画像とひび割れスケッチ図(N0.5)

図-3.3.10 棒形スキャナ撮影画像とひび割れスケッチ図 (N0.6)

図-3.3.11 棒形スキャナ撮影画像とひび割れスケッチ図 (N0.7)

写真-3.3.6 CCD カメラによるコア削孔内の孔壁の状況 (No.7 No.8)

3.3.3 圧縮強度試験

(1) 採取コアの外観状況

明橋の採取コアは、桁側面の全体にわたって橋軸方向ひび割れが発生しているため、比較的ひび割れが少なくコア採取がしやすいA1付近から採取した。

a) A 1 付近圧縮試験用コア採取位置

b)コア外観 (側面)

c) コア外観(先端) d) 孔内状況(内型枠:発泡スチロール) 写真-3.3.7 明橋 コア採取位置およびコア状況写真

(2) 圧縮強度試験結果

圧縮強度試験結果を表-3.3.4 に、各供試体の応力—ひずみ曲線を図-3.3.13 に示す。 なお、圧縮強度試験は、JISA1107-2002「コンクリートからのコアの採取方法及び圧縮強 度試験方法」に準拠し、静弾性係数試験は、JISA1149-2010「コンクリートの静弾性係数 試験方法」に準拠した。

		設計値		試験	結果	試験結果/設計値		
		圧縮強度	静弾性係数	圧縮強度	静弹性係数	圧縮強度比	静弾性係数比	
		(N/mm^2)	(kN/mm²)	(N/mm²)	(kN/mm²)			
明橋	A1付近(劣化部)	50.0	33. 0	68.8	20.4	1.38	0. 62	

表-3.3.4 圧縮強度試験結果

コンクリートの設計基準強度は、竣工図面の表記(500kgf/cm²)を単位換算した 49N/mm²を丸めて 50N/mm²と判断した。

図-3.3.13 応力-ひずみ曲線

圧縮強度の試験値は、表-3.3.4のように、設計基準強度以上の値を示した。試験値と 2012年制定土木学会コンクリート標準示方書における設計強度と静弾性係数の関係(図-3.3.14)を比較すると、ひび割れが多い付近(劣化部)のコアの静弾性係数は、設計強度 に対する弾性係数に対して5~6割程度の値を示した。これは、ASRによって発生した微細 なひび割れにより、静弾性係数の低下が生じているものと考えられる。

図-3.3.14 圧縮強度と静弾性係数の関係

3.3.4 ASR 調査

(1) コア外観状況

明橋では、ASR 調査として、採取したひび割れを含むコア(ASR 調査用)の外観調査と 表面分析を行った。状況を写真-3.3.8に示す。

a)コア採取位置

b)削孔状況

c) 孔内状況(孔壁面右~下側)

d) 孔内状況(孔壁面左~下側)

4 5 6 7 8 9 🕕

e) 孔内状況(孔壁面上側・先端) f) コア状況(側面) 写真-3.3.8 明橋 コア(ASR 調査用)採取位置およびコア外観状況

コアの外観調査は、表面分析に先立ち、室内にて数日間高湿状態で封函した後に行った。 コアの外観状況を写真-3.3.9、写真-3.3.10 に示す。骨材周辺の一部において透明なゲ ル状の滲出物が見られ、乾燥状態で放置したところ、透明なゲル状の滲出物は白色の固化 物質に変化した。

a) 拡大写真(赤枠)

b) 拡大写真(黄枠)

c)拡大写真(赤枠) 写真-3.3.10 コア外観状況(側面)

(2) 表面分析

表面分析では、採取したコアをディスク状に切り出し、骨材粒子とセメントペーストの 境界部における反応物質に着眼し、走査型電子顕微鏡(SEM)による二次電子像より反応物 質の形態観察およびエネルギー分散型X線装置(EDS)により反応物質の構成元素について 定性分析を行った。

透明な滲出物が見られた骨材粒子およびその周辺を SEM にて観察した代表的な二次電子 像を写真-3.3.11 に示す。二次電子像内の代表的な1点(*)について、EDS による構成 元素の定性分析結果を図-3.3.15 に示す。

写真-3.3.11から、骨材周辺の一部に見られた滲出物は、一般的に確認されている ASR 生成物の典型的な形態(ゼリー状)を呈していた。滲出物は、図-3.3.15のとおり、Si(ケ イ素)を主成分とし、他に Ca(カルシウム)、K(カリウム)および Na(ナトリウム)を含 んでいる。ゼリー状の形態と Siを主成分とすることから、骨材周辺の滲出物は ASR により 生成したゲルであると判断した。

以上により、明橋における橋軸方向のひび割れは、ASR によるものと考えられる。

図-3.3.15 EDS による構成元素の定性分析結果

3.4 明橋の実橋載荷試験(静的載荷試験)

3.4.1 実橋載荷試験の概要

(1) 計測項目および計測位置

明橋では、橋軸方向のひび割れによる構造性能への影響を確認するため、荷重車による 静的載荷試験を行った。

静的載荷試験の対象径間は、明橋が2径間とも同一形状であることから、橋軸方向のひび割れが比較的多い第2径間(P1~A2)とした。

表-3.4.1に計測項目および設置箇所数量を、図-3.4.1に計測位置図を示す。

乱测语口	三上 2日川 十級	計測位置	P1側	3L/4	L/2	L/4	A2側	군도 38년	上 */-	
計 测 項 日	計測版	桁位置	16m	12m	8m	4m	Om	計測	泉奴	
		G1桁下面	1	1	1	1	1	5	15	
		G2桁下面			1			1		
たわみ計測	変位計	G5桁下面		1	1	1		3		
		G9桁下面			1			1		
		G10桁下面	1	1	1	1	1	5		
		G1桁側面	2	2	4	2	2	12		
		G1桁下面			1			1	31	
	ひずみゲージ	G2桁下面			1			1		
		G4桁下面			1			1		
ひずみ計測		G5桁下面			1			1		
		G6桁下面			1			1		
		G9桁下面			1			1		
		G10桁下面			1			1		
		G10桁側面	2	2	4	2	2	12		
		G1桁側面	1	1	1	1	1	5	14	
		G1桁下面			1			1		
ひび割れ開閉量	π型ゲージ (PI-5)	G2桁下面			1			1		
(鉛直方向)		G9桁下面			1			1		
		G10桁下面			1			1		
		G10桁側面	1	1	1	1	1	5		
ひび割れズレ量	π型ゲージ	G1桁側面	1	1		1	1	4	0	
(水平方向)	(PI-5)治具付	G10桁側面	1	1		1	1	4	ō	

表-3.4.1 計測項目および設置箇所数量

(2) 載荷方法

1)荷重車の重量

荷重車は、総重量を20tに調整したダンプトラックを用いるものとした。載荷試験に用いたそれぞれの荷重車の軸重量を表-3.4.2に示す。

荷重車	配置方向	総重量(t)	前輪軸重(t)	後輪軸重(t)	後輪軸重(t)
А	P1方向	20. 2	6.6	7.3	6.3
В	A2方向	20. 1	6.2	7.6	6.3

表-3.4.2 荷重車の軸重量(載荷重量)

2) 載荷方法の検討

明橋の位置する路線では、大型車の通行規制が実施されており、現行の通行車両の重量 は8tに規制されている。このため、載荷方法は、はじめに20t荷重車1台による載荷を行 い、桁の異常なひずみやたわみ、橋軸方向のひび割れの開き・ズレ等が無いことを確認し たのち、図-3.4.2に示すような現行の使用状態を想定した8t車満載時における発生モー メントとほぼ同等となるように、20t荷重車2台載荷による載荷とした。

図-3.4.2 現行使用時の最大モーメントと2台載荷

3) 事前解析(格子解析)

載荷試験に先立ち、事前解析として、図-3.4.3の条件で格子解析を行い、荷重車2台 載荷時の桁のひずみ・たわみの最大値を算出した。

格子解析の結果として、図-3.4.4 に支間 1/4・1/2 載荷位置における荷重車 2 台載荷時 の支間中央桁下縁ひずみを、図-3.4.5 に支間 1/2 載荷位置における荷重車 2 台載荷時の 桁中央たわみ分布を示す。ひずみとたわみの最大値の解析値は、外桁(G1桁)の支間中央 桁下縁において、ひずみが 64 μ、たわみが 4.5mm であった。

橋梁名	明橋	明橋						
構造種別	プレストレストコンクリート橋			構造形式	プレテンション方式PC単純床版橋			
活荷重	一般車両			衝撃係数	i = 20/(50+L)			
橋長	16.545m(道路中心線上)			斜角	73-00-00(始点) 73-00-00(終点)			
桁 長	16.500m(構造中心線上)							
支間長	15.900m(構造中心線上)							
総幅員	8.200m		有効幅員	7.000m(車	道)			
材 料	主 桁	基準強度	50.0(35.0	50.0(35.0) N/mm ²			3. 300E+04 (2. 950E+04) N/mm ²	
		PC鋼材	SWPR7A 1S	512.4		弾性係数	2.000E+05 N/mm ²	
	場所打ち	基準強度	30.0 N/mm	l^2		弾性係数	2.800E+04 N/mm ²	
		PC鋼材	SWPR19 1S	17.8		弾性係数	2.000E+05 N/mm ²	

・解析モデルは、竣工図と設計当時の基準をもとに作成した。

・性能は新設当時を想定しており、プレストレスの減少等の損傷は考慮していない。

図-3.4.3 格子解析条件

o) 支間 1/4·1/2·3/4 載荷位置における 支間中央の G1 桁・G2 桁下縁ひずみ

図-3.4.4 支間 1/4・1/2 載荷位置における荷重車 2 台載荷時の支間中央桁下縁ひずみ

図-3.4.5 支間 1/2 載荷位置における荷重車2台載荷時の桁中央たわみ分布

3.4.2 荷重車1台載荷試験

(1)載荷試験方法

荷重車1台載荷試験の概要を図-3.4.6に示す。G1桁側載荷では荷重車の右側後輪中心 がG2桁中心に、G10桁側載荷では荷重車の左側後輪中心がG9桁中心に一致するように配 置し、それぞれA2側からP1側方向に移動させた。計測は、後輪荷重中心位置がG2桁A2 支点上をOmとして、P1支点上の16mまでを2m間隔(≒1/8L)で移動させて静的載荷を行 った。載荷状況を写真-3.4.1に、計測状況を写真-3.4.2~写真-3.4.3に示す。

図-3.4.6 荷重車1台載荷試験の概要

a) G1 桁側載荷状況

b) G10 桁側載荷状況

写真-3.4.1 荷重車1台載荷試験の状況

写真-3.4.2 計測状況(全景 G10桁側面)

a)計測状況

c) G1 桁側面 計測位置 8m ひずみゲージ・パイ型ゲージ

e) G1 桁側面 計測位置 16m ひずみゲージ・パイ型ゲージ

g) G1・G2 桁下面 計測位置 8m 変位計・ひずみゲージ

b)計測機器

d) G10 桁側面 計測位置 8m ひずみゲージ・パイ型ゲージ

f) G10 桁側面 計測位置 16m ひずみゲージ・パイ型ゲージ

h) G5 桁下面 計測位置 8m 変位計・ひずみゲージ

写真-3.4.3 計測状況(詳細)

(2) 載荷試験結果

荷重車1台載荷試験の結果を以下に示す。

1) 桁下面のひずみ・たわみ計測

桁下面のひずみ・たわみ計測結果として、図-3.4.7 に G1 桁側 1 台載荷時における支間 中央(計測位置 8m)桁下面のひずみ・たわみを、図-3.4.8 に G10 桁側 1 台載荷時におけ る支間中央桁下面のひずみ・たわみを示す。

桁下面の最大ひずみは、G1 桁側載荷時で 26μ、G10 桁側載荷時で 24μと、解析値の 64 μに対して 40%程度であった。また、桁の最大たわみは、G1 桁側載荷時・G10 桁側載荷時 ともに 1.5mm で、解析値の 4.5mm に対して 33%程度であった。

a)支間中央桁下面のひずみー載荷位置

b)支間中央桁下面のひずみ分布

c)支間中央桁下面のたわみー載荷位置

d)支間中央桁下面のたわみ分布

図-3.4.7 G1桁側1台載荷時における支間中央桁下面のひずみ・たわみ

25 載荷位置 25 (ガ)を歩わ 15 15 10 5 0 G1 G2 G3 G4 G8 G9 G10 G5 G6 G7 主桁

40

35

30

a)支間中央桁下面のひずみー載荷位置

b)支間中央桁下面のひずみ分布

--2

4

×12

載荷位置 -0 -2

+ 4

× 6

-8

-10

-12 -14 -16

-14

c)支間中央桁下面のたわみー載荷位置

d)支間中央桁下面のたわみ分布

図-3.4.8 G10桁1台側載荷時における支間中央桁下面のひずみ・たわみ

2) 桁側面のひずみ計測

桁側面のひずみ計測結果として、図-3.4.9にG1桁側1台載荷時における支間中央(計 測位置8m)のG1桁側面のひずみ分布を、図-3.4.10にG10桁側1台載荷時における支間 中央のG10桁側面のひずみ分布を示す。

図-3.4.9からは、G1桁側面の橋軸方向ひび割れを挟んだ位置を境として、ひずみ分布 の直線性が喪失している傾向がみられることから、G1桁は平面保持の仮定が成立しなくな りつつある状況にあると考えられる。

図-3.4.9 G1桁側1台載荷時における支間中央(8m)のG1桁側面のひずみ分布

図-3.4.10 G10 桁側1台載荷時における支間中央(8m)のG10 桁側面のひずみ分布

3) ひび割れ開閉量・ズレ量の計測

ひび割れ開閉量・ズレ量の計測結果として、図-3.4.11 に支間中央桁下面の曲げひび割 れの開閉量を、図-3.4.12 に G1 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量 を、図-3.4.13 に G10 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量を、図-3.4.14 に G1 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量を、図-3.4.15 に G10 桁載荷時における桁側面の橋軸方向ひび割れのズレ量を示す。

G1 桁側および G10 桁側における荷重車 1 台による載荷では、いずれの計測値も 1/1000 ~2/1000mm 程度の小さな応答で、載荷に伴う急な変化は認められなかった。

a) G1 桁側面ひび割れ開閉量-載荷位置 b) G10 桁側面ひび割れ開閉量-載荷位置 図-3.4.12 G1 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量(鉛直方向)

a) G1 桁側面ひび割れ開閉量-載荷位置 b) G10 桁側面ひび割れ開閉量-載荷位置 図-3.4.13 G10 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量(鉛直方向)

a) G1 桁側面ひび割れズレ量ー載荷位置 b) G10 桁側面ひび割れズレ量ー載荷位置 図-3.4.14 G1 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量(水平方向)

a) G1 桁側面ひび割れズレ量ー載荷位置 b) G10 桁側面ひび割れズレ量ー載荷位置 図-3.4.15 G10 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量(水平方向)

3.4.3 荷重車2台載荷試験

(1) 載荷試験方法

荷重車2台載荷試験の概要を図-3.4.16に、載荷状況を写真-3.4.4に示す。

G1 桁側および G10 桁側の荷重車 2 台載荷では、荷重車 2 台を各々背面側が向き合うよう に直列配置として、後輪間軸距離の中心を載荷位置とした。

計測は荷重車1台載荷試験と同様に、載荷位置は図-3.4.16 に示す5箇所(A2 側から2m、4m、8m、12m、14m)で行った。

図-3.4.16 荷重車2台載荷試験の概要

b)G10 桁側載荷状況

写真-3.4.4 荷重車2台載荷試験の状況

図-3.4.17、表-3.4.3 に荷重車2台載荷(直列2台載荷)時の各載荷位置における後 輪軸間距離を示す。

図-3.4.17 直列2台載荷の概要

	G1桁側	載荷時	G10桁側載荷時		
計測STEP	載荷位置	後輪軸間 距離(mm)	載荷位置	後輪軸間 距離(mm)	
1	2m (L/8)	3, 800	2m (L/8)	3, 750	
2	4m(L/4)	3, 770	4m(L/4)	3, 680	
3	8m (L/2)	3, 760	8m (L/2)	3, 900	
4	12m(3L/4)	3, 730	12m(3L/4)	3, 880	
5	14m(7L/8)	3, 700	14m(7L/8)	3, 860	

表-3.4.3 直列2台載荷時の後輪軸間距離

(2) 載荷試験結果

荷重車2台載荷試験の結果を以下に示す。

1) 桁下面のひずみ・たわみ計測

桁下面のひずみ・たわみ計測結果として、図-3.4.18 に G1 桁側 2 台載荷時における支 間中央桁下面のひずみ・たわみを、図-3.4.19 に G10 桁側 2 台載荷時における支間中央桁 下面のひずみ・たわみを示す。

支間中央桁下面の最大ひずみは、G1 桁側載荷時の G1 桁で 35 µ、G10 桁側載荷時の G10 で 29 µ と G1 桁で若干大きいものの、解析値の 64 µ に対して 55%程度であった。また、支間中央桁下面の最大たわみは、G1 桁側載荷時・G10 桁側載荷時ともに約 2.0mm で、解析値 の 4.5mm に対して 44%程度であった。

a)支間中央桁下面のひずみー載荷位置

b)支間中央桁下面のひずみ分布

c)支間中央桁下面のたわみー載荷位置

d)支間中央桁下面のたわみ分布

図-3.4.18 G1桁側2台載荷時における支間中央桁下面のひずみ・たわみ

a)支間中央桁下面のひずみー載荷位置

b)支間中央桁下面のひずみ分布

c)支間中央桁下面のたわみー載荷位置 d)支間中央桁下面のたわみ分布

図-3.4.19 G10 桁側2 台載荷時における支間中央桁下面のひずみ・たわみ
2) 桁側面のひずみ計測

桁側面のひずみ計測結果として、図-3.4.20 に G1 桁側 2 台載荷時における支間中央(計 測位置 8m)の G1 桁側面ひずみ分布を、図-3.4.21 に G10 桁側 2 台載荷時における支間中 央の G10 桁側面のひずみ分布を示す。また、図-3.4.22、図-3.4.23 に支間中央以外の各 計測位の桁側面ひずみ分布を示す。

図-3.4.20からは、1台載荷と同様、桁側面の橋軸方向ひび割れを挟んだ位置を境として、ひずみ分布の直線性が喪失している傾向がみられることから、G1桁は平面保持の仮定 が成立しなくなりつつある状況にあると考えられる。

図-3.4.22 および図-3.4.23 から、中立軸位置は、ひずみが0 に収束している桁下縁 からおよそ 500mm 付近と考えられる。この中立軸位置は、桁のみの中立軸位置(約 380mm) より上縁側に位置することから、桁上面に位置する橋面の舗装や調整コンクリートおよび 地覆等の剛性が影響しているものと考えられる。

図-3.4.20 G1 桁側2 台載荷時における支間中央(8m)のG1 桁側面のひずみ分布

図-3.4.21 G10 桁側2 台載荷時における支間中央(8m)のG10 桁側面のひずみ分布

図-3.4.23 G10 桁側2 台載荷時における桁側面のひずみ分布

3) ひび割れの開閉量・ズレ量の計測

ひび割れ開閉量・ズレ量の計測結果として、図-3.4.24 に支間中央の桁下面の曲げひび 割れの開閉量を、図-3.4.25 に G1 桁側載荷時における桁側面の橋軸方向ひび割れの開閉 量を、図-3.4.26 に G10 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量を、図-3.4.27 に G1 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量を、図-3.4.28 に G10 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量を示す。

G1 桁側および G10 桁側における荷重車 2 台による載荷では、1 台載荷と同様、いずれの 計測値も 1/1000~3/1000mm 程度の小さな応答で、載荷に伴う急な変化は認められなかった。

b)G10 桁側載荷位置-支間中央の 桁下面ひび割れ開閉量

図-3.4.24 支間中央桁下面の曲げひび割れの開閉量(水平方向)

a) 載荷位置-G1 桁側面ひび割れ開閉量 b) 載荷位置-G10 桁側面ひび割れ開閉量 図-3.4.25 G1 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量(鉛直方向)

a) 載荷位置-G1 桁側面ひび割れ開閉量 b) 載荷位置-G10 桁側面ひび割れ開閉量 図-3.4.26 G10 桁側載荷時における桁側面の橋軸方向ひび割れの開閉量(鉛直方向)

a) 載荷位置-G1 桁側面ひび割れのズレ量 b) 載荷位置-G10 桁側面ひび割れのズレ量 図-3.4.27 G1 側載荷時における桁側面の橋軸方向ひび割れのズレ量(水平方向)

a) 載荷位置-G1 桁側面ひび割れのズレ量 b) 載荷位置-G10 桁側面ひび割れのズレ量 図-3.4.28 G10 桁側載荷時における桁側面の橋軸方向ひび割れのズレ量(水平方向)

3.4.4 ひび割れの構造性能への影響

(1)外桁と隣接桁のひずみ・たわみの比較

荷重車2台載荷試験の計測値より、外桁と隣接桁のひずみとたわみについて以下のとお り比較した。

G1桁(外桁)側の支間中央(A2側から8m位置)載荷時におけるG1桁・G2桁の支間中央桁 下面のひずみ・たわみは、図-3.4.18のとおり、最大たわみはG1桁・G2桁で同程度である のに対して、桁下面のひずみはG1桁がG2桁に対して約1.5倍大きい値を示した。

G10桁(外桁)側の支間中央載荷時におけるG10桁・G9桁の支間中央桁下面のひずみ・た わみは、図-3.4.19のとおり、最大たわみ、桁下面ひずみともにG10桁がG9桁より若干大き い値を示した。G1桁・G2桁については、支間中央のたわみは同程度であるのに対して、支 間中央の下面ひずみはG1桁がG2桁より若干大きい値を示しており、G1桁側の載荷時と同様 の傾向が見られた。

(2)考察

G1桁・G2桁の支間中央桁下面のひずみとたわみに見られた特徴から、以下のような状況 が考えられる。

G1桁の支間中央桁下面のひずみがG2桁よりも大きいことに着目すると、G1桁の断面剛性はG2桁よりも低下していることが想定される。一方で、G1桁とG2桁のたわみは同程度であることから、G2桁は重ね梁の状態に近い挙動を示した可能性も考えられる。

図-3.4.29に支間中央桁下面のひずみーたわみ関係、およびG1桁、G2桁、G10桁の線形 近似線を示す。図-3.4.29からは、G1桁でたわみに対してひずみが大きい傾向が見られる。 このことから、他の桁よりもG1桁の断面剛性が若干低下している可能性が考えられる。

ただし、主桁のひずみ・たわみ、および外桁側面のひび割れの開閉・ズレの計測値には、 線形挙動を逸脱するような載荷に伴う急激な変化が見られなかった。このことから橋梁全 体系としては、橋軸方向のひび割れによる大きな剛性低下は生じていないものと考えられ る。

4. T橋

4.1 T橋の概要

T橋は、茨城県内の一般国道を跨ぐ箇所に架橋された橋長 52m の2径間連続ポストテン ション方式中空床版橋で、市管理の自転車歩行者専用の跨道橋である。T橋の橋梁状況を 写真-4.1.1に、橋梁概要を表-4.1.1に示す。架橋位置は沿岸部から 50km 程度離れた内 陸部で、塩害の影響地域には該当しない。

本橋は、長寿命化修繕計画の作成にあたり、平成22年11月に管理者が実施した目視に よる損傷状況の調査において、以下の損傷が確認されたた。

【調査時に確認された主な損傷】

- ・ PC桁側面の全体に橋軸方向のひび割れ、ひび割れ幅は最大 3.0~3.5mm。
- PC桁下面の一部に橋軸方向のひび割れ。
- ・ 桁端部に多くの遊離石灰。
- ・ 橋面のレンガ舗装に、うき・20mm 程度の段差・ひび割れ。

写真-4.1.1 橋梁全景(A1橋台側より;左側 A1橋台)

表-4.1.1 橋梁概要

4.2 損傷状況調査

4.2.1 調査概要

T橋の損傷状況調査では、平成22年に管理者が実施した目視調査の報告から、桁側面お よび桁下面に発生した橋軸方向のひび割れに着目し、平成23年11月に近接目視による損 傷(ひび割れ位置・幅等)の観察・撮影を行った。また、桁上面のひび割れについては、 平成23年1月に管理者が橋面のはつり調査を行い確認した。

4.2.2 近接目視調査

平成 23 年 11 月の調査による損傷図を図-4.2.1 に、損傷写真を写真-4.2.1~写真-4.2.24 に示す。

(1) 桁側面のひび割れ状況

桁側面サークルハンチ部には、橋軸方向のひび割れが全長にわたって多数見られ、桁端 部付近のひび割れ幅は最大 3.0mm であった。

桁端部に発生したひび割れからは、白色の滲出物が見られ(写真-4.2.10)、桁側面サ ークルハンチ上縁側(張出下面)においても、白色の滲出痕が見られた(写真-4.2.8、写 真-4.2.14)。これら白色の滲出物は、桁端部から雨水等が浸透したことにより滲出したも のか、桁側面から伝わってきたものと考えられる。

(2) 桁下面のひび割れ状況

桁下面においては、主にボイドに沿って橋軸方向のひび割れが 2 本見られた(写真-4.2.16)。A2 側桁端部のひび割れ幅は、概ね 0.2mm 以下で最大 0.5mm であった。また、第 2 径間(P1~A2 間)の支間中央付近から A2 側のボイドの下面には、白色の滲出物が見られ た(写真-4.2.17、写真-4.2.18)。これら白色の滲出物は、橋面から雨水等が浸透したこ とにより滲出したものと考えられる。

(3) 橋面の状況

橋面は、レンガ(タイル)による舗装が行われており、桁下面の漏水跡のほぼ直上の範 囲にレンガにうきが発生していた(写真-4.2.22)。このことにより、桁下面の漏水跡は、 橋面から雨水等が浸透し、滲出したものと考えられる。

(4) その他

ゴム支承が、桁の橋軸直角方向に大きく変形(写真-4.2.23、写真-4.2.24)していた が、原因は不明である。

図-4.2.1 損傷図(平成23年11月)

写真-4.2.1 A1 側 桁端部付近 (南側面)

写真-4.2.2 A1 側桁端部から 1m 付近 (南側面)

写真-4.2.3 A1 側桁端部から 2m 付近 (南側面)

(南側面)

写真-4.2.4 A1 側桁端部から 16m 付近 (南側面)

写真-4.2.5 A1 側桁端部から 29m 付近 写真-4.2.6 A1 側桁端部から 31m 付近 (南側面)

写真-4.2.7 A1 側桁端部から 36m 付近 (南側面)

写真-4.2.8 A1 側桁端部から 36m 付近 (南側面)(詳細)

写真-4.2.9 A2 側桁端部 (南側面)

写真-4.2.10 A1 側桁端部付近 (北側面)

写真-4.2.11 A1 側桁端部から 2m 付近 (北側面)

写真-4.2.12 A1 側桁端部から 2m 付近 (北側面)

写真-4.2.13 A1 側桁端部から 7m 付近 (北側面)

写真-4.2.14 A1 側桁端部から 19m 付近 (北側面)

写真-4.2.15 A2 側桁端部 (北側面)

写真-4.2.16 A1 側桁端部から 38m 付近 (桁下面)

写真-4.2.17 A1 側桁端部から 41m 付近 (桁下面)

写真-4.2.18 A1 側桁端部から43m 付近 (桁下面)

写真-4.2.19 A1 側桁端部から (橋面)

写真-4.2.20 A1 側桁端部から 6m 付近 (橋面)

写真-4.2.21 A2 側桁端部から (橋面)

写真-4.2.22 A2 側桁端部から 10m 付近 (橋面) はつり調査跡

写真-4.2.23 A1 側支承部

写真-4.2.24 A2 側支承

4.2.3 橋面はつり調査

橋面のレンガ舗装にうき・段差・ひび割れが見られたことから、桁上面のひび割れ状況 を確認するため、平成23年1月に管理者が橋面のはつり調査を実施した(図-4.2.2)。は つり箇所における桁上面には、ひび割れ幅0.15~0.45mmの橋軸方向のひび割れが見られた (写真-4.2.25~写真-4.2.28)。

図-4.2.2 橋面はつり調査(平成23年1月27日)

写真-4.2.25 はつり調査箇所 No.1

写真-4.2.26 はつり調査箇所 No.2

写真-4.2.28 はつり調査箇所 No.4

4.3 詳細調査

4.3.1 調査概要

T橋には、桁側面および桁下面に橋軸方向のひび割れが発生し、そのひび割れ深さによっては、主桁剛性の大幅な低下やスターラップの損傷等が懸念される。

このため、ひび割れ性状・発生原因を確認することを目的として、平成23年12月~平成 24年2月の期間にコア削孔による調査を行った。表-4.3.1に詳細調査項目を、表-4.3.2 にコア採取による調査数量を示す。

表-4.3.1 コア削孔による調査項目および方法

調查項目	調查方法		
ひび割れ深さ調査	コア削孔箇所にて棒状スキャナ・CCDカメラ		
中性化深さ調査	コア採取箇所にてフェノールフタレイン法		
鉄筋状況調査	コア削孔箇所にて目視		
压縮強度/静弾性係数	採取コアによる圧縮強度試験		
ASR調査	採取コアの断面を目視調査		

※上記調査のほか、CAESAR メンテナンス技術交流会の活動の一環で、非破壊検査技術等 を用いた調査(ひび割れ深さ調査など)を実施した。結果は巻末資料参照。

表-4.3.2 コア削孔による調査数量

調査項目	コア仕様	T橋(箇所)
ひび割れ調査用(中性化含む)	削孔径25mm	6
ひび割れ調査用(事前確認) ^{※1}	削孔径50mm	2
鉄筋確認用	削孔径50mm	1
	削孔径65mm	2
ASR調査用	削孔径65mm	1 ^{×2}
棒形スキャナ(ひび割れ調査)	-	6

※1:削孔したコア外にひび割れ進展が見られことから、表面近傍でひび 割れ進展方向を確認するためコア径を大きくして実施

※2:ひび割れ調査時のコアにて、コア破断面を目視調査

調査目的と方法

1) コア削孔調査(ひび割れ深さ・中性化深さ・桁内滞水状況・鉄筋状況)

a)外観ひび割れ調査(ひび割れ位置・幅)

ひび割れの発生状況を把握するため、「4.2 損傷状況調査」の損傷図および現地状況を もとに選定するコア削孔位置において、クラックスケールを用いて表面ひび割れ幅の計測 を行う。

削孔位置は、削孔前に電磁波レーダにより鋼材位置を確認し、鋼材位置を避けた位置と した。また、削孔径は、躯体への影響を最小限とするため、小口径(φ25mm)とした。

b)ひび割れ深さ・中性化深さ調査

桁側面に発生したひび割れが部材を貫通している場合には、重ね梁的な挙動により構造 性能の低下が懸念される。このため、採取したコアの観察および、棒形スキャナ・CCD カ メラを用いたコア削孔内の観察により、ひび割れ深さを調査する。また、ひび割れ深さと 中性化の深さの関係を確認するため、同削孔内の中性化深さ調査を行う。

c)鉄筋状況調査

「4.2 損傷状況調査」のとおり、T橋では橋軸方向のひび割れ幅が3.0mmと大きいこと から、ひび割れ発生位置におけるスターラップの破断・伸び等が懸念される。このため、 スターラップ位置までコア削孔を行い、鉄筋を露出させたうえで目視による調査を行う。 なお、コア削孔に使用する機器は、鉄筋に刃先が触れると自動停止する機器を使用する。

2) 圧縮強度試験

ASR の特徴とされる静弾性係数の低下が生じていないか確認するため、コアを採取して 圧縮強度試験を実施する。

3) ASR 調査

主桁側面のひび割れ位置が目視できるほど膨張していること、同様の損傷が生じた橋梁 で ASR が確認されていることより、ASR が疑われるため ASR 調査を実施する。

(2) T橋の調査状況とコア採取位置

T橋の調査は、図-4.3.1 に示すように高所作業車および脚立・立馬により近接して実施した。高所作業車による調査は、A1 付近の交差道路、および P1~A2 間の桁下の交差道路において車線規制を行った上で実施した。写真-4.3.1 に調査状況を、図-4.3.2 にコア採取位置図を示す。

a) 配筋調査

b) コア採取

- c) CCD カメラによる調査
- d) 棒状スキャナによる調査

写真-4.3.1 T橋の調査状況

図-4.3.2 T橋のコア採取位置図

4.3.2 コア削孔調査

コア削孔によるひび割れ深さ・中性化深さ・鉄筋状況(T橋)の調査結果を以下に示す。 表-4.3.3 にT橋のコア削孔調査結果を示す。図-4.3.7~図-4.3.12 に棒形スキャナ の撮影画像および撮影画像から読み取ったひび割れスケッチ図を示す。写真-4.3.3~写真 -4.3.5 に CCD カメラによるコア削孔内の孔壁の状況を示す。

コア番号	削孔箇所		コア削孔長 (mm)	表面ひびわれ幅 (mm)	ひびわれ深さ (mm)	竣工図面による 想定かぶり(mm)	中性化深さ (mm)	備考
No.1	第1径間 A1付近	桁左側面	140	3.0	106	140	14	
No.2	第1径間 A1付近	桁右側面	140	3.0	(49)	140	16	ひび割れの先端は 孔壁上側へ進展
No.3	第1径間(A1-P1)中央付近	桁右側面	120	1.5	72	140	12	
No.4	第2径間(P1-A2)中央付近	桁左側面	195	1.5	78	140	15	
No.5	第2径間 A2付近	桁左側面	120	1.1	72	140	18	
No.6	第2径間 A2付近	桁右側面	120	2.0	89	140	12	

表-4.3.3 T橋のコア削孔調査結果

※No.2 ではひび割れが途中から孔壁外へ進展し、ひび割れ先端を確認することはできなかったため、 No.3 および No.5 の 2 箇所では、事前に調査箇所近傍でφ 50mm の削孔によりひび割れの進展方向を確認したのち行った。

桁側面の橋軸方向のひび割れは、ひび割れ幅が最大 3.0mm と大きい。これは、図-4.3.3 のとおりサークルハンチ部に沿った鉄筋が配置されていないことで、拘束が小さいことが 原因と考えられる。

(1) ひび割れ深さ調査

桁側面のひび割れ深さ調査の結果、コア番号 No.1~No.6 のうち、ひび割れ先端を確認 した No.1 および No.3~6の結果から、ひび割れ深さは概ねスターラップ位置(図-4.3.3) よりも手前と考えられる。

また、表面ひび割れ幅とひび割れ深さには、図-4.3.4 に示すように、ひび割れ幅 3mm では深さ 110mm 程度、幅 2mm では深さ 90mm 程度、幅 1mm では深さ 70mm 程度と、ある程度 の相関が見られた。

図-4.3.3 削孔箇所の配筋概要

図-4.3.4 表面ひび割れ幅とひび割れ深さ

(2) 中性化深さ調査

コア削孔内における中性化深さ調査の結果、中性化深さは 12mm~18mm の範囲であった。 図-4.3.5 に表面ひび割れ幅およびひび割れ深さと、中性化深さとの関係をそれぞれ示す。 いずれも明確な相関は見られなかった。

表面ひび割れ幅と中性化深さ

中性化深さは一般的に中性化期間の平方根に比例 すると考えられている。これに基づき、供用から100 年経過した時点の中性化深さを下式から求めた結果 は約28mmと、桁の最小かぶり35mm(昭和53年道路 橋示方書、竣工図面(図-4.3.6))に対しては、余 裕がある。ただし、写真-4.3.2からは、ひび割れ に沿って内面に中性化の進行が見られることから、 ひび割れ部からの中性化の進行が懸念される。

写真-4.3.2 中性化状況 (No.5)

図-4.3.6 桁のかぶり(竣工図面)

$$\mathbf{y} = \mathbf{b}\sqrt{t} \, \mathbf{\beta} \, \mathbf{y} \, \mathbf{y}$$

供用から 29 年経過(本調査時)した中性 化最大深さ 18mm の中性化速度係数は、

 $b = 18/\sqrt{29} = 3.3$

供用から 100 年後の中性化深さは、

$$y = 3.3\sqrt{(100 - 29)} = 28$$
mm < 35mm

ここに

y: 中性化深さ(mm)

t: 中性化期間(年)

b: 中性化速度係数(mm/√年)

図-4.3.7 棒形スキャナ撮影画像とひび割れスケッチ図(N0.1)

図-4.3.8 棒形スキャナ撮影画像とひび割れスケッチ図(N0.2)

図-4.3.9 棒形スキャナ撮影画像とひび割れスケッチ図 (NO.3)

削孔箇所 No. 4 (P1-A2 1/2L)

図-4.3.10 棒形スキャナ撮影画像とひび割れスケッチ図 (N0.4)

図-4.3.11 棒形スキャナ撮影画像とひび割れスケッチ図 (N0.5)

図-4.3.12 棒形スキャナ撮影画像とひび割れスケッチ図 (NO.6)

写真- 4.3.3 CCD カメラによるコア削孔内の孔壁の状況 (No.1 No.2)

写真-4.3.4 CCDカメラによるコア削孔内の孔壁の状況 (No.3 No.4)

写真-4.3.5 CCD カメラによるコア削孔内の孔壁の状況 (No.5 No.6)

(3) 鉄筋状況調査

ひび割れ発生位置におけるスターラップの状態を確認するため、第 2 径間(P1~A2 間) の支間中央付近(コア採取位置 No.4付近)でコア削孔により露出させた鉄筋状況を写真-4.3.6に示す。かぶりがおよそ 130mm と深く、鉄筋周辺をはつることが出来なかったため、 鉄筋の伸びは未確認であるが、鉄筋表面には腐食が見られないこと、コンクリートとの付 着は良好に見られることから、鉄筋はほぼ健全な状態であると考えられる。

また、採取したコアからは、ひび割れが深さ 60mm 程度から上側に外れたため、ひび割 れ先端は追えないが、ひび割れ面に鋼材腐食による錆汁等の痕跡が見られないことから、 現状において橋軸方向のひび割れは、スターラップに大きな影響を与えていないと考えら れる。

a) No. 4 付近 鉄筋観察削孔箇所

b) No. 4 付近 鉄筋観察削孔箇所

c) 露出させた鉄筋状況 d) 露出させた鉄筋状況(拡大画像) 写真-4.3.6 コア削孔により露出させた鉄筋状況

4.3.3 圧縮強度試験

(1) 採取コアの外観状況

T橋の圧縮強度試験用のコアは、ひび割れが少なく比較的健全なP1付近(健全部)と、 橋軸方向のひび割れが多く発生しているA2付近(劣化部)から、それぞれ1本ずつ採取 した。コア採取位置およびコア状況を写真-4.3.7示す。A2付近の採取コアの表面やコ ア先端の破断面には、粗骨材周囲に白色の反応リムのような変状が見られた。

写真-4.3.7 T橋 コア採取位置およびコア状況写真

(2) 圧縮強度試験結果

T橋の圧縮強度試験結果を表-4.3.4に、各供試体の応力−ひずみ曲線を図-4.3.13に 示す。圧縮強度試験は、JISA 1107-2002「コンクリートからのコアの採取方法及び圧縮強 度試験方法」に準拠し、静弾性係数試験は、JISA 1149-2010「コンクリートの静弾性係数 試験方法」に準拠した。

		設計値		試験	結果	試験結果/設計値	
		圧縮強度 静弾性係数 日		圧縮強度	静弾性係数	圧縮強度比	静弾性係数比
		(N/mm^2)	(kN/mm²)	(N/mm²)	(kN/mm²)		
T橋	P1付近(健全部)	40.0	31.0	55.3	27.9	1.38	0. 90
	A2付近(劣化部)	40.0	31.0	45. 7	17.0	1.14	0. 55

表-4.3.4 圧縮強度試験結果

コンクリートの設計基準強度は、竣工図面の表記 (400kgf/cm²)を単位換算した 39N/mm²を丸めて 40N/mm²と判断した。

図-4.3.13 応力-ひずみ曲線

圧縮強度の試験値は、表-4.3.4のように、いずれも設計基準強度以上の値を示した。 試験値と 2012 年制定土木学会コンクリート標準示方書における設計強度と静弾性係数の 関係(図-4.3.14)を比較すると、ひび割れが多い付近(劣化部)のコアの静弾性係数は、 設計強度に対する弾性係数に対して 5~6 割程度の値を示した。これは、ASR によって発生 した微細なひび割れにより、静弾性係数の低下が生じているものと考えられる。

図-4.3.14 圧縮強度と静弾性係数の関係
4.3.4 ASR 調査

表面

(1) コア外観状況

T橋では、ASR 調査として、ひび割れ深さ調査で採取したコア(No.3)を用いて外観調 査を行った。コアの外観状況を写真-4.3.8 に示す。コア破断面には、骨材の割れや骨材 周辺に白色の滲出物が見られた。

a)コア採取位置(表面ひび割れ幅 1.8mm)

c) コア破断面の状況 写真-4.3.8 T橋 コア(NO.3)採取位置およびコア外観状況

102

5. まとめ

(1) 損傷状況調査

損傷状況調査から、桁側面における橋軸方向のひび割れ幅は、明橋で2.0mm、T橋で3.0mm を越える値を示した。特にT橋でひび割れ幅が大きくなった原因としては、サークルハン チ部に沿った鉄筋が配置されていないため、拘束が小さくなっていることが考えられる。

(2) コア削孔調査

コア削孔箇所のひび割れ深さは、明橋で 52~58mm、T橋で 72~106mm で、概ね鉄筋(ス ターラップ) 位置程度までであった。

コア削孔箇所の中性化深さは、明橋ではほぼ表面付近で中性化の進行が認められなかっ たのに対し、T橋では平均12mmであった。明橋・T橋ともに竣工後約30年程度であるが、 中性化の進行速度は現場打ちコンクリートであるT橋の方が大きかった。ただし、中性化 深さは鉄筋位置まで達しておらず、ひび割れからの錆汁等、鋼材腐食が疑われるような変 状は認められなかった。また、コア削孔箇所で露出させて目視した鉄筋の表面には腐食が 見られず、コンクリートとの付着は良好に見られた。

(3) ASR 調査

明橋・T橋ともに採取したコア表面および破断面において、骨材周辺には、反応リムや 白色の滲出物が認められた。

明橋における走査顕微鏡(SEM)による反応物質の形態観察からは、骨材周辺の滲出物 がASR生成物の典型的な形態(ゼリー状)を呈していることを確認した。また、エネルギ ー分散型 X 線装置(EDS)による定性分析からは、滲出物が Si(ケイ素)を主成分とする ことを確認したことにより、滲出物は、ASRにより生成したゲルと判断した。

圧縮強度試験からは、ひび割れが多い付近(劣化部)のコアの静弾性係数が、設計強度 に対する静弾性係数に対して 5~6 割程度低い値を示した。ASR により発生した微細なひび 割れにより、ASR の特徴とされる静弾性係数の低下が発生しているものと考えられる。

以上より、明橋・T橋のひび割れは、ASR に起因するものと推定した。

(4) ひび割れの構造性能への影響

載荷試験によるG1桁側面のひずみ分布からは、G1桁側面に発生した橋軸方向ひび割れを 挟んだ位置を境として、ひずみ分布の直線性が喪失している傾向がみられることから、G1 桁は平面保持の仮定が成立しなくなりつつある傾向が見られた。

G1桁では、支間中央桁下面のたわみに対してひずみが大きい傾向が見られたことから、 他の桁よりもG1桁の断面剛性が若干低下している可能性が考えられる。

主桁のひずみ・たわみ、および外桁側面のひび割れの開閉・ズレの計測値には、個々の 桁の劣化による微妙な違いが見られるものの、線形挙動を逸脱するような急激な計測値の 変化は見られなかった。このことから、明橋は、載荷重量範囲内(現行 8t 規制)において は、橋梁全体系として、大きな剛性低下までは至っていないと考えられる。

6.おわりに

本調査は、PC桁橋で橋軸方向のひび割れが生じた実橋梁を対象に実施した。ひび割れ 発生の主要因は、コア採取による調査からASR劣化によるものと推定した。ひび割れ深さ は、概ねスターラップのかぶり程度で、部材を貫通するひび割れまでは至っていないもの と推定した。明橋の載荷試験では、現行の載荷重量範囲内では、橋梁全体系として大きな 剛性低下までは至っていないものと考察した。

CAESAR では、様々な劣化ひび割れが生じたコンクリート橋梁を確認しており、橋梁の長 寿命化を図る上でも性能評価が重要と考えられる。引き続き実橋や撤去桁を用いた臨床研 究を継続し、知見を蓄積することにより、維持管理の実務に資するよう性能評価手法の確 立を目指している。

謝 辞

本研究を実施するにあたり、調査対象橋梁を管理する自治体の方々、国土交通省関東地 方整備局(道路部道路管理課(道路保全企画室)、関東技術事務所)のご協力を賜りました。 また、実橋載荷試験の事前解析を実施するにあたり、日本航空電子工業株式会社の富岡氏 のご協力を賜りました。ここに関係各位に深く感謝致します。

参考文献および参考資料

- 1) 日本道路協会:昭和43年プレストレストコンクリート道路橋示方書、1968
- 2) 土木学会:2012年制定コンクリート標準示方書【設計編】・【維持管理編】、2013
- 国土交通省道路局:道路橋のアルカリ骨材反応に対する維持管理要領(案)、平成15 年3月
- 4) 湊俊彦・石井浩司・丑屋智司・鳥居 和之: ASR が発生したプレストレストコンクリート橋のひび割れの特徴と対策の現状、日本材料学会 コンクリート構造物の補修、 補強、アップグレード論文報告集 第11巻、pp.471-478,2011.10
- 5) 小林一輔・森弥広・野村謙二: 圧縮載荷試験によるアルカリ骨材反応の診断法、土 木学会 土木学会論文集、No. 460/V-18、pp. 151-154, 1993. 2
- 6) 小林一輔・丸章夫・立松英信共著:コンクリート構造物の耐久性診断シリーズ2、 アルカリ骨材反応の診断、森北出版株式会社、1991
- 7) 関真一郎、木村嘉富、花井拓、中島道浩:軸方向ひび割れの発生したプレストレストコンクリート橋の調査(その1)、土木学会 第 67 回年次学術講演会概要集、 V-054,2012.9
- 8) 中島道浩、木村嘉富、花井拓、富岡昭浩:軸方向ひび割れの発生したプレストレストコンクリート橋の調査(その2)、土木学会 第 67 回年次学術講演会概要集、 V-055,2012.9
- 9) 青柳聖、木村嘉富、花井拓、中島道浩:軸方向ひび割れが生じたプレストレストコンクリート橋の調査、プレストレストコンクリート工学会、第21回プレストレストコンクリートの発展に関するシンポジウム論文集、pp. 89-92, 2012. 10

CAESAR メンテナンス技術交流会 非破壊検査技術等を用いた調査

橋軸方向のひび割れが生じた実橋の調査概要

CAESAR メンテナンス技術交流会の活動の一環として、実橋における非破壊検査技術等を 用いて調査した結果を以下に示す。

1.	調查目的	1
2.	調査概要	1
2	2.1 調査項目一覧	1
3.	対象橋梁の概要	2
4.	非破壞検査	4
4	4.1 弾性波を用いたひび割れ深さ調査	4
	4.1.1 iTECS 法を用いた直接回折波法(一般社団法人 iTECS 技術協会)	4
	4.1.2 UCM2000を用いた加算平均波法(株式会社エッチアンドビーシステム)	5
4	4.2 鉄筋破断調査	6
	4.2.1 M. EYEチェッカーを使用した鉄筋破断検査(株式会社四国総研)	6
4	4.3 内空滞水調査	6
	4.3.1 サーモグラフィ法(一般社団法人日本赤外線サーモグラフィ協会)	6
5.	振動計測	7
5	5.1 振動計測の概要	7
	5.1.1 固有振動数	7
	5.1.2 加振方法	8
	5.1.3 加速度計を用いた振動計測(日本航空電子工業株式会社)	8
Ę	5.2 固有值解析	9
	5.2.1 明橋の固有値解析	9
	5.2.2 T橋の固有値解析	19
6.	載荷試験	26
6	5.1 非接触式変位・ひずみ計測の概要	26
	6.1.1 デジタルカメラを用いたたわみ計側(佐賀大学)	26
	6.1.2 デジタルによる全視野ひずみ計測(長崎大学)	26

目 次

調査報告書

- ・iTECS 法によるひび割れ深さ調査(一般社団法人iTECS技術協会)
- ・広帯域超音波探査法によるひび割れ深さ調査(株式会社エッチアンドビーシステム)
- ・M. EYEチェッカーによる鉄筋破断非破壊調査(株式会社四国総合研究所)
- ・赤外線サーモグラフィ法による調査(一般社団法人日本赤外線サーモグラフィ協会)
- ・加速度計による振動計測(日本航空電子工業株式会社)
- ・載荷試験における非接触式変位・ひずみ計測(長崎大学・佐賀大学)

1. 調査目的

コンクリート部材に劣化ひび割れの生じている既設橋梁の性能(変形性状、耐荷性能) を評価するにあたっては、そのひび割れが発生した要因・発生状況、性能への影響を考慮 する必要がある。

本調査は、ひび割れの状態(深さ、幅)およびひび割れの影響(開きの有無)を詳細に 調査することで、ひび割れの生じている既設橋梁の性能評価の基礎資料とすることを目的 として行った。併せて、ひび割れ調査方法として実施した非破壊検査の適用性を検討した。

2. 調査概要

2.1 調査項目一覧

表 2-1 に対象橋梁において実施した調査項目一覧を示す。

調査項目		実施者	T橋 2011.12.15~12.21	明橋 2012. 1. 10~2012. 1. 27
	ひパットㅋㅋ★	一般社団法人iTECS技術協会	0	0
北亚博伦本	いの割れ床で調査	株式会社エッチアンドビー システム	0	0
于吸场快宜	鉄筋破断調査	株式会社四国総研	_	0
	内空滞水調査	ー 般社団法人日本赤外線 サーモグラフィ協会	_	0
振動計測	加速度計測 固有値解析	日本航空電子工業株式会社	0	0
載荷試験	非接触変位・ひずみ計測	長崎大学・佐賀大学	_	0

表 2-1 調査項目一覧

3.対象橋梁の概要

T橋の橋梁概要を表 3-1 に、明橋の橋梁概要を表 3-2 に示す。

表 3-1 T橋の橋梁概要

表 3-2 明橋の橋梁概要

4. 非破壊検査

4.1 弾性波を用いたひび割れ深さ調査

ひび割れの深さが計測可能とされている非破壊検査手法の実橋(複雑な鋼材配置、湿潤 状態などの条件下にある構造物)への適用性の検討を目的として、弾性波を用いたひび割 れ深さ調査を行った。

弾性波(超音波)を用いたひび割れ深さの測定方法には、①Tc-To 法(L-L 方式)、② T 法、③デルタ方式、④近距離迂回波方式、⑤BS 方式、⑥回折波方式(ランプ法)、⑦S -S 方式、⑧R-S 方式、⑨レスリー法(Leslie法)、⑩低周波横波超音波法などがある。 また、ひび割れ深さの測定機器には数多くの種類がある。

ここでは、実施したひび割れ深さの測定方法として、iTECS法(アイテックス)を使用した直角回折波法およびUCM2000を使用した加算平均波法について記載する。

4.1.1 iTECS 法を用いた直接回折波法(一般社団法人 iTECS 技術協会)

ひび割れ先端で回折する弾性波の初動は90度未満で引張波、90度以上で圧縮波になる。 この性質を利用して、ひび割れを挟む形で、ひび割れとインパクター・加速度計との距離 を等間隔で離しながら、回析する弾性波の初動が直角になる位置を測定し、その時のひび 割れとインパクター(または加速度計)との距離をひび割れ深さとする手法である。

図 4-1 ひび割れ測定状況

図 4-2 直接回折波法の現地

図 4-3iTECS におけるひび割れ深さ検出原理

4.1.2 UCM2000 を用いた加算平均波法(株式会社エッチアンドビーシステム)

基本原理は、探触子間にひび割れが有る場合の最短径路波(ひび割れ回折波)の起生時 刻より、ひび割れ深さを特定する近距離迂回波方式である。この手法は、ひび割れ深さ方 向に鉄筋がある場合、鉄筋を伝わる鉄筋経路波が発生し、検知が困難となる。そのため、 受信探触子の位置を 5cm 程度ずらし複数の場所(5 点程度)で測定(加算平均波法)する。

受信探触子の位置をずらすと、鉄筋を介して伝搬される波の位相は大きく変わる。一方 ひび割れ底部を回折する波と、鉄筋から反射する波の位相はあまり変わらない。これらの 波を加算平均することで、ひび割れ回折波を特定する。

図 4-4 ひび割れの有る場合の 超音波伝搬模式図

図 4-5 配筋ピッチが狭い場合の 超音波伝搬模式

4.2 鉄筋破断調査

鉄筋の破断の有無が計測可能とされている非破壊検査手法の実橋(複雑な鋼材配置)への適用性の検討を目的として、M. EYE チェッカーを使用した鉄筋破断検査を行った。

4.2.1 M. EYEチェッカーを使用した鉄筋破断検査(株式会社四国総研)

磁気法を利用した鉄筋の破断検知技術。 鉄筋が磁性体であることを利用してコン クリート表面から磁石で鉄筋を着磁する。 破断箇所において、磁気の乱れがあるた め、その乱れを磁気センサーで検出し、 破断の有無を確認する。

図 4-8 測定状況

4.3 内空滞水調査

桁内空部に水分が存在する場合に、測定可能と考えられる非破壊検査手法の実橋(常温時、桁下(日陰)での計測)への適用性の検討として、サーモグラフィ法の検証を行った。

4.3.1 サーモグラフィ法(一般社団法人日本赤外線サーモグラフィ協会)

中空床板橋において内空部に水が滞水した場合、内部の温度が上がりにくくなるため、 健全部と滞水部における温度差により内空の状態が確認可能か検証を行う。

図 4-10 サーモグラフィ法

5. 振動計測

構造物の耐荷力評価として考えられる手法のうち、非破壊かつ比較的簡易な手法である 振動計測の実橋への適用性の検討を目的として、実際にひび割れが発生している橋梁を対 象に振動計測を行った。主な確認項目は、ひび割れによる剛性低下、振動モードへの影響 である。

5.1 振動計測の概要

5.1.1 固有振動数

一般的に、固有振動数は以下の式で表されるため、ひび割れが貫通している場合、断面
 2 次モーメントが低下することで、振動数への影響が考えられる。また、高次の振動モードに変化が現れる可能性もあるため、振動モードにも着目した試験を行う。

$$\omega_n = 2\pi f_n = \lambda_n^2 \sqrt{\frac{EI}{mL^4}} = \lambda_n^2 \sqrt{\frac{EIg}{wAL^4}}$$

ここで,弾性係数:E(N/m²),断面2次モーメント:I(m⁴),断面積:A(m²),単位重量:w(N/m³) 重力加速度:g(m/s²),単位長さ当りの質量:m(N・s²/m²),スパン:L(m) 固有振動数:f_n(1/s(Hz)),固有角振動数:ω_n(rad/s)、波長:λ_n(m)

図 5-1 ひび割れが入ったことによる剛性低下の概念図

図 5-2 振動モード図

5.1.2 加振方法

加振方法としては、車両を載荷する強制加振方法、錘を落下させる加振方法、常時交通荷重による振動計測方法等があるが、本調査では重錘を落下させる重錘落下法とした。

重錘落下法では、重量 0.245kN の重錘を用い高さ 1.0m から自由落下させ、橋を強制的 に加振させる。衝撃加振力は約 30kN である。この加振によって発生する振動を、加速度計、 常時微動計等の振動計測可能なセンサーを用いて計測を行う。

写真 5-1 重錘落下法による加振状況

5.1.3 加速度計を用いた振動計測(日本航空電子工業株式会社)

振動計測には、日本航空電子工業製サーボ型加速度計 JA-40GA(写真 5-2)と開発中の MEMS 加速度計(写真 5-3)を用いた。JA-40GA は 1 µg の微小な振動を計測することができ、 DC から 2kHz までの帯域を測定可能である。一方、MEMS 加速度計は 5 µg の分解能と DC か ら 200Hz までの帯域を測定可能である。

写真 5-2 サーボ型加速度計 JA-40GA

写真 5-3 MEMS 加速度計(開発中)

5.2 固有值解析

5.2.1 明橋の固有値解析

現地試験に先立ち、当該橋梁の固有振動数や固有モードを予測しておくことを目的とし て、固有値解析を行った。ここでは、横桁の断面剛性をパラメータとした解析を実施し、 比較検討を行った。

(1) 解析モデル

1) モデル化の概要

上部構造(PC 桁)のみ3次元梁要素を用いてモデル化、支点部に対しては境界条件を与えることによりモデル化(図 5-3)を行った。

主桁の断面剛性については、両端側の P1R~S3 と S4~A2 間では充実断面に、中間部の S3~S4 間では中空断面に設定した。横桁と横桁の間では主桁を4分割しているが、質量は 横桁と交点にのみ付与した。

図 5-3 解析モデル

2) 検討モデル

検討モデルは、横桁剛性の違いを比較するため、下記2つのモデルとした。

- ・ モデル1: 横桁に対して全部材に対し剛部材と仮定したモデル
- ・ モデル2: 主桁の断面剛性より小さめ(約5~6割程度)に仮定したモデル

表 5-1 に各モデルの横桁断面剛性を示す。

検討モデル	A (m ²)	Iz (m ⁴)	Iy (m ⁴)	Ix (m ⁴)
モデル 1	100	1.0×10^{3}	1.0×10^{3}	1.0×10^{3}
モデル 2	0. 2	1.0×10^{-2}	1.0 × 10 ⁻²	1. 0 × 10 ⁻²
※主桁(中空)	0. 285	1.99 × 10 ⁻²	1.67 × 10^{-2}	2. 50 × 10 ⁻²

表 5-1 横桁断面剛性

(2) 固有值解析結果

1) 結果一覧の比較

各モデルに対し、20 次まで固有値解析を行い、その結果をそれぞれ表 5-2、表 5-3 に 示す。

振動数 有効質量比 固有周期 モード モード (Hz) (sec) Ζ Υ Х 1 10.847 0.092 0.000 0.881 0.000 鉛直1次 2 18.347 0.055 0.000 0.000 0.935 橋直1次 3 20.641 0.048 0.000 0.000 0.000 0.035 0.000 0.000 0.000 4 28.573 鉛直2次 5 33.817 0.030 0.000 0.000 0.000 橋直2次 0.026 0.000 0.000 38.123 0.001 6 43.758 0.023 0.887 0.000 0.000 橋軸1次 7 8 44.805 0.022 0.000 0.000 0.030 橋直3次 0.021 0.000 0.083 0.000 鉛直3次 9 46.666 0.000 10 49.779 0.020 0.000 0.000 11 88.663 0.011 0.000 0.000 0.000 12 124.644 0.008 0.079 0.000 0.000 0.007 0.000 152.249 0.000 0.000 13 14 186.747 0.005 0.017 0.000 0.000 15 196.152 0.005 0.000 0.000 0.000 16 221.577 0.005 0.002 0.000 0.000 17 1425.596 0.001 0.000 0.000 0.000 18 1426.381 0.001 0.000 0.000 0.000 1427.171 0.001 0.000 0.000 0.000 19 20 2225.581 0.000 0.000 0.000 0.000

表 5-2 固有値解析結果_一覧(モデル1)

表 5-3 固有値解析結果_一覧(モデル 2)

エード	振動数	固有周期	有効質量比			т_Ľ
τ - Γ	(Hz)	(sec)	Х	Y	Z	
1	8.132	0.123	0.000	0.912	0.000	鉛直1次
2	10.573	0.095	0.000	0.000	0.000	
3	16.667	0.060	0.000	0.000	0.921	橋直1次
4	21.201	0.047	0.000	0.000	0.000	
5	22.971	0.044	0.000	0.000	0.000	鉛直2次
6	25.526	0.039	0.000	0.001	0.000	
7	32.119	0.031	0.000	0.000	0.000	橋直2次
8	36.923	0.027	0.000	0.000	0.000	
9	42.105	0.024	0.000	0.045	0.000	鉛直3次
10	43.701	0.023	0.886	0.000	0.000	橋軸1次
11	43.709	0.023	0.000	0.000	0.000	
12	43.943	0.023	0.000	0.000	0.000	
13	44.130	0.023	0.000	0.000	0.042	
14	54.310	0.018	0.000	0.001	0.000	
15	57.372	0.017	0.000	0.000	0.000	
16	59.434	0.017	0.000	0.000	0.000	
17	67.097	0.015	0.000	0.000	0.000	
18	69.978	0.014	0.000	0.000	0.000	
19	74.453	0.013	0.000	0.000	0.000	
20	74.825	0.013	0.000	0.000	0.000	

2) モード図の比較

モデル1およびモデル2の鉛直1次ならびに鉛直2次のモード図を以下に示す。横桁剛 性を低下させることにより、1次モードで25%程度、2次モードで20%程度の振動数は低下 した。

図 5-4 モデル1の鉛直1次モード10.847Hz

図 5-5 モデル2の鉛直1次モード8.132Hz

図 5-6 モデル1の鉛直2次モード28.573Hz

図 5-7 モデル2の鉛直2次モード22.971Hz

- (3) 固有モード図
- 1) モデル1のモード図(横桁剛性高)

図 5-13 mode6 (ねじり2次モード 38.123Hz)

図 5-16 mode9 (鉛直3次モード46.666Hz)

2) モデル2のモード図(横桁剛性低)

図 5-19 mode3 (橋直1次モード16.667Hz)

図 5-22 mode6 (ねじり3次モード 25.526Hz)

図 5-23 mode7 (橋直2次モード 32.119Hz)

図 5-24 mode8 (ねじり4次モード 36.923Hz)

5.2.2 T橋の固有値解析

現地試験に先立ち、当該橋梁の固有振動数や固有モードを予測しておくことを目的とし、 固有値解析を行った。

(1) 解析モデル

1) モデル化の概要

上部構造(PC 桁)のみ3次元梁要素を用いてモデル化し支点部に対しては境界条件を与 えることによりモデル化(図 5-26)を行った。

図 5-26 解析モデル図

2) 検討モデル

検討モデルは、下記2つのモデルとした。

- ・ モデル1:全断面中空断面としたモデル
- ・ モデル2: A1-P1 間のみ充実断面としたモデル

(2) 固有值解析結果

1) 結果一覧の比較

各モデルに対し 20 次まで固有値解析を行い、その結果をそれぞれ表 5-4、表 5-5 に示 す。モデル1とモデル2では大差見られず高次のモードで若干差が見られる程度であった。

エード	振動数 固有周期		有効質量比			エード
τ=r	(Hz)	(sec)	Х	Y	Z	
1	2.149	0.465	0.000	0.324	0.000	鉛直1次
2	6.086	0.164	0.000	0.189	0.000	鉛直2次
3	8.923	0.112	0.000	0.156	0.000	鉛直3次
4	10.076	0.099	0.000	0.000	0.436	橋直1次
5	16.541	0.060	0.000	0.079	0.000	鉛直4次
6	23.379	0.043	0.000	0.019	0.000	鉛直5次
7	27.666	0.036	0.477	0.000	0.000	橋軸1次
8	27.767	0.036	0.000	0.000	0.001	
9	30.162	0.033	0.000	0.008	0.000	鉛直6次
10	32.487	0.031	0.000	0.000	0.242	橋直2次
11	43.494	0.023	0.000	0.005	0.000	
12	47.545	0.021	0.268	0.000	0.000	橋軸2次
13	51.216	0.020	0.000	0.057	0.000	鉛直7次
14	54.684	0.018	0.000	0.000	0.081	
15	63.020	0.016	0.000	0.011	0.000	
16	73.830	0.014	0.074	0.000	0.000	
17	79.461	0.013	0.000	0.007	0.000	
18	88.920	0.011	0.000	0.008	0.000	
19	89.309	0.011	0.000	0.000	0.001	
20	90.786	0.011	0.000	0.000	0.001	

表 5-4 固有値解析結果_一覧(モデル1:全断面中空断面)

長 5−5 固有値解析結果_	一覧	(モデル2:	A1-P1	径間充実断面)
----------------	----	--------	-------	---------

エ_ド	振動数 固有周期		有効質量比			エード
	(Hz)	(sec)	Х	Y	Z	
1	2.154	0.464	0.000	0.285	0.000	鉛直1次
2	5.870	0.170	0.000	0.245	0.000	鉛直2次
3	8.759	0.114	0.000	0.145	0.000	鉛直3次
4	10.076	0.099	0.000	0.000	0.414	橋直1次
5	16.451	0.061	0.000	0.069	0.000	鉛直4次
6	22.445	0.045	0.000	0.025	0.000	鉛直5次
7	27.666	0.036	0.454	0.000	0.000	橋軸1次
8	27.767	0.036	0.000	0.000	0.001	
9	29.974	0.033	0.000	0.006	0.000	鉛直6次
10	30.557	0.033	0.000	0.000	0.268	橋直2次
11	42.971	0.023	0.000	0.001	0.000	
12	47.904	0.021	0.298	0.000	0.000	橋軸2次
13	49.465	0.020	0.000	0.067	0.000	鉛直7次
14	54.684	0.018	0.000	0.000	0.077	
15	62.724	0.016	0.000	0.009	0.000	
16	73.830	0.014	0.070	0.000	0.000	
17	78.192	0.013	0.000	0.003	0.000	
18	84.091	0.012	0.000	0.000	0.001	
19	86.330	0.012	0.000	0.012	0.000	
20	90.786	0.011	0.000	0.000	0.001	

- (3) 固有モード図(鉛直モードのみ記載)
- 1) モデル1 (全断面中空)

2) モデル2(A1-P1間充実断面)

(4) 計測位置の検討

橋軸方向の加速度計測位置は、固有値解析による刺激関数と橋軸方向の位置を示した図 5-29より、モード1・モード2・モード5において、鉛直1次・2次・3次と推定されるため、その山の位置とした。断面方向の計測位置は、構造中心と、両端の舗装部に浮きが懸 念されるため両端の地覆とした。

図 5-29 計測位置の検討

(5) 弾性係数の低下を考慮した場合の固有振動数の検討

1) 概要

設計時の弾性係数から低下した場合の固有振動数の変化について、以下の3ケースの追 加検討を行った。

- ケース1 (E90):弾性係数を 90% (E=31,000N/mm²×0.9 = 27,900N/mm²)
- ケース2(E80):弾性係数を80%(E=31,000N/mm²×0.8 = 24,800N/mm²)
- ・ ケース3 (E75):弾性係数を75% (E=31,000N/mm²×0.75=23,250N/mm²)

2) 固有值解析結果一覧

表 5-6、図 5-30 にモデル1(全断面中空)の結果、表 5-7、図 5-31 にモデル2(A1-P2 間充実断面)の結果を示す。なお、固有変形モードには変化が認められなかったため省略 した。弾性係数の低下率に対する振動数の低下率はおよそ半分程度となった。

				(112)
	E100	E90	E80	E75
鉛直1次	2. 149	2.038	1. 922	1.861
鉛直2次	6. 086	5. 774	5. 444	5. 271
鉛直3次	8. 923	8.465	7. 981	7. 728
鉛直4次	16. 541	15.693	14. 795	14. 325
鉛直5次	23. 379	22.179	20. 911	20. 247
鉛直6次	30. 162	28.614	26. 978	26. 121
鉛直7次	51.216	48.588	45.809	44. 354
低下率	0, 0%	5, 1%	10, 6%	13, 4%

 (H_7)

図 5-30 モデル1(全断面中空)弾性係数による振動数の変化

表 5-7 モデル2(A1-P2間充実断面)弾性係数による振動数の変化

				(Hz)
	E100	E90	E80	E75
鉛直1次	2. 154	2. 044	1. 927	1.866
鉛直2次	5. 870	5. 568	5. 250	5. 083
鉛直3次	8. 759	8. 310	7. 835	7. 586
鉛直4次	16. 451	15. 606	14. 714	14. 247
鉛直5次	22. 445	21. 294	20. 076	19. 438
鉛直6次	29. 974	28. 436	26.809	25. 958
鉛直7次	49.465	46. 927	44. 243	42. 838
低下率	0.0%	5.1%	10. 6%	13. 4%

図 5-31 モデル2(A1-P2間充実断面)弾性係数による振動数の変化

6. 載荷試験

6.1 非接触式変位・ひずみ計測の概要

実構造物における非接触式変位・ひずみ計測の検証を目的とし、実橋の静的載荷試験時 に、光学的計測手法の一つであるデジタル画像相関法を用いた非接触式変位・ひずみ計測 を行った。

6.1.1 デジタルカメラを用いたたわみ計側(佐賀大学)

変位計などのセンサーを設置せずに、橋梁の変位やたわみの計測を市販のデジタルカメ ラによって行う。デジタルカメラによるたわみ計測として、正方形マーカーを用いた変位 計測法として、複数の正方形マーカーが印刷されたターゲットを計測対象物に設置し、固 定されたデジタルカメラにより撮影されたターゲットの画像から正方形マーカーの座標を 解析し、変位を求めるものである。1台のデジタルカメラによって多点計測を行うことで、 鉛直方向変位だけではなく水平方向変位も画像解析によって同時に求める。

写真 6-1 左:実橋における計測状況 右:正方形マーカーー例

6.1.2 デジタルによる全視野ひずみ計測(長崎大学)

光学的全視野計測法を用いて、コンクリート表面の変位とひずみ分布およびひび割れの 挙動を計測する。本システム(以下、DICM(Digital Image Correlation Method)と記す) は、CCDカメラ×2台、三脚、ノートPCなどで構成されている。計測時には、照明を2つ 使用しコンクリート表面に画像解析用の白黒模様をスプレーまたは、絵の具で塗布する。

写真 6-2 計測システム

非破壊検査技術等を用いた調査結果

iTECS 法によるひび割れ深さ調査

報告書

一般社団法人 i T E C S 技術協会

目》	欠
----	---

1. 一般事項	1
2. 測定原理	2
2.1 直角回折波法	2
2.2 行路差法	3
3. 測定装置	5
4. 測定・解析方法	6
4.1 直角回折波法	6
4.2 行路差法	6
5. ひび割れ深さ測定箇所	7
5.1 T橋	7
5.2 明橋	8
6. 測定結果	9
6.1 T橋の測定結果	9
6.1.1 測定結果一覧	9
6.1.2 測定波形(直角回析波法)1	0
6.1.3 測定波形(行路差法) 1	3
6.2 明橋の測定結果	4
6.2.1 測定結果一覧 1	4
6.2.2 測定波形(直角回析波法)1	5
6.2.3 測定波形(行路差法)2	3
7. 考察	5
7.1 T橋の測定結果2	5
7.2 明橋の測定結果	6
7.3 コア採取による検証	6

1. 一般事項

- 業務名称 橋軸方向のひび割れが生じた実橋調査(T橋,明橋)
- * 37 4 * iTECS 法によるひび割れ深さ調査 事前の目視調査によってひび割れの生成が確認された茨城県内の
- 業 務 概 要 2橋梁(T橋,明橋)について、iTECSを用いてひび割れ深さを調査する ものである。
- 正 新 王 香 : − 実 施 場 所
 - 明 橋:常総市水海道橋本町
- 調査日
 T 橋:2011年12月19日

 調査日
 明橋:2012年1月12日

 可般社団法人 iTECS技術協会
- 調査実施者 住 所:茨城県つくば市遠東 904-1

電 話:029-867-1861

2. 測定原理

2.1 直角回折波法

直角回折波法では、図 2-1 に示すようにひび割れを挟んで、インパクターと加速度計を 等間隔に離しながら、ひび割れ先端で回折した波形の初動に着目して、ひび割れ深さを測 定する手法である。

ひび割れを回折する波動の回折角度が90°未満では、初動が下向きの波形(引張波)が観 測され、回折角度が90°以上では、初動が上向きの波形(圧縮波)で観測されることから、 臨界角度を境にして測定される弾性波波形の初動が転換することでひび割れ深さを推計す る。

図 2-2 にひび割れ深さ 95mm を測定した測定波形例を示す。測定間隔が 80mm~90mm の波 形では、測定間隔がひび割れ深さより短く回折角度が 90°未満であるため、初動波形が下 向きの波形(引張波)が観測される。また、測定間隔が 100mm~120mm の波形では、測定間隔 がひび割れ深さより長く回折角度が 90°以上となるため、初動波形が上向きの波形(圧縮 波)が観測される。以上より、ひび割れ深さは 90mm 以上 100mm 以下より 95mm と推計でき る。なお、この手法は、NDIS2426: 2009 に規定される手法である。

2.2 行路差法

行路差法では、図 2-3 に示すようにひび割れを挟んで測定を行い、波動の到達時間差から、下記の数式 2-1 及び数式 2-2 により、ひび割れ深さを推計する手法である。

行路差法を用いた測定では、数式 2-1 及び数式 2-2 で表される弾性波がひび割れ先端 を回折して伝搬する時の時間差*Tp*からひび割れ深さ*D*を評価する。

図 2-3 測定イメージ(行路差法)

$$D = \sqrt{\frac{(Vp \times Tp)^2}{4} - L^2} \quad \dots \quad \text{数式 } 2-1$$
$$Tp = \frac{Lp}{Vp} \quad \dots \quad \dots \quad \text{数式 } 2-2$$

ここに、

D : ひび割れ深さ(mm)

- *L* : ひび割れ中央から加速度計までの距離(mm)
- *Lp* : ひび割れ先端を回折して伝搬する距離(mm)
- *Vp* : 弹性波伝搬速度(m/s)
- *Tp* : 入力された弾性波がひび割れ先端を回折してセンサに到達するま での時間差(ms)

行路差法では、発信・受信の伝搬時間差を測定するため、あらかじめ弾性波速度を決定 する必要がある。弾性波の伝搬速度の決定方法では、コンクリート表面で伝搬時間差と伝 搬距離から表面弾性波速度を求める。

表面弾性波速度の測定方法を図 2-4 に示す。測定線上の基準点を中心にセンサー(加速 度計)間距離(L)を 200~1000mm の間で、100mm 間隔程度変化させ、測定線延長上の任意の 位置を打撃点し、それぞれのセンサーにおける波動の伝搬遅延時間を測定する。

センサー間の伝搬時間差の決定は、図 2-5 に示すとおり、1ch 側のセンサーで受信した 加速度波形と2ch 側で同じく受信した波形の立ち上がり部(図中▲印)より、伝搬時間差を 測定する。

なお、波形の立ち上がり部の判定には誤差が混入するため,複数の測定点距離を設ける ことで測定精度を高めるものとする。

図 2-5 伝搬時間差の測定(上: 1ch, 下: 2ch)

ただし、コンクリート内部での弾性波速度は均一でないため、行路差法における測定結 果に誤差が生じる場合もある。

3. 測定装置

測定には、弾性波レーダシステム(iTECS:アプライドリサーチ社製)を使用した。iTECS-6の仕様概要を表 3-1に、測定装置を写真 3-1に示す。なお,iTECS-6は NETIS(QS-040028-V)登録技術である。

機能	コンクリート表面	の弾性波速度測定	-			
	表面に開口したひ	び割れ深さの測定	-			
	コンクリート板の	厚さの測定	ポイント	モード		
	あるいは内部欠陥	の検知	掃引測定	モード		
装置の構成	本体部	アンプ, AD 変換	與, 電源		1	
	PC	測定制御(PC 仕	 羕書参照)			
	センサー	$1\sim 20 \mathrm{kHz}$			1	
	インパクター	セット			1	
	充電用電源	AC100V 入力, 1	DC16V 出	力(PC 用)	1	
	収納ケース	アルミニューム・	合金製		1	
アンプ部	1ch	約 2mA20V 定電流駆動源付きアンプ, PCB, Fuji				
	2ch	製加速度計専用. 最大入力±1.0V				
AD 変換	プレトリガー	弾性波速度測定	J 0.1マイクロ秒 11の測定 1.0マイクロ秒			
		ひび割れ測定				
		厚さ測定		10マイクロ	秒	
		データ数		測定時間長~	で設定	
		精度		12Bit		
測定範囲	弾性波速度	センサー間隔に	よる. 200	00m/s から 60	00m/s	
	ひび割れ深さ	最小 20mm, 最	大 200mn	n以上		
	厚さ測定	最小 100mm,	 是大 1500r	nm 以上		
電源	PC 内蔵電池による	る駆動+予備バッ	テリ			
	設計使用最大時間	8時間(使用条件)	こよる)			
	充電装置]	PC 用 AC 電源を依	あんし しんしょう しんしょ しんしょ			
測定データ数	PC 側ハードディン	スクの空き容量に	依存 20,	000 データ/1	GByte	
寸法	本体 260mm×19	0mm×70mm(突起	記を含ます	")		
質量	約 2.8kg					

表 3-1 iTECS-6 の基本仕様

写真 3-1 測定装置

4. 測定・解析方法

4.1 直角回折波法

測定は、図 4-1 に示すように開口したひび割れを中心とし、インパクターと加速度計を 等間隔(10mm 程度)にずらして測定を行った。

ひび割れ深さは、観測波形の立ち上がりに着目し判定した。測定条件を表 4-1 に、測定 状況を写真 4-1、写真 4-2 に示す。

図 4-1 測定イメージ 表 4-1 測定条件

測定条件						
サンプリング時間	1 <i>µ</i> s					
測定時間	2m/s					
インパクター(鋼球)	ϕ 30mm					

写真 4-1 測定状況(T橋)

写真 4-2 測定状況 (明橋)

4.2 行路差法

行路差法の測定は、直角回折波法(4.1参照)と同様の条件で測定を行った。観測された 波形から立ち上がり時間差を読み取り、数式 2-1 及び数式 2-2 により、ひび割れ深さを算 出した。

5. ひび割れ深さ測定箇所

5.1 T橋

T橋の測定箇所を図 5-1 に示す。

● ひび割れ深さ測定箇所

5.2 明橋

明橋の測定箇所を以下に示す。

6. 測定結果

6.1 T橋の測定結果

6.1.1 測定結果一覧

T橋の測定結果を表 6-1 に、行路差法による計算結果を表 6-2 に示す。

	測定	位置		ひび割れ深さ(mm)		
対象橋梁	径間	位置	番号	直角回折波法	行路差法	
	第1径間	A1側南面	No. 1	50~95	120	
Τ橋	第1径間	A1側北面	No. 2	50~95	134	
	第2径間	A2側北面	No. 3	50~95	145	

表 6-1 T橋ひび割れ深さ測定結果

表 6−2 T橋ひび割れ深さ 行路差法に	よ	よる	計算結果
----------------------	---	----	------

測定位置				行路差法による計算結果				
対象橋梁	径間	位置	番号	センサ間隔(mm)	伝搬時間差(ms)	弾性波速度(m/s)	ひび割れ深さ(mm)	
	第1径間	A1側南面	No.1	200	0.08341	3750	120	
T橋	第1径間	A1側北面	No.2	300	0.10710	3750	134	
	第2径間	A2側北面	No.3	300	0.11145	3750	145	

次頁に、T橋の測定波形を図 6-1 から図 6-4 に示す。

6.1.2 測定波形(直角回析波法)

計測距離				波形デ	ータ			
50mm	0.000)	0.1 (0.100)	0.210.200)	0.3(0.300)	0.4(0.400)	0,500,500)	0.6 (0.600)	0,77
100mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.70
150mm	0.000	0.1 (0.100)	0.2(0.200)	(.3 (0.300)	0.4(0.400)	0.5(0.500)	0.600.600)	0.74
200mm	0.001)	0.1 (0.101) 	0.2°0.201)	0.3(0.301)	0.4 (0.401)	Q.5 (0.501)	0.60.601)	0.7
250mm	(0.001)	0.1 (0.101)	0.2 ¹ 0.201)	0.3(0.301)	0.4 (0.401)	0.500 501)	0.6(0.601)	0.7'
測定結果			ひび割れ	u深さ_50m	nm 以上 95m	m未満		
		図 6-1	T橋 直角	自回析波法	No.1 測定	[波形]		

測定距離				波形デ	ータ			
50mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.70
100mm	0.001)	0.1 (0.101)	0.200.201)	0.3(0.301)	0.4(0.401)	0.5%0.501)	0.6 (0.601)	0.7
150mm	(0.001) y ^{ang} hayikangin	0.1 (0.101)	0.2(0.201)	0.30.301)	0.4 (0.401)	0.500.501)	0,6 (0.601)	0.7
200mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.50)	0.6(0.600)	0.7
250mm	0.000)	0.1 (0.100)	0.2 ¹ 0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6 (0.600)	0.78
測定結果			ひび割れ	u深さ 50m	nm 以上 95m	m未満		
		図 6-2	T橋 直角	回析波法	No.2 測定	波形		

測定距離				波形デ	ータ			
50mm	(0.000) 	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5 (0.500)	0.600.	0.73
100mm	(0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.3(0)	0.4 (0.400)	0.5(0,500)	0 6 (0.600)	0.73
150mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5%0.500	0.6(0.600)	0.78
200mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6 (0.599)	0.7(
250mm	10.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6 (0.60 D)	0.73
測定結果			ひび割れ	u深さ 50m	nm 以上 95m	m未満		
		図 6-3	⊤橋 直角	回析波法	No.3 測定	∃波形		

6.1.3 測定波形(行路差法)

図 6-4 T橋 行路差法 測定波形

6.2 明橋の測定結果

6.2.1 測定結果一覧

明橋の測定結果を表 6-3 に、行路作法による計算結果を表 6-4 に示す。

	測定	位置		ひび割れ深さ(mm)		
対象橋梁	径間	位置	番号	直角回折波法	行路差法	
			No. 1	30	55	
9	第1径間	G10桁側面	No. 2	30	36	
			No. 3	30	41	
	第2径間	G10桁側面	No. 4	40	27	
吵愉			No. 5	50	52	
			No. 6	50	40	
	第1径間	G1桁下面	No. 7	40	-	
	第2径間	G10桁下面	No. 8	30	-	

表 6-3 明橋ひび割れ深さ測定結果

表 6-4 明橋ひび割れ深さ 行路差法による計算結果

	測5	已位置		行路差法による計算結果				
対象橋梁	径間	位置	番号	センサ間隔(mm)	伝搬時間差(ms)	弾性波速度(m/s)	ひび割れ深さ(mm)	
			No.1	120	0.03796	4300	55	
第1径間		No.2	120	0.03243	4300	36		
四场		- G10桁側面	No.3	120	0.03370	4300	41	
明循			No.4	120	0.03059	4300	27	
第2径	第2径間		No.5	140	0.04043	4300	52	
			No.6	140	0.03739	4300	40	

次頁に、明橋の測定波形を図 6-5から図 6-14示す。

6.2.2 測定波形(直角回析波法)

測定距離				波形デ	ータ			
20mm	۵.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0 4(0.400)	0.5(0.500)	0.6 (0.600)	0.7(
20mm								
	(0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	C.5(0.500)	0.6(0.600)	0.7
30mm	a specific and a second	Nan ang State						
40mm	(-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.7(
			1					
	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.7(
50mm		,						
00mm								
	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.30)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.7(
60mm			~					
測定結果			Ĩ	ひび割れ深	さ 30mm			
		図 6-5 時	明橋 直角	回析波法	No.1 測定	波形		

測定距離				波形デ	ータ			
30mm	(0.001)	0.1 (0.101)	0.200.201)	0.3(0.301)	0.400.401>	0.50.501)	0.6 0.601)	0.7
40mm	80.001)	0.1 (0.101)	0.2(0.201)	0.3(0.301)	0.400.401>	0.500.501>	0 6@.601)	0.7
50mm	(0.001)	0.1 (0.101)	0.2(0.201)	0 3(0.301)	G.480.401)	0.5(0.501)	0.6(0:601)	0.7
60mm	0.001)	0.1 (0.101)	0.2(0.201)	(.3)0.301)	0.4 (0.401)	0.501)	0.6(0.601)	D.7
測定結果			7	♪び割れ深	さ 30mm			
	1	EV 6_6 F	旧场 古名	同长诗法	No 2 測史	计史		

図 6−6 明橋 直角回析波法 No.2測定波形

測定距離				波形デ	ータ			
30mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5 (0.499)	0.6(0.599)	0.7(
40mm	-0.001)	0.1 (0.099)	0.2(0)199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.559)	0.7(
50mm	-0.001)	0.1 (0.099)	0.2(0)199)	0.3(0.299)	0.440.399)	0.5(0.499)	0.6(0.599)	0.7(
60mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.3(0)	0.4(0.400)	C.5(0.500)	0.6(0.600)	0.71
測定結果			Ţ	いび割れ深	さ 30mm			
				_ 1 = 1 = 1				

図 6-7 明橋 直角回析波法 No.3 測定波形

測定距離				波形デ	ータ			
30mm	(0.002)	0.1 (0.102)	0.2(0.202)	0.3(0.302)	0.4(0.402)	0.5(0.502)	0.6 (0.602)	0.7
40mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.73
50mm	(0.002)	0.1 (0.102)	0.2(0.202)	0.3(0.302)	0.4(0.402)	0.5(0.502)	0.602	0.7
60mm	-0.001)	0.1 (0.099)	0.2 (0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.7(
測定結果			ť)び割れ深	さ 40mm			

図 6-8 明橋 直角回析波法 No.4 測定波形

測定距離				波形デ	ータ			
30mm	-0.006)	0.1 (0.094)	0.2(0.194)	0.3(0.294)	0.4(0.394)	0.5 0.494)	0.6 0.594)	0.70
40mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.7(
50mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.78
60mm	(0.001) 	0.1 (0.101)	0.200.201)	0.3(0.301)	0.4(0.401)	0.5(0.501)	0.61)	0.7
70mm	0.000)	0.1 (0.100)	0.2(0.200)	0.310.3007	0.4(0.400)	0.5 (0.500)	0.6(0.600)	0/71
測定結果				ひび割れ深	さ 50mm			
		⊠ 6-9 E	明橋 直角	回析波法	No.5 測定	波形		

測定距離				波形デ	ータ			
30mm	k0.001)	0.1 (0.101)	0.20.201)	0.300,301)	0.400.401)	0.5(0.501)	0.6(0.601)	0.7
40mm	-0.004)	0.1 (0.096)	0.2(0.196)	0.3(0.29€)	0.40.396)	0.5(0.496)	0.6 (0.596)	0.7 °C
50mm	0.000)	0.1 (0.100)	0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.71
60mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.7(
70mm	0.000)	0.1 (0.100)	0.2 (0.200)	0 3(0,300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.74
測定結果			7	ひび割れ深	さ 50mm			
		図 6-10	明橋 直角	回析波法	No.6 測定	2波形		

測定距離				波形デ	ータ			
30mm	0.000)	0.1 (0.100)	0.2(0.200)	0,3%0.300)	0.4(0.400)	0.5 (0.5 (0)	0.6(0.600)	0.74
40mm	-0.001)	0.1 (0.099)	0.2(0.199)	0,3(0,299)	0.4(0.399)	0.5(0.499)	0.60.599)	0.7(
50mm	-0.002)	0.1 (0.098)	0.2(0.198)	0.3(0.298)	0.4 (0.398)	0.5(0.498)	C.6 (0.598)	0.70
60mm	0.000)	0.1 (0.100)	0.200.200)	0.3(0.300)	0.4(0.400)	0 5(0.500)	0.6(0.600)	0.71
70mm	-0.001)	0.1 (0.099)	0.2(0.199)	0.3(0.299)	0.4(0.399)	0.5(0.499)	0.6(0.599)	0.7(
測定結果			ĩ	ひび割れ深	さ 40mm			
		図 6-11	明橋 直角	回析波法	No.7測定	波形		

測定距離			波形テ	ータ			
	0.000) 0.1 (0.1	00) 0.2(0.200)	0.3(0.300)	0.4(0.400)	0.5(0.500)	0.6(0.600)	0.7(
30mm							
40mm	0.000) 0.1 (0.1	00) 0.20.200)	0.3(0.300)	0.4 (0.40)	0.5(0.5(00))	0.6 0.600)	0.78
50mm	-0.001) 0.1 (0.0	99) 0.2(0)199)	0.3(0.299)	0.4(0.395)	0.5(0.499)	0.6(0.599)	0.7(
60mm	0.001) 0.1 (0.1	01) 0.2(0.201)	0.300301)	0.4 (0.401)	0.500.501	0.6(0.601)	0.7
測定結果		4	ひび割れ深	きさ 30mm			
	図 6-12	明橋 直角	回析波法	No.8での浿	定波形		

6.2.3 測定波形(行路差法)

図 6-14 明橋 行路差法 測定波形 (No. 4-No. 6)

7. 考察

T橋と明橋に生じたひび割れ深さについて、iTECS 法を用いて直角回折波法と行路差法の2通りの評価手法を試行した。測定対象箇所におけるひび割れ深さ結果は、いずれも鉄筋深さ程度までと判断した。

7.1 T橋の測定結果

T橋での測定においては、直角回折波法では 50~95mm、行路差法では 120~145mm という解析結果であった。各測定箇所におけるひび割れ深さは、図 7-1より、最外縁の鉄筋かぶり深さ程度と考えられる。なお、2 手法の測定結果に生じた差位について、考えうる理由について以下にまとめる。

図 7-1 T橋 桁断面図(概略配筋図)

直角回折波法は、最短の経路で受信センサーに到達する波動を検知してその初期位相の向きを判別する測定法である。従って、図7-2に示すように、ひび割れ途中に粗骨材の接触箇所や鉄筋によって部分的にひび割れが閉じている箇所がある場合は、この位置で回折する波動を検知するため、実際のひび割れ深さよりも過少な評価をする可能性が考えられる。

- ② 測定面形状がサークルハンチ部の曲面 図 7-2 T橋の測定経路の概要 であったため、センサーの位置関係に よっては、ひび割れ先端で 90°に回折した波動を適切に受信できていない可能性も考 えられる。
- ③ 行路差法は、コンクリート中の弾性波速度が一定であるという仮定の元に成立する手法であるが、実際のコンクリート構造物中の弾性波速度は均一でない場合があるため、計算されるひび割れ深さの誤差の要因となる。 特に、ひび割れ先端が複数に枝分かれしている場合や、近接するひび割れとの距離が近い場合などは、波動の伝搬経路の拘束条件が異なるため、弾性波速度が低下するものと考えられる。

7.2 明橋の測定結果

明橋での測定においては、直角回折波法では最大 50mm、最小 30mm、平均 38mm で、行路 差法では最大 55mm、最小 24mm、平均 41mm と、測定方法の違いによる大きな違いは認めら れなかった。また、各測定結果におけるひび割れ深さは、最外縁の鉄筋位置程度で、図 7-3 より桁側面を貫通したひび割れまでは至っていないものと考えられる。

図 7-3 明橋 桁断面図(概略配筋図)

7.3コア採取による検証

T橋と明橋に生じたひび割れ深さについて、iTECS 法を用いてひび割れ深さの測定を行った。測定箇所の近傍にてコア採取によるひび割れ深さを目視調査にて確認した結果と各 測定結果を表 7-1、表 7-2 に示す。

	测白体起	コア番号	No. 1	No. 2	No. 5	No. 6
	測正固則	測定番号	No.2(A1北)	No.1(A1南)	No.3(A2北)	-
ſ	コア採取値	I	106mm	49mm	72mm	89mm
	計測値(直角	角回折波法)	50~95mm	50~95mm	50~95mm	-
ſ	計測値(行距	各差法)	120mm	134mm	145mm	-
	備	考		上方進展		

表 7-1 T橋の調査結果

※コア採取No.2では、コア外にひび割れが進展したため先端未確認

表 7-2 明橋の調査結果

测宁符码	コア番号	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
则正固则	測定番号	No.1(G10側)	No.2(G10側)	No.3(G10側)	No.4(G10側)	No.5(G10側)	No.6(G10側)
コア採取値		52mm	43mm	49mm	58mm	47mm	52mm
計測値(直角	角回折波法)	30mm	30mm	30mm	40mm	50mm	50mm
計測値(行足)	洛差法)	55mm	36mm	41mm	27mm	52mm	40mm
備	考		下方進展	上方進展		下方進展	

※コア採取No. 2, No. 3, No. 5では、コア外にひび割れが進展したため先端未確認

7.1 項で記述した通り、非破壊試験法による開口ひび割れの深さ測定を試みる場合、測定面の形状やひび割れ先端の性状、ひび割れ途中の接触部といった要因により、直角回折 波法および行路差法のいずれの測定結果にも影響を及ぼす可能性が推察され、本調査結果 においても、それぞれの測定値に差異が認められた。 ここで、行路差法では弾性波速度が決定できないと、正しいひび割れ深さを求めることが出来ないとされている。しかしながら、弾性波速度 V_pと行路差時間 ΔT の関係は、数式 7-1 で示され、弾性波速度の設定値の違いは、伝搬遅延時間の比例係数の違いとしての意

$$\Delta T = \frac{2\sqrt{L^2 + D^2}}{V_P} \quad \cdot \quad \cdot \quad \cdot \quad \text{数式 } 7-1$$

味を持っている。すなわち、理論的に計算される時間差と実際に測定された時間差のデー タの相関係数を求めた場合、値には弾性波速度は反映されない。つまり、理論計算上の伝 搬遅延時間と測定された伝搬遅延時間の線形回帰式を求め、その相関係数(あるいは寄与 率)を求めると、実際の「ひび割れ深さ」を設定した場合には、最大の相関係数となると予 想される。

T橋におけるコア番号 No1、No2、No5の測定データについて検証を行った結果を以下に まとめる。

コア番号 No.1 (No.2(A1 北)) 測定点のひび割れ深さについて、理論によって計算した 伝搬遅延時間と測定した遅延時間の線形回帰式での寄与率の変化を図 7-4 に示す。

伝搬遅延時間の測定値が妥当であるとすれば、ひび割れ深さ140mm付近で寄与率が最大 となり、このデータセットの場合、行路差法におけるひび割れ深さの推定値は、おおよそ 140mmとすることが妥当であろうと判断される。

また、この測定点でのコンクリート中を伝搬する弾性波速度の計算値は、3300m/s であった。

ひび割れ深さ:140mm

図 7-4 No.1 (No.2(A1 北))の測定経路の概要

同様にNo.2とNo.5における測定経路の概要を以下に示す。

ひび割れ深さ:80mm

図 7-5 No.2 (No.1(A1 南))の測定経路の概要

ひび割れ深さ:60mm

図 7-6 No.5 (No.3(A2 北))の測定経路の概要

以上より、弾性波速度の違いによる影響を除去してもなお、コア抜き目視結果との差異 がみられるため、前述の要因のいくつかが複合している状況であると推察される。

非破壊検査技術等を用いた調査結果

広帯域超音波探査法によるひび割れ深さ調査

報告書

株式会社エッチアンドビーシステム

口久

1. 目的	1
2. 探查概要	1
2.1 探查場所	1
2.2 探查実施日	1
2.3 探查機器	1
2.4 T橋探查箇所	2
2.5 明橋探查箇所	3
3. 探査原理と計測例	4
3.1 探査原理	4
3.2 供試体を用いた計測例	5
4. 実橋における探査結果	6
4.1 コンクリート内部超音波伝達速度校正	6
4.2 T橋ひび割れ深さ探査結果	7
4.3 明橋ひび割れ深さ探査結果 1	. 1
4.4 T橋解析波形1	.4
4.5 明橋解析波形	.9
5. まとめ 2	21
5.1 T橋の探査結果2	21
5.2 明橋の探査結果2	21
5.3 コア削孔による検証2	22
5.4 今後課題	23

1. 目的

本調査は、土木研究所による劣化ひび割れの生じた既設橋梁の性能評価に伴うひび割れ 深さを推定する手法の一つとして取り上げられた広帯域超音波によるひび割れ深さ探査の 精度検証並びに技術的課題を明確にするため行った。

2. 探査概要

2.1 探査場所

- T 橋
 - 所在地:-
 - 竣 工 日:1980年(供用 31 年*)※調査時
 - 橋 長:52m
 - 上部構造形式:2径間連続 PC ポステン中空床版橋
- 明 橋

所 在 地:茨城県常総市水海道橋本町

竣 工 日:1983年(供用 28 年*)※調査時

橋 長:33.09m

上部構造形式:2径間単純 PC プレテン中空床版橋

2.2 探査実施日

Т	橋:20)11 年	12 月	19	日
明	橋:20)12 年	1 月	13	日

2.3 探査機器

本探査において使用した機器を以下に示す。

表 2-1 使用機器

名称	使用探触子	メーカー
広帯域超音波	大口径プローブφ40mm	(批)エッチアンドビーシュティ
(UCM2000)	中心周波数 500kHz	
電磁波レーダ		
(ストラクチャ	中心周波数 1.6GHz アンテナ	GSSI 社
スキャン SIR-EZ)		

写真 2-1 広帯域超音波 (UCM2000)

写真 2-2 電磁波レーダ (ストラクチャスキャン SIR-EZ)

2.4 T橋探査箇所

T橋における探査箇所を以下に示す。

写真 2-3 探査箇所 A1R①, ②, ③

写真 2-5 探査箇所 A2L①, ②

写真 2-4 探査箇所 A1L①, ②

写真 2-6 探査箇所 A2R①, ②

2.5 明橋探査箇所

明橋における探査箇所を以下に示す。

写真 2-9 探査箇所 桁下面 No.9(底部②)

写真 2-8 探査箇所 G10 桁側面 No. 4~7

写真 2-10 探査箇所 G1 桁側面 No. 10

3. 探査原理と計測例

3.1 探査原理

探査原理を以下に示す。図 3-1 に示すようにコンクリート表面に一対の探触子を配して、 発信探触子より超音波を発すると、様々な経路を通り受信探触子に超音波が到達する。こ のとき、最初に受信探触子に到達する最短経路波は、探触子間のコンクリート表面を伝達 する表面波となる。

図 3-2 に示すように探触子間にひび割れを挟んで計測すると、超音波は空気層を伝搬し ないため最短経路波はひび割れを回折する波となる。そのため、最短経路波の起生時刻よ り、数式 3-1 を用いてひび割れ深さを計測した。

図 3-1 通常の超音波伝搬模式図

図 3-2 表面ひび割れが有る場合の超音波伝搬模式図

$$d = \frac{1}{2}\sqrt{(V_{CP} \cdot t_0)^2 - (a - \phi)^2}$$
・・・数式 3-1
 $d: ひび割れ深さ、V_{CP}: コンクリート内部の伝達速度、 $t_o:$ 最短経路波の伝播時間
 $a:$ 探触子間距離=90mm、 $\phi:$ 探触子径=40 mm$

本計測では一つの測定箇所において探触子配置位置を 50mm 程度変えて複数のデータ(本 計測では 3 点)を取得し、それらデータを加算平均して評価した。これは鉄筋伝搬波の影響を低減させるためである。詳細を以下に示す。

図 3-3 に示すように、ひび割れ回折波の路程は探触子配置位置を変えてもほぼ同じため、 受信波の位相はほとんど変わらない。一方、鉄筋伝搬波は探触子配置位置により路程が異 なるため、受信波の位相は異なる。これより、探触子配置位置を変えて複数のデータを取 得し加算平均すると、位相の異なる鉄筋伝搬波は小さくなり、同位相のひび割れ回折波は 相対的に大きくなる。

図 3-3 多点計測の探触子配置状況模式図

3.2 供試体を用いた計測例

以下にひび割れを簡易的に模した供試体を用いて探査を行った事例について示す。 供試体は 350mm×350mm×350mm のコンクリート片(写真 3-1)の表面に深さ 100 mmのスリ ットを入れたもの(写真 3-2)を用いた。

測定場所(図 3-4)はスリットの入っていない箇所2箇所とスリットを挟んだ箇所1箇所 について行った。図 3-5よりスリットを挟んだ計測(測点2)では、健全部のデータ(測点 1、3)より受信波が遅く起生していることが観察できた。また、この測点2の起生時刻よ り(数式 3-1)を用いてひび割れ深さを求めたところ103mmとなり、スリット深さ100mm とほぼ合致した。

写真 3-1 供試体上面

写真 3-2 スリット状況

図 3-4 計測位置図

図 3-5 供試体計測結果

4. 実橋における探査結果

4.1 コンクリート内部超音波伝達速度校正

前項において説明したようにひび割れ深さを算出するにあたり、超音波がコンクリート 内部を伝達する速度を測定する必要がある。

伝達速度 V_{cp} を測定する方法はコンクリート厚が既知の箇所にて超音波発信子と受信子 で対向するように挟み伝達速度を計測する透過法とコンクリート厚が既知の箇所にてコン クリート表面に超音波送受信子を並べ、コンクリート底部より反射し戻ってくる波の起生 時刻により伝達速度を算出する反射法(図4-1)がある。

 $V_{cp} = 2\sqrt{\left(\frac{a-\phi}{2}\right)^2 + d^2} / t_o$

本計測では、探触子間距離 a =120mm 探触子径 *o* =78mm

図 4-1 反射法による超音波伝達速度の求め方

T橋において超音波伝達速度は透過法、反射法共に現場条件により測定が不可能だったため、一般的なコンクリート内部の伝達速度である 4000m/sec を採用した。

また、明橋では桁側面においてコンクリート厚が既知であったため(図 4-2)、上記で 説明した反射法により測定を行い伝達速度 4000m/sec を得た。測定波形を図 4-3 に示す。

図 4-2 明橋伝達速度校正概要図

4.2 T橋ひび割れ深さ探査結果

以下にT橋ひび割れ深さ探査結果を示す。

写真 4-1 T橋 A1R 測定位

写真 4-2 A1R①測点

写真 4-3 A1R②測点

写真 4-4 A1R③测点

A1側桁側面	A1R①					
(南面)	1	2	3	4	5	
ひび割れ深さ	149mm	122mm	117mm	I	-	
A1側桁側面	A1R②					
(南面)	1	2	3	4	5	
ひび割れ深さ	121mm	132mm	114mm	120mm	124mm	
A1側桁側面 (南面)	A1R③					
	1	2	3	4	5	
ひび割れ深さ	78mm	64mm	-	-	-	

写真 4-5 T橋 A1L 測定位

写真 4-6 A1L①測点

写真 4-7 A1L②测点

A1側桁側面 (北面)	A1L①					
	1	2	3	4	5	
ひび割れ深さ	162mm	156mm	132mm	114mm	121mm	
A1側桁側面	A1L②					
(北面)	1	2	3	4	5	
ひび割れ深さ	140mm	142mm	-	-	_	

表 4-2 A1L 側ひび割れ深さ探査結果一覧表

写真 4-8 T橋 A2R 測定位置

写真 4-9 A2R①測点

写真 4-10 A2R②測点

A2側桁側面	A2R①					
(南面)	1	2	3	4	5	
ひび割れ深さ	93mm	92mm	-	-	-	
A2側桁側面	A2R②					
(南面)	1	2	3	4	5	
ひび割れ深さ	113mm	114mm	-	-	-	

表	4-3	A2R 側ひび割れ深さ探査結果一覧表
1		元 祝 80 8 日本 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2 年 2

写真 4-11 T橋 A2L 測定位置

写真 4-12 A2L①測点

写真 4-13 A2L②測点

A2側桁側面	A2L①						
(北面)	1	2	3	4	5		
ひび割れ深さ	104mm	86mm	-	-	-		
A2側桁側面	A2L②						
(北面)	1	2	3	4	5		
ひび割れ深さ	107mm	136mm	91mm	-	-		

表 4-4 A2L 側ひび割れ深さ探査結果一覧表

4.3 明橋ひび割れ深さ探査結果

以下に明橋ひび割れ深さ探査結果を示す。

写真 4-14 明橋 測定位置

写真 4-15 G10 桁側面 No.1

写真 4-16 G10 桁側面 No. 2

写真 4-17 G10 桁側面 No.3

衣 4−5 は10 桁側面 NO. 1~NO. 5 ひひ割れ床さ探査結果一見衣

第1径間			No. 1~No. 3		
G10桁側面	No. 1	No. 2	No. 3	-	-
ひび割れ深さ	47mm	38mm	56mm	-	-

写真 4-18 明橋 測定位置

写真 4-19 G10 桁側面 No.4

写真 4-21 G10 桁側面 No.6

写真 4-20 G10 桁側面 No.5

写真 4-22 G10 桁側面 No.7

表 4-6 G10 桁側面 No.4~No.7 ひび割れ深さ探査結果一覧表

第2径間				No. 4~No. 7		
	G10桁側面	No. 4	No. 5	No. 6	No. 7	-
	ひび割れ深さ	43mm	62mm	60mm	48mm	-

写真 4-23 G1 桁下面 No.8

写真 4-24 G10 桁下面 No.9

表 4-7 第1径間 G1 桁下面・第2径間 G10 桁下面ひび割れ深さ探査結果一覧表

第1径間 G1桁下面	No. 8	
ひび割れ深さ	26mm	

第2径間 G10桁下面	No. 9
ひび割れ深さ	23mm

写真 4-25 G1 桁側面 No.10

表 4-8	第1径間G	1桁側面ひび割れ深さ探	『査結果一覧表
-------	-------	-------------	---------

第1径間 G1桁側面	No. 10
ひび割れ深さ	48mm

4.4 T橋解析波形

前出の探査結果について根拠となる解析結果を以下に示す。図の横軸は波形時刻暦を示 し、縦軸は各測点の振幅を示す。また、図内に青線で示す波形はひび割れの無い健全部分 にて探査した結果を示す。

計測データ名:A1R①

図 4-4 解析波形 A1R①

計測データ名:A1R2

図 4-5 解析波形 A1R2

計測データ名:A1R③

図 4-6 解析波形 A1R3

計測データ名:A1L①

図 4-7 解析波形 A1L①

計測データ名:A1L②

t=47.6 µ Sec, V=4000.0m/s

図 4-9 解析波形 A2R①

計測データ名:A2R②

計測データ名:A2L2_Re

4.5 明橋解析波形

前出の探査結果について根拠となる解析結果を以下に示す。

19

計測データ名:底部①②加算

計測データ名:水道管側_加算

5.まとめ

今回、広帯域超音波法を用いて2橋でひび割れ深さの計測を行った結果について以下に まとめを示す。

5.1 T橋の探査結果

- ・T橋におけるひび割れ深さは、最大で162mm、最小で64mm、平均113mmで、探査箇所によってひび割れ深さに大きな違いが認められた。
- ・探査結果から、A1 側桁側面でひび割れ深さが大きい傾向にある。
- ・桁側面 (サークルハンチ部) におけるひび割れ深さは、平均 113mm で最大でも 162mm のため、図 5-1 より最外縁の鉄筋位置程度と考えられる。

5.2 明橋の探査結果

- ・明橋におけるひび割れ深さは、最大で 62mm、最小で 23mm、平均 49mm で、探査箇所 によってひび割れ深さに若干の違いが認められた。
- ・探査結果から、桁下面よりも桁側面でひび割れ深さが大きい傾向にある。
- ・桁側面におけるひび割れ深さは、平均 50mm で最大でも 62mm のため、最外縁の鉄筋 位置程度で、図 5-2 より桁側面を貫通したひび割れまでは至っていないものと考え られる。

5.3コア削孔による検証

本探査手法において、スリットでひび割れを模した供試体での計測実績は多数あるが、 実構造物のひび割れ深さを計測し、コア削孔を用いてひび割れ深さを実測し検証した例は 数例しかない。このため、今回コア削孔を用いてひび割れ深さを実測し、計測結果と対比 することで、本探査手法の有効性の検証を行った。

探査箇所の近傍でコア採取によりひび割れ深さを目視確認した結果と探査結果の一覧 として、T橋の結果を表 5-1 に、明橋の結果を表 5-2 に示す。

乱测体武	コアNo.	No. 1	No. 2	No. 5	No. 6
訂測固所	計測No.	A1L①(平均)	A1R③(平均)	A2L②(平均)	A2R②(平均)
コア採取値		106mm	49mm	72mm	89mm
広帯域超音波法		137mm	71mm	111mm	114mm
備考			上方進展		

表 5-1 T橋の調査結果

※コア採取No.2では、コア外にひび割れが進展したため先端未確認

表 5-1 よりT橋のコア採取値と計測値を比較すると、ひび割れがコア外に進展している No.2のコアを除き+29~39mm 計測値がコア採取値を上回っている。この誤差が生じた原因 として、"コンクリート伝達速度"、"ひび割れの形状"の2つが考えられる。

まず、コンクリート伝達速度について述べる。T橋においては、コンクリート伝達速度 が透過法で計測できなかったため一般的なコンクリート伝達速度の4000m/secと設定した。 4ページに示す数式 3-1より、計測値はコンクリート伝達速度の設定により増減すること が分かる。今回の計測では計測値がコア採取値を概ね上回っていることより、伝達速度を 実際より速く設定したと思われる。ただし、当社の計測実績によると、コンクリート伝達 速度はどんなに遅くても3600m/sec程度である。これより、コンクリートの伝達速度によ って生じる誤差は最大でも10%程度あると思われる。

次に、ひび割れの形状について述べる。ひび割れが枝分かれしている場合と垂直に入っ ている場合とでは、ひび割れを回折する超音波の経路が異なる。本手法は、ひび割れが垂 直に入っている経路で計算しているため、ひび割れが枝分かれしていると超音波の経路が 延び、ひび割れ深さは実際より大きく算出される。

これより、今回の計測対象ひび割れは枝分かれしており、その影響でひび割れ深さが実際より大きく計測された可能性が考えられる。

土油体花	コアNo.	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
訂測固所	計測No.	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6
コア採取	α值	52mm	43mm	49mm	58mm	47mm	52mm
広帯域超	音波法	47mm	38mm	56mm	43mm	62mm	60mm
備	考		下方進展	上方進展		下方進展	

表 5-2 明橋の調査結果

※コア採取No. 2, No. 3, No. 5では、コア外にひび割れが進展したため先端未確認

表 5-2 より明橋のコア採取値と計測値を比較すると、No.4 のコアでは-15mm の誤差が あるが、No.1、No.6 のコアではそれぞれ-5mm、+8mm と±10mm 以内に入っている。計測 値とコア採取値に大きな隔たりが無いので、明橋においては概ね妥当な計測結果が得られ たと考える。

5.4 今後課題

コア削孔にあたり事前にコンクリート内でのひび割れの進展方向が分かれば、コア削孔 時に確実にひび割れ先端を把握できたと考えられる。このため、コンクリート内部でのひ び割れ進展状況を探査するという課題が見つかった。

今後、様々な条件で実構造物のひび割れ深さを計測して、本探査手法の精度及び適用範 囲を明らかにしたい。

非破壊検査技術等を用いた調査結果

M. EYEチェッカーによる鉄筋破断非破壊調査

報告書

株式会社四国総合研究所

目	次
---	---

1. 調査概要	1
1.1 実施年月日	1
1.2 実施場所	1
1.3 実施対象箇所	1
1.4 調查使用機器	1
1.5 M. EYEチェッカーによる鉄筋破断診断の原理	1
1.6 調査概要	1
1.6.1 橋梁諸元	2
1.6.2 一般図	2
1.6.3 現地状況	2
2. 調査の内容および結果	5
2.1 鉄筋探查	5
2.2 鉄筋破断調查方法	5
2.3 鉄筋破断調査結果	8
2.3.1 調査箇所(1)および(2)の鉄筋曲げ加工部	8
2.3.2 調査箇所(1)および(2)の側面側直線部	8
2.3.3 調査箇所(3)のPC鋼より線	9
2.3.4 調査箇所の測定結果 1	0
3. まとめ	3

1. 調査概要

1.1 実施年月日

2012年1月12日(木)~13日(金)

1.2 実施場所

茨城県常総市 明橋 (橋梁諸元は、P.2 参照)

1.3 実施対象箇所

上記 1.2 の指定桁部における 3 箇所(図 1-2)

- ・調査箇所(1):桁部、上流側、A1-P1間のP1寄り、 下部のスターラップ曲げ加工部ほか 10本
- ・調査箇所(2):桁部、上流側、A1-P1間のA1寄り、
 下部のスターラップ曲げ加工部ほか 4本
- ・調査箇所(3):桁部、下流側、A1-P1間のA1寄り、
 底面側PC鋼より線直線部 5本

1.4 調査使用機器

鉄筋破断非破壊診断装置「M. EYEチェッカー」(当社製)(図 1-3) (NETIS 登録№SK-080018-V)

1.5 M. EYEチェッカーによる鉄筋破断診断の原理

鉄筋が強磁性体であることを利用し、図 1-4 のように永久磁石を内蔵した磁石ユニット (図 1-3(2))を、検査する鉄筋が埋設されているコンクリート表面上で鉄筋長手方向に数 往復動かし、鉄筋をコンクリート表面から鉄筋長手方向に着磁する。その後、高感度セン サを内蔵した磁気計測ユニット(図 1-3(1))で、コンクリート表面のコンクリート面に垂 直な方向成分の磁束密度を、コンクリート表面から完全非破壊で測定する。測定した磁束 密度分布波形から、鉄筋破断箇所付近に発生する漏洩磁束の有無を判定することで、鉄筋 破断の有無と破断位置を検出する。

1.6 調査概要

明橋の桁部において、M. EYEチェッカーによる鉄筋破断非破壊調査を実施した。この内、上記調査箇所(1)については、橋梁点検車(BT400)から調査を行った。

明橋の桁部において、スターラップ、およびPC鋼より線を診断した。診断した桁部の スターラップ曲げ加工部計14本、およびPC鋼より線5本について、いずれも『健全(破 断なし)』の判定結果を得た。

1.6.1橋梁諸元

橋	粱	名:	明橋
所	在	地:	常総市水海道橋本町
路	線	名:	市道 1-0111 号線
管	理	者:	常総市
竣	工	年:	1983年(昭和 58年)11月 供用 28年
橋		長:	33.09m(支間 2×15.9m)
幅		員:	有効幅員 7.0m(全幅員 8.2m)
活	荷	重:	TL-20(示方書によると) 1 等橋
交	通	量:	不明
大西	型車混入	率:	0% (大型車交通規制 昭和 47 年 6 月)
交	差 物	件:	新八間堀川 (茨城県管理河川)
適丿	刊示 方	書:	昭和 43 年プレストレストコンクリート道路橋示方書
上音	『構造形	式:	単純PCプレテンション方式中空床版橋
下音	『構造形	式:	張出式小判型橋脚 1 基 逆 T 式橋台 2 基
基	礎 形	式:	鋼管杭基礎(φ600)
補	修履	歷:	平成 22 年に初めての橋梁点検

1.6.2 一般図

図 1-1 橋梁一般図

1.6.3 現地状況

写真 1-1 橋梁状況

図 1-2 調査箇所の概略位置

(1)磁気計測ユニット
 (2)磁石ユニット(上部工用)
 (3)ガイド
 図 1-3 鉄筋破断診断装置「M. EYEチェッカー」

着磁 (2)磁気計測ユニットによる磁東密度分布測定 図 1-4 原理説明図

2. 調査の内容および結果

2.1 鉄筋探査

鉄筋破断診断の事前作業として、調査箇所3箇所(調査箇所(1)~(3))の鉄筋探査を実施した。各調査箇所の外観写真および鉄筋探査結果概略図を写真2-2、図2-2、写真2-3、 図2-9、写真2-4~図2-13に示す。

探査結果から、調査箇所(1)では図 2-2 に示すスターラップ 10 本(①~⑩)、調査箇所 (2)では図 2-9 に示すスターラップ 4 本(①~④)、調査箇所(3)では図 2-13 に示す P C 鋼 より線 5 本(①~⑤)を破断調査対象とした。なお、探査には R C レーダー(日本無線(株) 製)を用いた。

2.2 鉄筋破断調查方法

使用機器「M. EYEチェッカー」を図 1-3 に、M. EYEチェッカーよる破断調査状況を写真 2-1 に示す。ここで、磁石ユニットは、上部工向けに従来よりも小型軽量のものを用いた。

調査箇所(1)および(2)では、桁の曲げ加工鉄筋(スターラップ、D10)を調査対象とし、 スターラップ下部の曲げ加工部と側面側直線部などについて調査を行った。

鉄筋曲げ加工部の調査では、図 2-1のように鉄筋曲げ加工部位置を基準に、2 面(2 辺) に分けて着磁、磁束密度測定を行う。着磁は、鉄筋曲げ加工部位置を基準に-110mm を起 点、+500mm を終点として、磁石ユニットを 1.5 往復させることを標準としているが、本ケ ースの側面側では地覆のため終点を+400mm とした。磁束密度測定は、2 面共に着磁した状 態で最後に着磁した面を対象に磁気計測ユニットを走行させて行う。従って、測定の作業 工程としては、①側面側を着磁後、②底面側を着磁し、③底面を測定。その後、④側面を 再度着磁し、⑤側面を測定とする。測定は、鉄筋の真上において、鉄筋曲げ加工部位置を 基準に行う。

なお、調査箇所(1)および(2)の底面側では、鉄筋以外の影響と思われる磁気的ノイズが やや大きいケースがあったため、ここでは同時に測定した+50mm位置(磁気計測ユニット 上側センサ)での測定結果を採用した。

調査箇所(3)では、桁底面側のPC鋼より線(7本より12.4mm)を対象に調査を行った。 底面側コンクリート表面において、PC鋼より線位置に沿って、着磁、測定を行う。着磁 は、図 2-13の基準位置から+700mm を起点、+1600mm を終点として、磁石ユニットを1.5 往復させた。測定は、同基準位置から+800mm を起点、+1600mm を終点とした。

(1) 橋梁点検車からの診断

(3) 磁気計測ユニットによる磁束密度測定

(4) 磁気計測ユニット(拡大)

(5) 橋台からの磁石ユニットによる着磁
 (6)橋台からの磁気計測ユニットによる磁東密度測定
 写真 2-1 M. EYEチェッカーによる鉄筋破断調査状況

(2) 磁束密度測定③⑤

図 2-1 M. EYEチェッカーによる曲げ加工部調査時の作業工程

2.3 鉄筋破断調査結果

調査箇所(1)、(2)の「鉄筋曲げ加工部」、「側面側直線部」、調査箇所(3)の結果を以下に示す。

2.3.1 調査箇所(1)および(2)の鉄筋曲げ加工部

調査箇所(1)(鉄筋①~⑩)および(2)(鉄筋①~④)における鉄筋曲げ加工部付近のM. EYEチェッカーによる測定結果の磁束密度分布を図 2-3~図 2-6 および図 2-10~図 2-11にそれぞれ示す。これらの図は、鉄筋曲げ加工部位置およびその位置での磁束密度を 原点として補正したものである。

診断結果の概説を以下に示す。

- 各鉄筋のa.底面側磁束密度分布は、約29~63mmの位置において、プラス側に小 さなピークを持つ分布となっている。参考として、同程度のかぶりの場合の健全・ 破断の参考波形を図中に水色・桃色で合わせて示す。これら参考波形と比較する と、本実測結果の磁束密度分布は、健全ケースの参考波形に非常に近く、破断時 の参考波形のようなプラス側に大きなピークを持つ鉄筋破断の特徴が現れておら ず、明らかに健全と判断できる。
- 各鉄筋のb.側面側磁束密度分布は、約10~62mmの位置において、マイナス側に 小さなピークを持つ分布となっている。参考として、同程度のかぶりの場合の健 全・破断の参考波形を図中に水色・桃色で合わせて示す。これら参考波形と比較 すると、本実測結果の磁束密度分布は、健全ケースの参考波形に非常に近く、破 断時の参考波形のようなマイナス側のピークを持つ鉄筋破断の特徴が現れておら ず、明らかに健全と判断できる。

以上から、調査箇所(1)および(2)におけるスターラップ 14 本の曲げ加工部付近を診断 し、全て健全の判定結果を得た。

2.3.2 調査箇所(1)および(2)の側面側直線部

調査箇所(1)および(2)における鉄筋側面側のM. EYEチェッカーによる測定結果の磁 東密度分布を図 2-7~図 2-8 および図 2-12 に示す。これらは前述の図 2-3~図 2-6 およ び図 2-10~図 2-11 における「b. 側面側磁東密度分布」をより広いスケールに拡げて再 掲したものである。

診断結果の概説を以下に示す。

 参考として、同程度のかぶりの場合の健全および破断位置3種の破断の参考波形 を図中に水色および赤色、黄色、茶色で合わせて示す。これら参考波形と比較す ると、本実測結果の磁束密度分布は、健全ケースの参考波形に非常に近く、破断 時の参考波形のような破断位置の前後でS字形(図左側で凸、右側で凹)が重畳 されたような直線部における鉄筋破断の特徴が現れておらず、明らかに健全と判 断できる。

・ 底面側の分布については、図示、説明を省略するが、側面と同様の傾向であった。
 以上から、調査箇所(1)および(2)におけるスターラップ 14 本の直線部を診断し、全て
 健全の判定結果を得た。

2.3.3 調査箇所(3)のPC鋼より線

調査箇所(3)における P C 鋼より線底面側のM. E Y E チェッカーによる測定結果波形 を図 2-14~図 2-15 に黒色実線で示す。

診断結果の概説を以下に示す。

参考として、同程度のかぶりにおける模擬供試体での試験結果を図 2-16 (1)に示す。 この図の水色はPC鋼線が健全、桃色は 440mm 位置で素線切れ (素線 7 本中奥側の 3 本が 破断)の結果である。黒色点線はスターラップがPC鋼線の表面側に交差している位置で ある。健全の下に凸の極小値を右上がりの直線で結んだ図 2-16 (1)中の緑色線の分布を仮 定する。水色で示した健全の分布波形からこの緑色線の分布を差し引いた分布を図 2-16 (2)に示す。この図 2-16 (2)が主に表面側に交差しているスターラップによる影響の成分 である。図 2-16 (1)中に桃色で示した破断の分布波形から水色で示した健全の分布を差し 引いた分布を図 2-16 (3)に示す。図 2-16 (3)は、概ね破断位置の前後でS字形(図左側 で凸、右側で凹)の鉄筋破断の特徴的分布が現れている。

ここで改めて、現地実測値(図 2-14~図 2-15)の各分布に注目すると、図中に緑色破線で示した右上がりの直線的な分布に、黒色点線で示したスターラップがPC鋼線の表面側に交差している位置で、凸形が重畳されたような分布となっており、参考波形の水色と同様に、健全なPC鋼線と交差するスターラップの分布波形であると診断できる。

以上から、調査箇所(3)におけるPC鋼より線 5 本を診断し、全て健全の判定結果を得た。

2.3.4 調査箇所の測定結果

(1) 調査箇所(1)の概要

(1) 遠景

(2) 拡大(点線:鉄筋位置)

写真 2-2 調査箇所(1)の外観写真

図 2-2 調査箇所(1)の鉄筋探査結果概略図

- (2) 調査箇所(1)の測定結果
- 1) 曲げ加工部付近

図 2-3 調査箇所(1)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(1/4) (調査箇所(1): 桁部、上流側、A1-P1 間の P1 寄り、下部のスターラップ曲げ加工部ほか)

調査箇所(1) 鉄筋⑥

図 2-4 調査箇所(1)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(2/4) (調査箇所(1):桁部、上流側、A1-P1間のP1寄り、下部のスターラップ曲げ加工部ほか)

調査箇所(1) 鉄筋⑨

図 2-5 調査箇所(1)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(3/4) (調査箇所(1):桁部、上流側、A1-P1間のP1寄り、下部のスターラップ曲げ加工部ほか)

調査箇所(1) 鉄筋⑪

図 2-6 調査箇所(1)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(4/4) (調査箇所(1): 桁部、上流側、A1-P1 間の P1 寄り、下部のスターラップ曲げ加工部ほか)

2) 側面直線部

図 2-7 調査箇所(1)におけるM. EYEチェッカーによる側面側直線部の測定結果(1/2) (調査箇所(1): 桁部、上流側、A1-P1 間の P1 寄り、下部のスターラップ曲げ加工部ほか)

図 2-8 調査箇所(1)におけるM. EYEチェッカーによる側面側直線部の測定結果 (2/2) (調査箇所(1): 桁部、上流側、A1-P1 間の P1 寄り、下部のスターラップ曲げ加工部ほか)

(3) 測定箇所(2)の概要

(1) 底面(見上げ図)図 2-9 調査箇所(2)の鉄筋探査結果概略図

- (4) 調査箇所(2)の測定結果
- 1) 曲げ加工部付近

図 2-10 調査箇所(2)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(1/2) (調査箇所(2): 桁部、上流側、A1-P1間のA1寄り、下部のスターラップ曲げ加工部ほか)

調査箇所(2) 鉄筋④

図 2-11 調査箇所(2)におけるM. EYEチェッカーによる曲げ加工部付近の測定結果(2/2) (調査箇所(2):桁部、上流側、A1-P1間のP1寄り、下部のスターラップ曲げ加工部ほか)

2) 側面直線部

図 2-12 調査箇所(2)におけるM. EYEチェッカーによる側面側直線部の測定結果 (調査箇所(2): 桁部、上流側、A1-P1 間の P1 寄り、下部のスターラップ曲げ加工部ほか)
(5) 測定箇所(3)の概要

(1) 遠景

(2) 拡大(点線:鉄筋位置)

(1) 底面(見上げ図)図 2-13 調査箇所(3)の鉄筋探査結果概略図

(6) 測定箇所(3)の測定結果

図 2-14 調査箇所(3)におけるM. EYEチェッカーによる底面側直線部測定結果(1/2) (調査箇所(3): 桁部、下流側、A1-P1間のA1寄り、底面側PC鋼より線直線部)

図 2-15 調査箇所(3)におけるM. EYEチェッカーによる底面側直線部測定結果(2/2) (調査箇所(3):桁部、下流側、A1-P1間のA1寄り、底面側PC鋼より線直線部)

(7) 桁部底面側を模擬した模型実験

桁部底面側を模擬した模型実験におけるPC鋼より線の測定結果を参考として以下に 示す。

(1) 健全(水色)と素線切れ(桃色)の測定結果

(2) 主にスターラップが交差していることによる成分

調査箇所(3) PC鋼より線③ 図 2-16 桁部底面側を模擬した模型実験におけるPC鋼より線の測定結果

3.まとめ

明橋の桁部において、2012年1月12日、13日にM. EYEチェッカーによる鉄筋破断 非破壊調査を実施した。

診断した桁部のスターラップ曲げ加工部計 14 本、および P C 鋼より線 5 本について、 いずれも健全(破断なし)の判定結果を得た。

- ・ 調査箇所(1)として、桁部、上流側、A1-P1間のP1寄りのスターラップ10本を 調査対象とし、橋梁点検車から調査を行った。調査の結果、10本全てが健全の 判定結果を得た。
- 調査箇所(2)として、桁部、上流側、A1-P1 間の A1 寄りのスターラップ4本を 調査対象とし、A1 橋台から調査を行った。調査の結果、4本全てが健全の判定結 果を得た。
- ・ 調査箇所(3)として、桁部、下流側、A1-P1間のA1寄り、底面側のPC鋼より線 5本を調査対象とし、A1橋台から調査を行った。調査の結果、5本全てが健全の 判定結果を得た。

以上のように、調査した桁部のスターラップ曲げ加工部計14本、およびPC鋼より線5 本について、いずれも健全の判定結果を得た。

なお、本報告は2012年1月12日、13日の調査結果に基づくものであり、その後の健全 性を保証するものではないことを申し添えます。

以 上

非破壊検査技術等を用いた調査結果

赤外線サーモグラフィ法による調査

報告書

一般社団法人 日本赤外線サーモグラフィ協会

1.	目的	1
2.	測定日時および対象構造物	1
3.	測定実施者	2
4.	測定時の気象条件	2
5.	測定機器	2
6.	検出原理	3
7.	測定	4
	7.1 測定条件	4
	7.2 測定状況	4
8.	赤外線サーモグラフィ法で得られた熱画像	7
	8.1 橋梁側面(東面1)	7
	8.2 橋梁側面(東面 2)	7
	8.3 橋梁側面(西面1)	7
	8.4 橋梁側面(西面2)	8
	8.5 橋梁下部(P1 橋脚側)	8
	8.6 橋梁下部(A2 橋台側)	8
9.	まとめ	9

目 次

1.目的

本測定は、茨城県常総市道 1-0111 号線明橋における上部工表面でのコンクリート剥離 や上部工桁内部の滞水の有無について、赤外線サーモグラフィ法で得られた熱画像の表面 温度の分布状態からコンクリート剥離や桁内部の滞水の有無について検出を行うものであ る。

2. 測定日時および対象構造物

・測定日時: 2012年1月 11日(水) 9時20分~15時30分

表 2-1 対象橋梁の概要

橋梁名	明橋			
所 在 地	常総市水海道橋本町			
路線名	市道 1-0111 号線			
管理者	常総市			
竣 工 年	1983 年(昭和 58 年)11 月 供用 28 年 (調査時)			
橋長	33.09m(支間 2×15.9m)			
幅員	有効幅員 7.0m(全幅員 8.2m)			
活荷重	TL-20(示方書によると) 1 等橋			
交 通 量	不明			
大型車混入率	0%(大型車交通規制 昭和 47 年 6 月)			
交差物件	新八間堀川 (茨城県管理河川)			
適用示方書	昭和 43 年プレストレストコンクリート道路橋示方書			
上部構造形式	単純PCプレテンション方式中空床版橋			
下部構造形式	張出式小判型橋脚 1 基 逆 T 式橋台 2 基			
基礎形式	鋼管杭基礎 (φ600)			
補修履歴	平成 22 年に初めての橋梁点検			

(Google マップより引用)

図 2-1 測定対象橋梁の位置図

3. 測定実施者

一般社団法人 日本赤外線サーモグラフィ協会 山越 孝太郎

4. 測定時の気象条件

測定日の気象条件は、一日中雲模様の天候で日照時間も一時間あたり最大で10分程度 と短く、充分な日射量が得られなかった。また、強風が断続的に吹き、赤外線サーモグラ フィ法による測定条件として最適とはいえない状況であった。

図 4-1 に測定日の外気温と日照時間の時系列変化を示す。つくば市の気象庁測候所の観 測データによると、気温は早朝 8:00 が 1.9℃、測定開始時 9:20 が 4.3℃そして測定終了時 15:30 が 5.4℃で日中の最高気温は 8.9℃であった。日照時間は最大で10分/時間であった。

図 4-1 測定日の外気温変化(つくば市 気象庁データ)

5. 測定機器

測定のために用意した赤外線放射温度計は、構造物非破壊検査用の小型汎用機として多 用されている2次元非冷却センサを搭載したサーモグラフィである。写真 5-1 に本測定で 使用したサーモトレーサ H2640 を示す。その主な仕様は、以下に示すとおりである。

<使用機器諸元>

- ・機種名 サーモトレーサ H2640 [NEC Avio 赤外線テクノロジー㈱製]
- ・検出器 2次元非冷却センサ(マイクロボロメータ)
- ・測定波長 8~14 µ m
- ・測定温度範囲 -20~60℃(第一レンジ)
- ・最小検知温度差 0.06℃ at30℃黒体(30Hz 計測時)
- 0.03℃ at30℃黒体(画質改善Σ64 回時)
 ・測定精度 指示値の±2%または2℃
- ・画素数 640(H) × 480(V)
- ・視野角 広角レンズ使用:45.2°(H)×33.7°(V)
- ・空間分解能
 1.2mrad:広角レンズ使用時

写真 5-1 サーモトレーサH2640

6. 検出原理

アスファルトやコンクリートなどの構造物内部のジャンカ、空洞、剥離によって生じる 空気層は、熱伝導率、比熱が健全部に比べて小さいため、断熱層となり表面温度が異なっ て現れる。昼間は、日射や気温変化によって表面温度が上昇する過程で熱エネルギーが表 面から内部に向かって移動する。この過程では背後に空気層を有する部位の表面温度は、 空気層により内部への熱伝達が阻害されるため、健全部に比べて高温になる。

一方、夜間は日射による表面への加熱が無くなり、躯体内部から周囲の外部へ向けて熱 エネルギーが移動する。この過程においては、空気層は外部に向けて移動する熱エネルギ ーを阻害するため、背後に空隙を有する表面は健全部に比較して低温になる。赤外線サー モグラフィ法は、このように欠陥部と健全部との間に生ずる表面温度差を利用して構造物 の内部欠陥を検知する手法できる。

図 6-1 に、昼間および夜間における構造物表面の熱エネルギーの移動と、それに起因して生じる温度分布の違いを模式的に示す。

アスファルトやコンクリートなどの構造物内部に水が浸入している場合(図 6-2)は、 空気と異なり熱容量、比熱が健全部に比べて大きいため暖まりにくく、冷めにくい部位と なる。水は、昼間は日射が当たっても暖まりにくく他の部位と比較して低温となり、夜間 は冷めにくいため他の部位と比較して高温となる。

図 6-2 水入り部位の昼夜間時におけるコンクリート表面の熱動向

7. 測定

7.1 測定条件

赤外線サーモグラフィ法による熱画像の撮影条件を以下に示す。
測定開始時刻 :9時20分以降約60分間隔で計測
計 測 条 件 :温度分解能 0.03℃(画質改善∑64回にて計測)
使 用 レンズ :広角レンズ(視野角 45.2°(H)×33.7°(V))※
空間分解能 1.3mrad
測 定 レンジ :第一レンジ(-20℃~60℃)
測 定 精 度 :読み値の±2%または2℃いずれか大きい方
※今回の測定では距離がとれないため赤外線カメラに専用の広角レンズを装着し撮影

7.2 測定状況

橋梁の側面および下面における測定位置(カメラ 設置場所)を図 7-1 に示す。測定では、赤外線カメ ラを三脚に固定した状態(写真 7-1)で行った。ま た、各測定箇所の状況を写真 7-2~写真 7-7 に示す。

写真 7-1 測定状況(橋梁下面)

図 7-1 計測位置図

写真 7-2 ①測定箇所の状況(橋梁側面(東面1))

写真 7-3 ②測定箇所の状況(橋梁側面(東面2))

写真 7-4 ③測定箇所の状況(橋梁側面(西面1))

写真 7-5 ④測定箇所の状況 (橋梁側面 (西面 2))

写真 7-6 ⑤測定箇所の状況 (橋梁下面 (P1橋脚側))

写真 7-7 ⑥測定箇所の状況(橋梁下面(A1橋台側))

8. 赤外線サーモグラフィ法で得られた熱画像

各計測部位で日射が壁面によくあたっていた時刻や温度差が強く出ている時刻など最も 有為なデータが計測できたと思われる時刻に計測した熱画像を以下に掲載する。

8.1橋梁側面(東面1)

下図中〇でかこんだ部位では、ひび割れによるコンクリート剥離と思われる高温部が認められた。それ以外の橋梁側面には、コンクリート剥離と思われる温度分布は認められなかった。

図 8-1 9時20分計測 熱画像データ

8.2 橋梁側面(東面 2)

橋梁側面には、特にコンクリート剥離と思われる温度分布は確認できなかった。

図 8-2 9時27分計測 熱画像データ

8.3 橋梁側面(西面1)

14時30分頃から日射が西面に回り橋梁側面の温度が上昇してきたが、特にコンクリート剥離と思われる温度分布は確認できなかった。

図 8-3 14時30分計測 熱画像データ

8.4 橋梁側面(西面2)

14時30分頃から日射が西面に回り橋梁側面の温度が上昇してきたが、特にコンクリート剥離と思われる温度分布は確認できなかった。

図 8-4 14時30分計測 熱画像データ

8.5 橋梁下面(P1 橋脚側)

東側からの日射により東側の桁側面に高温部①が認められる。橋梁下面における温度分 布からは、桁内部の滞水やコンクリート剥離は確認できなかった。

図 8-5 14時11分計測 熱画像データ

8.6 橋梁下面(A2 橋台側)

東側からの日射により東側の桁側面に高温部①が認められる。桁端部の中央部に低温部 が認められるが、橋梁下の護岸部分にも上下対称的に低温部があるため、日射の影響によ り低温となったと考えられる。橋梁下面における温度分布からは、桁内部の滞水やコンク リート剥離は確認できなかった。

図 8-6 12時29分計測 熱画像データ

9. まとめ

今回の測定結果から、橋梁側面(東面1)を9時20分に計測した熱画像データでは、 ひび割れによるコンクリート剥離が高温部として現れている。他に同様の欠陥があれば、 同じように観測されると思われるが、そのような温度分布は見受けられなかった。

上部工桁内部の滞水の検知では、計測場所で12月10日から連続32日間降雨がなく 乾燥注意報が発令されている状況であったため、桁内部に水が存在していなかった可能性 も考えられる。このため、上部工内部の滞水の検知にあたっては、降雨後に実施する方が 適していると考えられる。(後日、コア策孔による調査では、桁内部の滞水は確認されず、 また、桁内部には型枠として発泡スチロールが確認されたことから、滞水が生じにくい構 造であった。)

以上より、今回の赤外線サーモグラフィ法による測定では、橋梁側面(東面)以外に特 に異常と見られる温度分布は確認できなかった。今回の計測では、日照が十分でなく熱エ ネルギーが躯体に達しなかったとも思われ、可能であれば適した条件の下で再計測を実施 してみたい。

一般社団法人 日本赤外線サーモグラフィ協会 山越 孝太郎

非破壊検査技術等を用いた調査結果

加速度計による振動計測

報告書

日本航空電子工業株式会社

1.	. 計測概要	. 1
	1.1 計測装置	. 1
	1.2 計測手段	. 1
2.	. 明橋の計測結果	. 2
	2.1 測定方法の違いによる固有振動数の比較	. 2
	2.2 加振後の測定時間によるスペクトル比較	. 4
	2.3 各橋脚の振動スペクトル	6
	2.4 g1~g5 同時計測による振動比較	11
3.	. T橋の計測結果	14
	3.1 固有値解析と加振による振動計測結果の比較	14
	3.2 加振時の振動スペクトル	15
	3.3 常時微動で固有値解析の結果	17
	3.4 モード形状の推定	18
	3.5 橋軸直角方向の計測結果	19
4.	. 固有值解析	20
	4.1 明橋の固有値解析	20
	4.1.1 概要	20
	4.1.2 解析モデル	20
	4.1.3 固有值解析結果	21
	4.2 T橋の固有値解析	32
	4.2.1 概要	32
	4.2.2 解析モデル	32
	4.2.3 固有值解析結果	33

目 次

1. 計測概要

1.1 計測装置

振動計測には日本航空電子工業製サーボ型加速度計 JA-40GA(写真 1-1)と開発中の MEMS 加速度計(写真 1-2)を用いた。JA-40GAは1µgの微小な振動を計測することができ、DC から2kHz までの帯域を測定可能である。一方、MEMS 加速度計は5µgの分解能とDCから 200Hz までの帯域をもつ。測定機器周辺の状況を写真 1-3 に示す。加速度計の出力を DC の変動を無視するために 45mHz のハイパスフィルタを通し、ダイナミックシグナルアナラ イザ(アジレント製 35670A) で FFT 解析し振動スペクトルを観測した。スペクトルの周波 数の分解能は約 0.031Hz で 50Hz まで計測でき、10 回の平均化をすると測定時間は約 5 分 である。加速度計は写真 1-4のように橋桁と固定せずに設置した。

写真 1-1 サーボ型加速度計 JA-40GA

写真 1-3 測定機器周辺の状況

1.2 計測手段

解析結果から得られた各モードの腹の位置(5.0m、9.5m、27.0m、38.5m、47.5m)に加 速度計を設置し、観測された振動スペクトルから解 析結果をもとに橋桁の固有振動数(鉛直1次~5次) を推定した。写真 1-5 の加振器を使って測定位置の 近傍で橋脚を振動させてスペクトルを観測するとと もに、加振させない状態(常時微動)でもスペクト ルを測定した。加振させた観測では、加振前と加振 後の2回で平均化し、常時微動では5回の平均化を 行った。また、各測定位置で左端と右端の振動スペ クトルを観測した。

写真 1-2 MEMS 加速度計(開発中)

写真 1-4 加速度計の設置状況

写真 1-5 使用した加振器

2. 明橋の計測結果

2.1 測定方法の違いによる固有振動数の比較

g1の3/4点で得られた振動スペクトルから推定される固有振動数を下表に示す。常時微動は加振よりやや高めの結果となった。サーボ型とMEMS型ではほぼ同じ値であった。加振時にのみ現れる34.06Hzはピークが急峻であり構造由来ではないものと思われる。

エ _L*	サーボ	텣JA-40	MEMS型JA-M		
τ-r	加振	常時微動	加振	常時微動	
M1	7.22	7.34	6.94~7.69	7.34	
M2	11.88	12.00	11.94	12.00	
M3	25.78~26.34	25.97~26.97	26.00	25.91~27.22	
M4	32.06	32.34	32.06	32.34	
M5	44.88	44.97	44.88	44.91~45.06	

表 2-1 計測方法による固有振動数比較(Hz)

以下の図 2-1から図 2-4 は実際に得られたスペクトルである。

図 2-2 常時微動によるサーボ型 JA-40 の振動スペクトル

図 2-3 3/4 点加振による MEMS 型 JA-M の振動スペクトル

図 2-4 常時微動による MEMS 型 JA-M の振動スペクトル

2.2 加振後の測定時間によるスペクトル比較

図 2-5~図 2-8 は加振によって得られたデータ(測定時間 32 秒)について、処理方法 を変えてスペクトルにしたものである。図 2-5 と図 2-7 は計測装置で直接 FFT 処理したス ペクトル (FFT 平均化なし)、図 2-6 と図 2-8 は得られたタイムドメインデータから加振 後6秒間のデータを抜き取りエクセルでフーリエ変換したものである。加振後6秒間のフ ーリエ変換はデータ取得時間が 1/5 なので周波数分解能が低くなっているが、同じ測定点 のスペクトル (図 2-6 と図 2-7)を比べるとほぼ同じ形状をしている。

図 2-6 g1の1/2点における加振直後6秒間の振動スペクトル

図 2-7 g1の3/4点における32秒間の振動スペクトル

図 2-8 g1の3/4点における加振直後6秒間の振動スペクトル

2.3 各橋脚の振動スペクトル

図 2-9~図 2-18 に各測定位置での振動スペクトルを示す。M1 についてはスペクトル強度が 1/2 点で大きく 5/6、1/6 点では小さいことから垂直 1 次のモードであると推測できる。 M2 は g1 から g5 に向けてピーク強度が下がっている。M3 は g3 でもっとも強度が低く g1 と g5 で高くなる。M4 については、3/4 点加振でのみ現れかつ 1/2 点の強度が小さい。M4 は垂直 2 次である可能性が高い。

図 2-9 1/2 点加振時のg1 における振動スペクトル (図 2-6)

図 2-10 1/2 点加振時の g2 における振動スペクトル

図 2-11 1/2 点加振時の g3 における振動スペクトル

図 2-12 1/2 点加振時の g4 における振動スペクトル

図 2-13 1/2 点加振時の g5 における振動スペクトル

図 2-14 3/4 点加振時の g1 における振動スペクトル (図 2-8)

図 2-15 3/4 点加振時の g2 における振動スペクトル

図 2-16 3/4 点加振時の g3 における振動スペクトル

図 2-17 3/4 点加振時の g4 における振動スペクトル

図 2-18 3/4 点加振時の g5 における振動スペクトル

2.4 g1~g5 同時計測による振動比較

図 2-19~図 2-24 に各橋桁の振動を同時に取得したときのスペクトルを示す。図 2-19 ~図 2-21 は 1/2 点を加振したときのデータ、図 2-22~図 2-24 は 3/4 点を加振したとき のデータである。M1 については橋桁間でスペクトル強度に差はなかった。M2 は (3) 項で 示したような g1 から g5 に向けてピーク強度が下がる傾向が現れている。M3 についても(3) 項と同様の傾向を示した。図 2-21 は加振後 6 秒間のフーリエ変換結果である。

図 2-20 g3の1/2点加振時の振動スペクトル比較

図 2-21 g5の1/2点加振時の振動スペクトル比較

図 2-22 g1の3/4 点加振時の振動スペクトル比較

図 2-23 g3の3/4点加振時の振動スペクトル比較

図 2-24 g5の3/4点加振時の振動スペクトル比較

3. T橋の計測結果

3.1 固有値解析と加振による振動計測結果の比較

下表に振動スペクトルから推定された固有振動数の結果を示す。表 3-1 は JA-40 (サー ボ型) で測定したときの結果を、表 3-2 は JA-M (MEMS 型) で測定した場合の結果を示し ている。各振動数は図 3-1~図 3-5 で観測されたピークの周波数であるが、計測位置によ ってバラツキのある場合は平均値を固有振動数とした。全てのモードで固有振動数が解析 結果に比べ高めに現れていた。加振位置による固有振動数のバラツキは最大で 3%程度であ り、センサの違いによるバラツキは小さかった。

表 3-1 加振位置と固有振動数 (JA-40)

(Hz)

mode	5m	9.5m	27m	38.5m	47m	AVERAGE	解析結果
1	2.63	2.50	2.59	2.59	2.59	2.58	2.15
2	6.88	6.96	7.09	7.00	7.09	7.01	5.87
3	9.45	9.14	9.17	9.74	9.18	9.34	8.76
4		11.89	12.10	11.81	12.56	12.09	10.08
5	18.61		18.28	18.19	18.28	18.34	16.45
6	23.76	23.83	23.31	23.26	23.39	23.51	22.45

表 3-2 加振位置と固有振動数 (JA-M)

(Hz)

mode	5m	9.5m	27m	38.5m	47m	AVERAGE	解析結果
1	2.61	2.50	2.59	2.59	2.59	2.58	2.15
2	6.87	6.97	7.00	6.98	7.12	6.99	5.87
3	9.18	8.88	9.06	9.85	9.21	9.24	8.76
4		11.81	12.11	11.82	12.44	12.04	10.08
5			18.28	18.43	18.16	18.29	16.45
6	23.82	23.86	23.36	23.35	23.28	23.53	22.45

3.2 加振時の振動スペクトル

図 3-1~図 3-5 に各測定位置での振動スペクトルを示す。スペクトルの周波数分解能は 31.25mHz に設定しており測定時間は 32 秒である。この 32 秒間の中で、加振は1回だけ行 った。スペクトルの平均化はしていない。5m と 9.5m の加振(図 3-1、図 3-2) では 5m か ら 30m に 5 箇所のセンサを配置して振動計測し、27m から 47.5m の加振(図 3-3~図 3-5) では 27m から 47.5m にセンサを配置した。左は JA-40(サーボ型)で得られた振動スペク トル、右は JA-M (MEMS 型)で得られた振動スペクトルである。センサの違いで大きな差は 見られなかった。

図 3-1 5m 加振時の振動スペクトル(測定位置:5m から 30m)

図 3-2 9.5m 加振時の振動スペクトル (測定位置:5m から 30m)

図 3-3 27m 加振時の振動スペクトル (測定位置: 27m から 47.5m)

図 3-4 38.5m 加振時の振動スペクトル (測定位置:27m から47.5m)

図 3-5 47.5m 加振時の振動スペクトル (測定位置:27m から 47.5m)
3.3 常時微動で固有値解析の結果

表 3-3 に加振時と常時微動で測定された固有振動数を示す。常時微動のほうが振動数が 高めに表れるケースが多かった。

mode	JA-4 0		JA-M		般折結用
moue	加振	常時微動	加振	常時微動	所们和木
1	2.58	2.67	2.58	2.69	2.15
2	7.01	7.48	6.99	7.49	5.87
3	9.34	9.28	9.24	9.28	8.76
4	12.09	12.16	12.04	12.16	10.08
5	18.34	18.69	18.29	18.68	16.45
6	23.51	23.69	23.53	23.64	22.45

表 3-3 加振時と常時微動での固有振動数比較(Hz)

図 3-6 常時微動の振動スペクトル(測定位置:5mから30m)

図 3-7 常時微動の振動スペクトル (測定位置: 27m から 47.5m)

3.4 モード形状の推定

図 3-8~図 3-13 にモード形状を示す。表 3-1 で得られた各モードの固有振動数の±3% をバンドパスフィルタで抽出し、加振後約 0.5 秒の加速度の値から振幅を計算しプロット した。振幅は加速度を(2πf)2で割って算出した。4 次モードについては次項の橋軸直角 方向にセンサを並べた計測結果から、ねじれモードであることが考えられる。

3.5 橋軸直角方向の計測結果

橋軸直角方向の南側・中央・北側にセンサを配置して振動計測を行い、橋軸直角方向の モード形状を推定した。図 3-14~図 3-19 にモード形状を示す。振幅の求め方は 3.4 と同 じである。4 次(図 3-17)は北側と南側の位相が逆になっており、ねじれモードであるこ とが推定できる。

4. 固有值解析

現地試験との比較のため、対象橋梁の固有振動数や固有モードの解析を行った。

4.1 明橋の固有値解析

4.1.1 概要

現地試験との比較のため、当該橋梁の固有振動数や固有モードの解析を行った。今回は 桁と間詰のモデルに加え地覆、舗装、高欄をモデル化した。桁端より 300mm のエッジを拘 束した場合と桁端より 300mm の範囲の面に 100mm 厚のゴムをモデル化しその底面を拘束し た場合の解析を行った。

4.1.2 解析モデル

桁、間詰、地覆、均しコン、舗装、高欄を3次元でモデル化した。

主桁の弾性係数は、鋼/コンクリートの弾性係数比を 6.4 とし 33000N/mm²とした。間詰 コンクリートの弾性係数は 3 次元梁要素での解析結果を受けて 25000N/mm²とした。ポアソ ン比は 0.1を用い剛性率はポアソン比から計算した。桁の中空部もモデル形状として反映 した。高欄の弾性率は鉄の 1/100 とし、全体質量が 1.01×10⁶g となるよう密度を 2.133× 10⁻³g/mm² とした。ゴム支承は 100mm 厚とした。均しコンクリート (50mm)、舗装 (10mm) をモデル化し、均しコンクリートには間詰部と同等の材料定数を与え、舗装部にはアスフ アルトの値として弾性係数 3000N/mm²、ポアソン比 0.35 を与えた。ゴム支承の弾性率につ いては、支承用ゴムの値 400N/mm²を使用した。

図 4-1 解析モデル図

各モデルの定数一覧を表 4-1 に示す。

	ヤング率	ポアソン比	剛性率 N/mm ²	密度 g/mm ³
	N/mm ²			
桁	33000	0. 1	15000	0.0025
間詰	25000	0.1	11363	0.0025
地覆	25000	0.1	11363	0.0025
均しコン	25000	0.1	11363	0.0025
舗装	3000	0.35	1111	0.0025
支承	400	0.49	134	0.001
高欄	2100	0.28	790	0.0021

表 4-1 各モデルの定数一覧

4.1.3 固有值解析結果

(1) 結果一覧の比較

このモデルに対して10次まで固有値解析を行った。その結果を表 4-2・表 4-3に示す。

モード	周波数(Hz)	形状	モード図
1	7.284	1次	図 4-2(上)
2	12.61	1次ねじれ(1)	図 4-2(下)
3	20.709	2次	図 4-3(上)
4	22.888	2次	図 4-3(下)
5	28.602	2次	図 4-4(上)
6	30.654	2次ねじれ(1)	図 4-4(下)
7	36.257	路盤たわみ	図 4-5(上)
8	38.905	橋直方向1次	図 4-5(下)
9	51.565	2次ねじれ(2)	図 4-6(上)
10	51.949	3次	図 4-6(下)

表 4-2 ゴム支承下部面固定

表 4-3 桁 300mm 下部エッジ固定

モード	周波数(Hz)	形状	モード図
1	6.292	1次	図 4-7(上)
2	13.503	1次ねじれ(1)	図 4-7(下)
3	23.301	2次	図 4-8(上)
4	31.868	2次ねじれ(1)	図 4-8(下)
5	36.84	橋直方向1次	図 4-9(上)
6	37.77	路盤たわみ	図 4-9(下)
7	42.231	橋直方向1次	図 4-10(上)
8	54.724	2次ねじれ(2)	図 4-10(下)
9	56.57	3次	図 4-11(上)
10	63.753	3次ねじれ(1)	図 4-11(下)

(2) ゴム支承下部面固定のモード図

図 4-2 ゴム支承下部面固定 モード図 (モード 1,2)

図 4-3 ゴム支承下部面固定 モード図 (モード3,4)

図 4-4 ゴム支承下部面固定 モード図 (モード 5,6)

図 4-5 ゴム支承下部面固定 モード図 (モード 7,8)

図 4-6 ゴム支承下部面固定 モード図 (モード9,10)

(3) 桁 300mm 下部エッジ固定のモード図

図 4-7 桁 300mm 下部エッジ固定 モード図 (モード 1,2)

図 4-8 桁 300mm 下部エッジ固定 モード図 (モード 3,4)

図 4-9 桁 300mm 下部エッジ固定 モード図 (モード 5,6)

図 4-10 桁 300mm 下部エッジ固定 モード図 (モード 7,8)

図 4-11 桁 300mm 下部エッジ固定 モード図 (モード 9,10)

4.2 T橋の固有値解析

4.2.1 概要

現地試験との比較のため、当該橋梁の固有振動数や固有モードの解析を行った。桁、地 覆、舗装、高欄をモデル化した。支承ゴムの影響を調査するため支承部の拘束条件を変化 させて解析を行った。

4.2.2 解析モデル

主桁の弾性係数は、鋼/コンクリートの弾性係数比を 6.4 とし 33000N/mm²とした。ポア ソン比は 0.1 を用い剛性率はポアソン比から計算した。桁の中空部はモデル形状として反 映した。高欄は構造体の剛性に寄与しないとして、明橋と同じモデル化を実施し、断面 100 ×300mm とし橋長と長さが等しいモデルとした。弾性率は鉄の 1/100 とし、密度は 2.133 ×10⁻³g/mm²とした。全体質量は 3.33×10⁶g となっている。

舗装部は舗装厚 80mm のアスファルトとして、弾性係数 3000N/mm²、ポアソン比 0.35 を 与えた。ゴム支承は 100mm 厚とし、A1 A2、P1 部に配置した。ゴム支承の弾性率は 400N/mm²、 4000N/mm²の 2 種類を解析した。

図 4-12 解析モデルメッシュ図

支承部の拘束条件により、モデルは以下の2種類とし、モデル①にて水平ひび割れをモ デル化した以上3ケースの解析を行った。

(1) モデル①

桁端より 300mm の範囲の面に 100mm 厚のゴム (E=400N/mm²) をモデル化しその底面を拘 束した場合

(2) モデル②

桁端より 300mm の範囲の面に 100mm 厚のゴム (E=4000N/mm²) をモデル化しその底面を拘 束した場合

(3) モデル③

モデル①に水平ひび割れを幅 5mm、深さ 100mm、長さ 8m をモデル化した場合

各モデルの定数一覧を表 4-4 に示す。

	ヤング率	ポアソン比	剛性率	密度
	N/mm²		N/mm ²	g/mm²
桁	33000	0. 1	15000	0.0025
地覆	25000	0. 1	11363	0.0025
地覆	33000	0. 1	11363	0.0025
舗装	3000	0.35	1111	0.00235
支承ゴム	400	0.49	134	0.001
支承ゴム	4000	0.49	134	0.001
高欄	2100	0.28	790	0.0021

表 4-4 各モデルの定数一覧

4.2.3 固有值解析結果

(1) 結果一覧の比較

各モデルに対して 15 次まで固有値解析を行った。表 4-5 にモデルごとのモード周波数 の一覧を示す。モデルごとの解析結果を表 4-6、表 4-7 に示す。表 4-6 にはモデル①と③ の結果を併記した。3 次元梁モデルは事前に実施された結果である。実測値は推定された モードで比較した。

モード	モデル①	モデル2	モデル③	3 次元	実測値
	支承ゴム	支承ゴム	ひび 8m	梁モデル	
	400N/mm ²	4000N/mm ²			
1次	3.3745	3.7954	3.3511	2.154	2.58
2次	8.3669	9.157	8.312	5.870	7.01
3次	10.549	11.075	10.482	8.759	9.34
4次	18.086	19.344	17.946	16.451	18.34
5次	18.713	27.692	18.573	22.445	23.51
6次	30.386	31.552	30.082	29.974	
1 次ねじれ	13.796	14.503	13.319		12.09
2 次ねじれ	15.288	19.452	15.083		
3次ねじれ(1)	25.711	27.147	24.921		
3次ねじれ(2)	27.54	28.953	26.516		
4次ねじれ(1)	31.283	38.098	30.829		
4 次ねじれ(2)	38.129		36.9		
橋直方向1次	6.483	7.7037	6.4362		
橋直方向2次	18.422	22.635	18.234		

表 4-5 モード周波数一覧

周波数(Hz)				
モード	水平ひびわれ	水平ひびわれ	形状	モード図
	なし	あり		
1	3.3745	3.3511	1次	図 4-13(上)
2	6.483	6.4362	橋直方向1次	図 4-13(下)
3	8.3669	8.312	2次	図 4-14(上)
4	10.549	10.482	3次	図 4-14(上)
5	13.796	13.319	1次ねじれ	図 4-15(上)
6	15.288	15.083	2 次ねじれ	図 4-15(上)
7	18.086	17.946	4次	図 4-16(上)
8	18.422	18.234	橋直方向2次	図 4-16(上)
9	18.713	18.573	5次(1)	図 4-17(上)
10	25.711	24.921	3次ねじれ(1)	図 4-17(上)
11	26.55	26.343	5次(2)	図 4-18(上)
12	27.54	26.516	3次ねじれ(2)	図 4-18(上)
13	30.386	30.082	6次	図 4-19
1 /	31.283	20.020	4次ねじれ(1)	図 4-20 (ひびなし)
17		30.829		図 4-20 (ひびあり)
15	38.129	36.9	4次ねじれ(2)	図 4-21

表 4-6 モデル①および③:ゴム (E=400N/mm²) 支承下部面固定

表 4-7 モデル②:ゴム(E=4000N/mm²)支承下部面固定

モード	周波数(Hz)	形状	モード図
1	3.7954	1次	図 4-22(上)
2	7.7037	橋直方向1次	図 4-22(下)
3	9.6927	2次	図 4-23(上)
4	11.46	3次	図 4-23(下)
5	14.503	1 次ねじれ	図 4-24(上)
6	19.344	4次	図 4-24(下)
7	19.452	2 次ねじれ	図 4-25(上)
8	22.635	橋直方向2次	図 4-25(下)
9	27.147	3次ねじれ(1)	図 4-26(上)
10	27.692	5次	図 4-26(下)
11	28.953	3次ねじれ(2)	図 4-27(上)
12	31.552	6次	図 4-27(下)
13	38.098	4次ねじれ(1)	図 4-28(上)
14	39.534	7次(1)	図 4-28(下)
15	44.122	7次(2)	図 4-29

図 4-13 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 1,2)

図 4-14 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 3,4)

図 4-15 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 5,6)

図 4-16 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 7,8)

図 4-17 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 9,10)

図 4-18 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 11, 12)

図 4-19 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 13)

図 4-20 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 14)

図 4-21 ゴム (E=400N/mm²) 支承下部面固定 モード図 (モード 15)

(3) モデル②:ゴム(E=4000N/mm²)支承下部面固定のモード図

図 4-23 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 3,4)

図 4-24 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 5,6)

図 4-25 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 7,8)

図 4-26 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 9,10)

図 4-27 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 11, 12)

図 4-28 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 13,14)

図 4-29 ゴム (E=4000N/mm²) 支承下部面固定 モード図 (モード 15)
非破壊検査技術等を用いた調査結果

載荷試験における非接触式変位・ひずみ計測

報告書

長崎大学・佐賀大学

日次	目	次
----	---	---

1. 概要	1
1.1 調査目的	1
1.2 対象橋梁の概要	1
2. 計測概要	3
2.1 計測システムの概要	3
2.1.1 デジタルカメラによる全視野ひずみ計測概要	3
2.1.2 デジタルカメラによるたわみ計測概要	3
2.2 本試験の計測方法	4
2.2.1 デジタルカメラによる全視野ひずみ計測	4
2.2.2 デジタルカメラによるたわみ計測	5
3. 計測結果	6
3.1 デジタルカメラによる全視野ひずみ計測結果	6
3.2 デジタルカメラによるたわみ計測結果1	0
4. まとめ	2

1. 概要

1.1 調査目的

実構造物における非接触式変位・ひずみ計測の検証を目的とし、実橋の静的載荷試験時 に、光学的計測手法の一つであるデジタル画像相関法を用いた非接触式変位・ひずみ計測 を行った。

1.2対象橋梁の概要

本試験では、ひび割れ損傷による構造性能へ影響を調査するため、ひび割れが生じた PC 橋の静的載荷試験において、載荷時の桁の変位およびひび割れのズレ等の計測を行った。 また、ひび割れ形状の変形(膨張)についても併せて行った。

本試験における対象橋梁は、茨城県常総市にある明橋であり、TL-20 で設計されている。 対象橋梁の概要を表 1-1、写真 1-1、図 1-1 に示す。計測対象の第2径間の変状図を図 1-2 に、ひび割れ状況を写真 1-2、写真 1-3 に示す。写真 1-2、写真 1-3より、桁側面や桁下 面において、橋軸方向にひび割れが多数確認された。桁側面でのひび割れ幅は最大約2mm、 ひび割れ深さ約50mmを確認された。

また、管理者による橋梁点検資料からは、間詰コンクリートおよび地覆ならびにジョイント部から雨水等のよるものと疑われる漏水・遊離石灰等の損傷が認められ、ひび割れは内桁よりも外桁の劣化が進展しているように窺えた。桁には橋軸方向のひび割れが卓越することから、ひび割れの発生原因としてはASRと推定された。

橋	梁	名	明橋(道路橋)	
路	線	名	市道	
交	差条	件	河川	
橋		臣	33.09m(支間長 2×15.9m)	
全	幅	員	8.2m(有効幅員7.0m)	
橋	梁形	式	単純PCプレテン中空床版橋(2連)	
竣	I	年	1983年11月 (供用29年)	

表 1-1 橋梁概要

写真 1-1 対象橋梁

図 1-1 橋梁概要図

図 1-2 対象径間(第2径間)のひび割れ状況図(管理者資料より抜粋)

写真 1-2 桁側面のひび割れ状況

写真 1-3 桁下面のひび割れ状況

2. 計測概要

2.1 計測システムの概要

2.1.1 デジタルカメラによる全視野ひずみ計測概要

光学的全視野計測法を用いて、コンクリート表面の変位とひずみ分布およびひび割れの 挙動を計測する。本システム(以下、DICM(Digital Image Correlation Method)と記す) は、写真 2-1 に示す CCD カメラ×2台、三脚、ノート PC などで構成されている。計測時 には、照明を2つ使用しコンクリート表面に画像解析用の白黒模様をスプレーまたは、絵 の具で塗布する。DICM における計測例を図 2-1 に示す。

写真 2-1 計測システム

図 2-1 計測例(ひずみ分布)

2.1.2 デジタルカメラによるたわみ計測概要

変位計などのセンサを設置せずに、橋梁の変位やたわみの計測を市販のデジタルカメラ によって行う。デジタルカメラによるたわみ計測として、正方形マーカーを用いた変位計 測法として、複数の正方形マーカーが印刷されたターゲットを計測対象物に設置し、固定 されたデジタルカメラにより撮影されたターゲットの画像から正方形マーカーの座標を解 析し、変位を求めるものである。1 台のデジタルカメラによって多点計測を行うことで、 鉛直方向変位だけではなく水平方向変位も画像解析によって同時に求める。実橋における たわみ計測を行った状況を写真 2-2 に示す。

写真 2-2 左:実橋における計測状況 右:正方形マーカーー例

2.2 本試験の計測方法

2.2.1 デジタルカメラによる全視野ひずみ計測

本試験での静的載荷方法は、一般車を片側通行とした交通規制を行い、橋軸方向のひび 割れが卓越した第2径間(P1-A2)で、積載重量20tのダンプトラックを2台の荷重車を載 荷させた状態で計測を行った。本試験での計測位置は、G1桁支間中央部のひび割れが発生 している桁側面とし、G1桁に負荷がかかるように荷重車を配置した載荷概要および DICM 計測位置を図 2-3に示す。

図 2-3 載荷概要および DICM 計測位置

計測器には、500万画素の CCD カメラ2台、17mm レンズ、ノートパソコン1台を使用した。計測状況を写真 2-3 に示すように、特別な治具に CCD カメラ、LED ライトを設置した。 治具は、地覆および高欄にアンカー、ロープを用いて取り付けた。

計測器位置関係を図 2-4 に示すように、カメラ間の距離は 610mm、カメラと計測面までの距離は 1500mm とし、この条件下で計測した画像解像度は約 0.44mm/pixel となる。

また、撮影時のシャッタースピードは 9ms、F 値は 5.6 とした。画像解析のために計測 面に黒のスプレーを塗布してランダムパターンを表現し、撮影画像の階調値に変化をもた せた。

写真 2-3 計測状況

図 2-4 計測位置関係

2.2.2 デジタルカメラによるたわみ計測

正方形マーカー(以下、ターゲットと記す)による変位計測法の現場適用性と計測精度 を検証するために実橋載荷時によるたわみ計測を行った。載荷方法は、写真 2-4 に示すよ うに積載重量が 20ton のダンプトラック 1 台を橋梁上の所定の位置に停車させる静的載荷 方法とした。

変位計測では、図 2-5 に示すように 5 箇所にターゲットを設置し、各載荷位置をダンプトラックの後輪軸中心を基準として、桁端部から 2m、4m、6m および 8m の 4 地点でそれぞれ変位計測を行った。

写真 2-4 載荷状況

写真 2-5 ターゲット設置状況

図 2-5 デジタルカメラおよびターゲット設置位置

計測撮影に用いたデジタルカメラは Nikon D5000 (DX フォーマット) であり、記録画素 数を 4288×2848 ピクセル (約 1220 万画素) とし、24bit カラーの JPEG 画像で記録した。 使用したレンズは、Nikon AF-S NIKKOR 70-200mm f/2.8G ED VR II であり、これに 2 倍の テレコンバータを装着して用いた。レンズを装着したデジタルカメラは三脚上に水平に設 置し、載荷試験中は移動や回転が無いように注意した。デジタルカメラから近い位置にあ る支承上および 1/4L 点のターゲットの撮影においては、レンズのズームリングを Wide 端 の 70mm に合せ、ピント調整を行った後に撮影を行い、1/4L 点以降のターゲットにおいて は、Tele 端の 200mm に合せ撮影を行った。なお、2 倍のテレコンバータを装着しているた め焦点距離はそれぞれ 140mm (210mm※) と 400mm (600mm※) になる。

※()内は、35mm 判換算の焦点距離

3. 計測結果

3.1 デジタルカメラによる全視野ひずみ計測結果

(1) ひび割れ表面形状の計測結果

デジタルカメラによる全視野ひずみ計測範囲の撮影画像を写真 3-1、画像解析によって 得られた表面形状を図 3-1 に示す。なお、計測範囲内で橋軸方向に発生したひび割れを白 線で記した。

画像解析による表面形状の計測結果では、奥行き方向を負として表面の高さを表している。表面形状は、ひび割れ発生付近での表面の高さがひび割れ以外の比べて高く、最大で3mm程度高いことが確認できる。3次元表示した画像解析結果からもその様子が認められ、図 3-1 における A-A 断面、B-B 断面、C-C 断面の各断面での画像解析結果を示した図 3-2からも同様に、ひび割れ付近で2mmから3mm程度高く膨張していることが確認された。

写真 3-1 計測範囲の撮影画像

(b) 3 次元表示 図 3-1 表面形状 (画像解析)

図 3-2 各断面での表面形状(画像解析)

(2) ひび割れ付近のズレの確認

図 3-3 に示す橋軸方向の変位分布図により、載荷後にひび割れ付近のズレが生じていな いか確認した。図 3-3 からは、計測範囲全体が右方向に一様に変位しているが、この変位 の原因としては、カメラを取り付けた治具と地覆は固定しているものの、載荷時における 治具のズレや風によるカメラの揺れによるものと考えられる。一方で、ひび割れ(白線) 付近で特異な変位やズレは見られないことから、載荷に伴うひび割れのズレは生じなかっ たものと考えられる。

また、実橋載荷試験において桁に設置したひずみゲージやパイ型変位計からもほとんど 変化はないことから、画像計測によるひび割れの変位やズレ計測について、ある程度評価 できたものと考えられる。

図 3-3 橋軸方向の変位分布図

3.2 デジタルカメラによるたわみ計測結果

実橋の載荷試験における正方形マーカー(ターゲット)による変位計測結果を表 3-1 に 示す。正方形マーカーによる変位量のデータは、1回の計測において5枚撮影した画像か ら、それぞれ求めた変位量の平均値である。表 3-1より、P1橋脚上の計測データおよび 3/4L点での一部のデータを除き、高感度変位計に対する正方形マーカーによる変位量の計 測誤差はおよそ±0.1mm以下となり、本方法は実橋計測においても高い精度で変位計測が 可能であると考えられる。

載荷試験当日は、小雨と曇天が繰り返す天候であり、刻々と照度が変化していた。また、 載荷位置によっては、ダンプトラックがターゲットの真横に停止し、ターゲットへの太陽 光が遮られ照度が大きく変化していた。このように計測条件としては、決して良好な状況 ではなかったが、高い精度が得られたことから本方法のロバスト性が高いと考えられる。

載荷位置	接ムナジャンシの明神	0. 000m	4. 275m	8.250m	12.225m	16.500m
	橋 古 文 承 上 か ら の 距離	(A2橋台)	(1/4L)	(1/2L)	(3/4L)	(P2橋脚)
2m	高感度変位計(mm)	-0. 10	-0. 48	-0. 81	-0.65	-0.19
	正方形マーカー(mm)	-0. 17	-0. 58	-0.84	-0.60	-0. 73
	誤差(mm)	-0. 07	-0.10	-0. 03	0. 05	-0. 54
4m	高感度変位計(mm)	-0.16	-0. 75	-1.17	-0.93	-0. 24
	正方形マーカー(mm)	-0. 22	-0.86	-1.15	-0.97	-0.61
	誤差(mm)	-0.06	-0.11	0. 02	-0. 04	-0. 37
6m	高感度変位計(mm)	-0. 21	-0.97	-1.43	-1.00	-0. 21
	正方形マーカー(mm)	-0. 22	-0.99	-1.50	-2. 71	-0.56
	誤差(mm)	-0.01	-0. 02	-0. 07	-1. 71	-0. 35
8m	高感度変位計(mm)	-0. 24	-1.06	-1.45	-0.95	-0. 23
	正方形マーカー(mm)	-0. 21	-1. 10	-1.53	-3. 12	-1.09
	誤差(mm)	0. 03	-0. 04	-0. 08	-2. 17	-0. 86

表 3-1 たわみ計測結果

P1 橋脚上(16.500m)の全ての計測データにおいて、高感度変位計との誤差が 0.3mm 以 上あるが、これはターゲットを地覆に固定する際のアンカーボルトの締付けが緩く、載荷 後にダンプトラックの走行振動等によりターゲットが移動したことによると考えられる。

このことは、正方形マーカーを用いた解析により、載荷前後でターゲットが水平方向に 大きく移動していることから確認できた。

ダンプトラック載荷位置が6mおよび8mの時、3/4L 点(12.225m)での計測誤差が1.5mm以上と大きくなっている。この理由としては、本方法ではターゲッ ト毎に手動でピント調整を行い撮影するため、これらは撮影者がカメラの操作を誤り画像のピントが大幅にずれていたためである。参考までに操作ミスによりピントが大幅にずれた画像と正しい操作によって撮影された画像の比較を図3-4に示す。このように操作ミスは撮影画像から容易に判断できる。

(a) In focus(b) Out of focus図 3-4 ピントの比較

図 3-5~図 3-8 に、載荷位置別の橋梁のたわみ曲線図を示す。なお、前述の P1 橋脚上 の全ての計測データおよび載荷位置が 6m および 8m の時の 3/4L 点(12.225m)での計測デー タは過失誤差を多く含むものであり、これらのデータを除きグラフを作成した。

いずれの載荷位置においても、正方形マーカーによる計測結果は、屋外計測における理 論誤差や個人誤差などの系統的誤差を含むものの高感度変位計による最大たわみ量および 橋台の支点沈下量の計測結果とほぼ同等の値となった。正方形マーカーの計測結果は、高 感度変位計のたわみ曲線と良く一致しており、載荷位置 2m および 4m で非対称となるたわ み曲線の形状も良く反映している。

正方形マーカーを用いた変位計測法はこれらのことより、屋外計測におけるロバスト性 が高く、実橋のたわみ計測に適用できることが確認された。1 台のデジタルカメラで支点 沈下を含めた複数の測点の計測が可能であることから経済的であり作業性が良い。

4.まとめ

- 実構造物におけるデジタルカメラによる全視野ひずみ計測を行った結果から、ASR により生じた橋軸方向ひび割れ周辺で、載荷時における表面の膨張を視覚的にとらえ ることができた。ひび割れ発生や進展挙動等の様々なひび割れに対して、予測・評価 するうえで有効な計測手法であると考えられる。
- 実橋の載荷試験において、デジタルカメラによるたわみ計測を行った結果から、高 感度変位計に対する正方形マーカーによる変位量の計測誤差はおよそ±0.1mm 以下と なり、高い精度で変位計測が可能であることが明らかとなった。また、屋外計測にお けるロバスト性も高く、1 台のデジタルカメラで支点沈下を含めた複数の測点の計測 が可能であることから、正方形マーカーを用いたたわみ計測法は実橋計測への適用性 があることが確認された。

橋軸方向のひび割れが生じた 実橋の補修事例

目 次

1.	補修対策工の概要	1
2.	経過観察	2
3.	施工状況	2

補修対策事例

ASR により PC 桁に沿って橋軸方向のひび割れが生じた PC 中空床版橋への対応事例として、明橋での補修対策事例を示す。

1. 補修対策工の概要

ASR は、水の介在により反応が促進されることから遮水が重要である。ただし、コンク リートの内在水分を封じ込めると新たな水分の供給がなくても反応が続く恐れがあること に注意が必要とされる。上記を踏まえ明橋では、図 1-1 に示すような補修対策工を実施し た。

図 1-1 明橋の補修対策工(管理者より提供)

- 雨水等の供給遮断を目的として橋面防水工、伸縮装置取替による止水機能の回復、ひび割れ補修、コンクリート表面保護を実施
- コンクリート内に雨水等が供給された際の速やかな排水を目的として、床版上面から 桁下面への排水管および中空床版下面に水抜き孔を設置
- 桁側面及び桁下面のコンクリート表面保護工は、遮水効果と内在水分低減のため通気
 性を有する含浸材を塗布。

図 1-2 ASRの補修対策工の概要図

2. 経過観察

ASR はその進行がいつまで続くのか、そ れによる変状がどの程度まで拡大するのか を正確に予測することは困難である。この ため、本橋の場合にも経過観察が必要と判 断された。

ひび割れの進展により安全性や供用性、 耐久性の低下が懸念されることから、桁側 面に、ひび割れの開きを観察するためのひ ずみ計測機器を設置(写真 2-1)し、定期 的に追跡調査を行う必要がある。

写真 2-1 補修後のひび割れ経過観察例

3. 施工状況

写真 3-1~写真 3-3 に施工段階毎の状況写真を示す。ASR 劣化では、主桁上面において も橋軸方向のひび割れや剥離(写真 c)・d))が見られたことから、橋面施工時に注意が必 要である。

a)舗装撤去(調整コンクリートにひび割れ)

b) 調整コンクリート撤去

d) 桁上面の剥離詳細

写真 3-1 施工状況 (その1)

e) 桁上面の剥離部断面補修

f)橋面複合防水工(浸透系防水)

g)橋面複合防水工(塗膜系防水)

h)調整コンクリートエ

j)桁下排水管

写真 3-2 施工状況 (その2)

k)伸縮装置取替

地覆表面保護工(塗膜系)

m) 主桁下面水抜き孔

n)主桁ひび割れ注入工

p) 完成

o) 主桁表面保護工(含浸系) 写真 3-3 施工状況(その3)

謝 辞

本資料を作成するにあたり、対象橋梁を管理する自治体の方々には資料を提供して頂く等ご協力を賜りました。ここに関係各位に深く感謝致します。

土木研究所資料 TECHNICAL NOTE of PWRI No.4311 November 2015

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754