ISSN 0386-5878

土木研究所資料第4369号

土木研究所資料

柱状体基礎の設計計算モデルおよび 安定照査方法に関する研究

平成30年4月

国立研究開発法人土木研究所 構造物メンテナンス研究センター 橋梁構造研究グループ

Copyright $\ensuremath{\mathbb{C}}$ (2018) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行し たものである。したがって、本報告書の全部又は一部の転載、複製は、国 立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを行っ てはならない。

土木研究所資料

第 4369 号, 2018 年 4 月

柱状体基礎の設計計算モデルおよび

安定照査方法に関する研究

構造物メンテナンス研究センター

橋梁構造研究グループ 上席研究員 七澤 利明

- 主任研究員 河野 哲也 *
- 交流研究員 遠藤 繁人 **
- 交流研究員 河村 淳 ***
- 交流研究員 藤村 彰
- * 現 国立大学法人富山大学大学院理工学研究部 准教授
- ** 現 株式会社エイト日本技術開発 国際事業本部交通インフラ部
- *** 現 株式会社エイト日本技術開発 国土インフラ事業部東京支社

要旨

平成 29 年の道路橋示方書の改定においては,信頼性を踏まえた部分係数設計法による照査 体系の構築が求められた.ケーソン基礎,地中連続壁基礎,深礎基礎および鋼管矢板基礎 といった柱状体基礎においても,変位レベルや形式によらない平均的な基礎の挙動を一定 の精度で推定できる設計計算モデルの確立や,限界点の明確化等が課題であった. こうした背景から本資料では,柱状体基礎の安定照査(設計モデル,照査方法)に着目し て設計方法の根拠を整理した.そして,柱状体基礎に対する既往の実物載荷試験データを 用いた再現解析を行い,従来の設計法の推定精度を確認するとともに,より実挙動を再現 できる設計計算モデルや安定照査に関する限界点等について提案を行った.

キーワード:部分係数設計法,柱状体基礎,載荷試験,設計計算モデル,安定照査方法

目 次

第1章	はじめに	1
1.1	研究の背景および目的	1
1.2	研究の概要と本書の構成	2
第2章	H24 道示の設計計算モデルおよび照査方法	3
2.1	地盤抵抗要素モデルの概要と課題	3
2.2	鉛直荷重に対する安定照査の概要と課題	12
2.3	水平荷重に対する安定照査の概要と課題	14
2.4	H24 道示における柱状体基礎の安定照査の課題	17
第3章	水平載荷試験による設計計算モデルの推定精度の検証	18
3.1	検証内容	18
3. 2	検証結果	25
第4章	水平載荷試験による水平方向の弾性限界点の検討	28
4. 1	検討内容	28
4.2	弾性限界点の評価方法	30
4.3	検討結果	31
第5章	水平載荷試験による柱状体基礎の降伏の目安の検証	34
第5章 5.1	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに	34 34
第5章 5.1 5.2	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容	34 34 35
第 5 章 5.1 5.2 5.3	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容 検証結果	34 34 35 36
第5章 5.1 5.2 5.3 第6章	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに はじめに 検証内容 検証結果 当直載荷試験による鉛直方向の弾性限界点の検討.	34 34 35 36 38
第5章 5.1 5.2 5.3 第6章 6.1	 水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討 はじめに 	34 34 35 36 38 38
第5章 5.1 5.2 5.3 第6章 6.1 6.2	水平載荷試験による柱状体基礎の降伏の目安の検証	34 34 35 36 38 38 38
第5章 5.1 5.2 5.3 第6章 6.1 6.2 6.3	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに はじめに (1) 検証内容 (1) 検証結果 (1) 鉛直載荷試験による鉛直方向の弾性限界点の検討 (1) はじめに (1) 検討内容 (1) 検討結果 (1)	34 34 35 36 38 38 38 38 42
第5章 5.1 5.2 5.3 第6章 6.1 6.2 6.3 6.4	 水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討. はじめに 検討内容 検討結果 まとめ 	34 34 35 36 38 38 38 42 47
第5章 5.1 5.2 5.3 第6章 6.1 6.2 6.3 6.4 第7章	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討. はじめに 検討結果 まとめ まとめ	 34 34 35 36 38 38 42 47 48
第5章 5.1 5.2 5.3 第61 6.1 6.2 6.3 6.4 第考文	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討. はじめに 検討内容 検討結果 まとめ まとめ	 34 34 35 36 38 38 42 47 48 49
第 5.1 5.2 5.2 5.3 章 6.1 6.2 6.3 6.4 章 文 3 3 4 7 5 7 5 7 5 7 5 6 6 7 7 7 8 7 6 7 7 7 7 7 8 7 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討. はじめに 検討内容 検討結果 まとめ まとめ	 34 34 35 36 38 38 42 47 48 49 50
第5章 5.1 5.2 5.3 第6.1 6.2 6.3 6.4 第参属 1.H	水平載荷試験による柱状体基礎の降伏の目安の検証 はじめに 検証内容 検証結果 鉛直載荷試験による鉛直方向の弾性限界点の検討. はじめに 検討内容 検討結果 まとめ まとめ ない 4 24 道示における柱状体基礎の設計法と根拠等	 34 34 35 36 38 38 42 47 48 49 50 50

第1章 はじめに

1.1 研究の背景および目的

道路橋に関する技術基準である道路橋示方書は,平成29年の改定において,部分係数設計法へ転換 された.具体的には,半ば経験的に確立されてきた,安全率を用いた設計手法(許容応力度設計法) に代わり,様々な不確実要素を考慮した信頼性評価を踏まえて設定した部分係数を用いた設計手法(部 分係数設計法)が導入された.本研究は,平成29年の改定で示された各種柱状体基礎(ケーソン基礎, 鋼管矢板基礎,地中連続壁基礎,深礎基礎)の設計計算モデルや限界点等の安定照査方法に関して検 討を行ったものである.

道路橋基礎のうち,直接基礎および杭基礎に関しては,これまで安定照査上の工学的な限界点が整理されるとともに限界点の応答を推定するための設計計算モデルの見直しおよび不確実性の評価が行われ,それに基づいて抵抗係数の検討等が行われてきた¹⁾²⁾.

しかしながら、ケーソン基礎、地中連続壁基礎、深礎基礎および鋼管矢板基礎といった柱状体基礎 については、信頼性を踏まえた部分係数設計法による照査体系の構築に向けた検討が十分行われてい るとは言い難い.また、柱状体基礎の各形式は、これまで基礎形式として設計手法や施工方法が確立 されてきた歴史的経緯が異なることから個別の計算モデルや照査方法が与えられており、その根拠が 必ずしも明確となっていない点もある.

このような背景を踏まえ、本研究では、柱状体基礎の設計における合理的な設計計算モデルおよび 安定照査方法に関する提案を目的としている.

1.2 研究の概要と本書の構成

1.1 で述べた背景および目的を踏まえ,本資料では最初に平成24年道路橋示方書・同解説IV下部構造編³⁾(以下,H24道示)により柱状体基礎の安定照査を実施する際の設計計算モデル,照査方法に着目して各基礎の設計法を整理し課題を示した.

次に,柱状体基礎を対象に実施された既往の実物載荷試験データを用いた再現解析を行った.再現 解析は,水平載荷試験データを用いた柱状体基礎の水平挙動における地盤抵抗の弾性限界点を評価す るための分析,ケーソン基礎の安定照査に用いる降伏の目安の設定根拠と試験データとの比較,他の 柱状体基礎の安定照査における降伏の目安の整理と適用可否の検証を行った.

また,鉛直荷重を受ける柱状体基礎の安定照査方法に着目して,既往の鉛直載荷試験データを用いて H24 道示の安定照査方法における許容値と弾性限界点との関係を確認した.

本書の構成を以下に示す.

第1章では、設計の背景および目的、研究の概要と本書の構成を示した.

第2章では,H24 道示における柱状体基礎の安定照査の設計計算モデル,照査方法および設計法を 整理し,H24 道示の設計計算モデルおよび照査方法の課題を示した.

第3章では、水平載荷試験とH24道示における常時モデル、レベル1地震時(以降,L1地震時) モデルおよびレベル2地震時(以降,L2地震時)モデルを用いた再現解析を比較することにより、各 モデルの再現性を検証した.

第4章では,柱状体基礎の水平挙動における地盤抵抗の弾性限界点を評価することを目的とした, 水平載荷試験データの分析を行った.

第5章では、水平載荷試験の降伏点(変位急増点)とH24道示モデルの再現解析の降伏点(変位急 増点)を比較することにより、H24道示における柱状体基礎の降伏の目安の設定根拠について検証を 行った。

第6章では,鉛直挙動における地盤抵抗の弾性限界点の評価を目的とした,鉛直載荷試験データの 分析を行った.

第7章では、前章までで得られた知見と今後の課題をとりまとめた.

第2章 H24 道示の設計計算モデルおよび照査方法

本章では,H24 道示における柱状体基礎の安定照査の設計計算モデル,照査方法および設計法を整 理している.なお,参考資料1.にH24 道示における柱状体基礎の設計計算モデルおよび安定照査方法 の設定根拠を一覧表として整理しているので併せて参照されたい.

2.1 地盤抵抗要素モデルの概要と課題

2.1.1 地盤抵抗要素

図 2.1.1 にケーソン基礎を例とした H24 道示における地盤抵抗要素のイメージ図,表 2.1.1 に柱状 体基礎の地盤抵抗要素モデルを示す.いずれの基礎形式においても,設計で考慮する地盤抵抗要素は, 図 2.1.1 に示した 6 種類の要素である.ただし,表 2.1.2 に示すように,荷重の作用方向や施工方法 によって考慮できる地盤抵抗は異なる.

柱状体基礎の地盤抵抗要素モデルは基本的にバイリニア型であるが、常時・暴風時および L1 地震時の基礎底面や鋼管矢板基礎の L2 地震時の基礎底面の水平方向せん断地盤抵抗要素は、線形モデルである.

また,常時・暴風時及び L1 地震時の基礎前面の水平方向地盤抵抗要素に着目すると,ケーソン基礎・深礎基礎及び地中連続壁基礎は,クーロンの受働抵抗強度を上限値とするバイリニア型である一方,鋼管矢板基礎はひずみ依存性を考慮した線形モデルである.

図 2.1.1 ケーソン基礎の地盤抵抗要素のイメージ図

我 2.1.1 HZT 适为代码的 多压化件 圣徒 多名血液的 反示 C / /
--

			鋼管矢板基礎		
其礎形式	ケーソン基礎	涩磷其磷	<i>B</i> ≦30m	<i>B</i> >30m	
圣诞形式	地中連続壁基礎	17K HVE ZES HVE	かつ V/B>1	又は <i>L/B</i> ≦1	
			かつ $\beta L_e > 1$	又は $\beta L_e \leq 1$	
基礎の剛性	線形	線形	線形 (合成効率及 びモーメント 分配率による 評価)	線形 (継手のせん 断ずれを考慮 したバイリニ ア型) ^{*3}	
基礎底面の	線形		線形		
鉛直方向地盤抵抗	(地盤反力度が許容値以	線形	(鉛直反力が許	容値以下である	
k_V	下であることを照査)		ことを照査)		
基礎底面の 水平方向せん断地盤抵抗 <i>k_s</i>	線形 (地盤反力度が許容値以 下であることを照査)	線形	線形		
基礎前面の 水平方向地盤抵抗 <i>k_H</i>	バイリニア型 (上限値はクーロンの受 働抵抗土圧による)	バイリニア型 ^{*1} (上限値は斜面の影響を 考慮した基礎前面地盤の 受働土圧強度による)	ひずみ依存性を	考慮した線形	
基礎側面の 水平方向せん断地盤抵抗 <i>k_{SHD}^{*2}</i>	バイリニア型	バイリニア型 ^{*1} (上限値は最大周面摩擦 力による)	前面の水平抵抗	に含める	
基礎前背面の 鉛直方向せん断地盤抵抗 <i>k_{sva}^{*2}</i>	バイリニア型	バイリニア型 ^{*1} (上限値は最大周面摩擦 力による)	鋼管矢板の支持	力に含める	
基礎側面の 鉛直方向せん断地盤抵抗 <i>kww^{*2}</i>	バイリニア型	バイリニア型 ^{*1} (上限値は最大周面摩擦 力による)	鋼管矢板の支持	力に含める	

(a) 常時, L1 地震時

(b) L2 地震時

基礎形式	ケーソン基礎 地中連続壁基礎	深礎基礎	鋼管矢板基礎
基礎の剛性	原則として線形(基礎の 塑性化を考慮する場合は 曲げ剛性の低下を考慮)	曲げ剛性の低下を考慮	継手のせん断ずれを考慮した仮 想井筒ばりによる解析
基礎底面の 鉛直方向地盤抵抗 <i>k_v</i>	バイリニア型	バイリニア型 (上限値は基礎底面の最 大鉛直支持力による)	バイリニア型
基礎底面の 水平方向せん断地盤抵抗 <i>k_s</i>	バイリニア型	バイリニア型 (上限値は基礎底面のせ ん断抵抗力による)	線形
基礎前面の 水平方向地盤抵抗 <i>k_H</i>	バイリニア型 (上限値は受働抵抗領域 の3次元的な広がりを考 慮)	バイリニア型 ^{*1} (上限値は斜面の影響を 考慮した基礎前面地盤の 受働土圧強度による)	バイリニア型
基礎側面の 水平方向せん断地盤抵抗 <i>k_{SHD}^{*2}</i>	バイリニア型	バイリニア型 ^{*1} (上限値は最大周面摩擦 力による)	バイリニア型
基礎前背面の 鉛直方向せん断地盤抵抗 <i>k_{SVB}^{*2}</i>	バイリニア型	バイリニア型 ^{※1} (上限値は最大周面摩擦 力による)	バイリニア型
基礎側面の 鉛直方向せん断地盤抵抗 <i>k_{svD}^{*2}</i>	バイリニア型	バイリニア型 ^{*1} (上限値は最大周面摩擦 力による)	バイリニア型

KSVD 「フルによる)
 ※1 硬岩の場合,岩のピークせん断強度とピーク強度に達した後の強度低下の影響を考慮できるモデルとする。
 ※2 深礎基礎においては、モルタルライニングや吹付けコンクリートのように基礎周面地盤のせん断抵抗を期待できる土留構造を用いる場合に考慮することができる。
 ※3 継手のせん断ずれを考慮した仮想井筒ばりによる解析では、鋼管矢板の塑性化以降も線形に取扱うので、13.9.2 1)に示した基礎の降伏以降の荷重-変位曲線の二次剛性を無視して基礎の変位や応答塑性率を求める。

基礎形式		ケーソン基礎	地中連続壁 基礎	深礎基礎	鋼管矢板 基礎	
	鉛直	1)底面地盤の鉛直地盤反力	0	0	0	0
	支持	2)側面地盤の鉛直せん断地盤反力	※ 1	〇 (内外周面)	※ 2	〇 (内外周面)
		1)底面地盤の鉛直地盤反力	0	0	0	0
荷重		2)底面地盤のせん断地盤反力	0	0	0	0
分 担	水平	3)前面地盤の水平地盤反力	0	0	0	0
	支持	4)側面地盤の水平せん断地盤反力	0	0	※ 2	0
		5)前背面地盤の鉛直せん断地盤反力	0	〇 (内外周面)	※ 2	〇 (内外周面)
		6)側面地盤の鉛直せん断地盤反力	0	〇 (内外周面)	*2	○ (内外周面)

表 2.1.2 H24 道示における柱状体基礎の考慮できる地盤抵抗

※1: 周面地盤が良質でケーソン沈設による乱れも少ないと考えられる場合には、十分検討のうえ、完成後の鉛直荷重に対して基礎周面の鉛直せん断地盤抵抗を考慮できる.

※2: 自立性の高い地山で、モルタルライニングや吹付けコンクリートのように地山の緩みが抑えられ地山と基礎の一体化が 図れる土留構造を採用する場合に考慮できる。

2.1.2 鉛直支持に対する地盤抵抗要素

鉛直支持に対する地盤抵抗要素としては,地中連続壁基礎および鋼管矢板基礎においては,基礎底 面地盤の鉛直地盤反力,外周面および内周面地盤の鉛直せん断地盤反力を考慮する.

一方,ケーソン基礎および深礎基礎においては,周面地盤の鉛直せん断地盤反力を考慮せず,基礎 底面の鉛直地盤反力のみを考慮する.

ケーソン基礎において周面地盤の鉛直せん断地盤反力を考慮できない理由は,沈設時の工法によっ ては地盤を乱す可能性があるためである³⁾.このため,基礎を含む下部構造の自重や上部構造の鉛直 反力等長期にわたって作用する鉛直荷重は,全て基礎底面のみで支持することが原則とされている. ただし,周面地盤が良質でケーソン沈設による乱れも少ないと考えられる場合には,十分検討のうえ, 完成後の鉛直荷重に対して基礎周面の鉛直せん断地盤抵抗を考慮してもよいとされている.

深礎基礎において鉛直せん断地盤反力を考慮できない理由は、土留構造としてライナープレート等 の土留材を用いる場合は、ライナープレートと地山の間にはグラウトが充てんされるものの、期待で きるせん断地盤反力がどの程度か確認されていないためである⁴⁾.ただし、コンクリートライニング を油圧ジャッキで上下方向あるいは下向きに載荷した載荷試験により摩擦抵抗を計測した結果、場所 打ち杭の設計に用いる周面摩擦力度と同等以上であることが確認された⁵⁾ことを踏まえ、モルタルラ イニングや吹付けコンクリートのように基礎周面地盤のせん断抵抗を期待できる土留構造を用いる場 合には、抵抗を考慮することができる⁴⁾.

2.1.3 水平支持に対する地盤抵抗要素

水平支持に対しては、いずれの基礎形式も基礎底面地盤の鉛直地盤反力とせん断地盤反力、前面地

盤の水平地盤反力,側面地盤の水平せん断地盤反力および周面地盤の鉛直せん断地盤反力で抵抗させ ることを原則としている.地中連続壁基礎,鋼管矢板基礎については,底面の形状が他の形式と異な るため,外周面のせん断抵抗力に加え内部土による内周面のせん断抵抗力を考慮することができ,深 礎基礎については,鉛直支持と同様にモルタルライニングや吹付けコンクリートのように基礎周面地 盤のせん断抵抗を期待できる土留構造を用いる場合にのみ,周面地盤のせん断地盤反力を考慮するこ とができる.

2.1.4 地盤反力係数

表 2.1.3 に H24 道示における柱状体基礎の6種類の地盤反力係数の推定式を示す.鉛直方向の地盤 反力係数 k_V,水平方向の地盤反力係数 k_Hの推定式は,いずれの基礎形式も,吉中らが検討した直径 0.3m の剛体円板による平板載荷試験の値に相当する地盤反力係数に載荷幅依存性を考慮した式を基 本としている(表 2.1.3 中の式(1)~式(4)).

水平方向の地盤反力係数 k_H には、いずれの基礎形式も施工法の違いによる補正係数 a_k が考慮され ている.これは、ケーソン基礎の水平載荷試験の再現解析に基づいて提案された補正係数 ⁶であり、 地中連続壁基礎および深礎基礎はケーソン基礎に準じた式を用いている.ケーソン基礎の場合は掘削 沈下の過程で基礎周面地盤を乱すおそれがあるため、ケーソン基礎の外周面と地盤間の空隙にセメン ト・モルタルなどを充てんする(コンタクトグラウトの施工)場合には $a_k = 1.5$ を採用できるが、環 境条件などから充てんを行えない場合には $a_k = 1.0$ とすることとされている.

また,深礎基礎においては,斜面上に施工されることを想定しているため,解析的検討に基づいて 斜面の影響を考慮するための $\alpha_{H\theta}$ が考慮されている⁷⁾(表 2.1.3 中の式 (3)). さらに組杭深礎基礎の 場合は,隣接杭の影響を考慮するための補正係数 μ も考慮されているが,これは旧日本道路公団の研 究に基づくものであり,道路橋下部構造設計指針(くい基礎設計編)⁸⁾や場所打ちコンクリート杭の 設計施工指針(案)(国鉄)⁹⁾等の各基準や旧日本道路公団試験所の試験結果⁷⁾を踏まえて設定された ものである.ただし,柱状体基礎に限らないが,地盤条件等によっては k_H の精度は必ずしも高くない ことが確認されている¹⁰⁾.

鋼管矢板基礎では,井筒部側面の水平方向のせん断地盤反力および内部土の抵抗による分担等を含めた割増係数α_Hを考慮できるが,これは載荷試験結果に対する解析に基づき設定されている¹¹⁾.

基礎底面の水平方向地盤反力係数 k_s は基礎底面の鉛直方向地盤反力係数 k_v の 0.3 倍としているが, これは実測では $1/2 \sim 1/5$ と計測されている ¹²⁾ため,平均的な値として 0.3 と設定したものと考えられ る.また,鋼管矢板基礎以外の柱状体基礎における基礎前背面の鉛直方向せん断地盤反力係数 k_{SVB} お よび基礎側面のせん断地盤反力係数 k_{SVD} においても,同様の理由で基礎前面の水平方向地盤反力係数 k_H の 0.3 倍とし,基礎側面の水平方向せん断地盤反力係数 k_{SHD} は片面当り 0.3 倍として両面で 0.6 倍 と設定したと考えられる.

これら6種類の地盤反力係数については、常時と地震時で地盤反力係数の換算係数αを変えるという、いわゆる地震時2倍則以外に設計荷重状態による違いはない.

基礎形式	ケーソン基礎 地中連続壁基礎	深礎基礎	鋼管矢板基礎		
基礎底面の 鉛直方向 地盤反力係数 <i>k_v</i> 基礎底面の	$k_{\nu} = k_{\nu 0} \left(\frac{B_{\nu}}{0.3} \right)^{-3/4}$ (1) k_{ν} : 鉛直地盤反力係数 (kN/m ³) $k_{\nu 0}$: 直径 0.3m 剛体円板による平板 B_{ν} : 基礎の換算載荷幅 (m) $B_{\nu} = \sqrt{A_{\nu}}$ A_{ν} : 鉛直方向の換算面積 (m ²)	載荷試験の値に相当する鉛直方向地盤 $B_{r}=A$ A :基礎本体の底面積 (m ²)	反力係数 (kN/m ³) $B_{\nu} = D_0$ D_0 :鋼管矢板 1 本の外径 (m)		
水平方向 地盤反力係数 <i>ks</i>	<i>k_s=0.3k_V</i> <i>k_s</i> :基礎底面の水平方向せん断地盤.	反力係数 (kN/m³)			
基礎前面の 水平方向 地盤反力係数 <i>k_H</i>	$k_{H} = \alpha_{k} k_{H0} \left(\frac{B_{H}}{0.3}\right)^{-3/4} (2)$ $k_{H} : 基礎前面の水平方向地盤反力 係数 (kN/m3) a_{k} : 施工法の違いによる補正係数 で,ケーソン基礎でコンタクト グラウトを行う場合・地中連続 壁基礎は a_{k} = 1.5, f - Y - Y - X = 礎でコンタクトグラウトを行わない場合は a_{k} = 1.0k_{H0} : i = i = 0.3 m 0 剛体円板による 平板載荷試験の値に相当する 水平方向地盤反力係数 (kN/m3) B_{H} : 基礎前面の換算載荷幅(m)で, B_{H} = B_{e} (\leq \sqrt{B_{e} I_{e}})B_{e} : 基礎の有効前面幅 (m)L_{e} : 基礎の有効根入れ深さ (m)$	$k_{H\theta\mu} = \alpha_{H\theta}\mu k_{H}$ (3) $k_{H\theta\mu}$: 斜面と隣接杭の影響を考慮し た水平方向地盤反力係数 (kN/m ³) $\alpha_{H\theta}$: 斜面の影響による水平方向地 盤反力係数に関する補正係数 $\alpha_{H\theta}=0$ (0 ≤ α_{H} ≤ 0.5) =0.3log10 α_{H} +0.7(0.5 ≤ α_{H} ≤ 10) =1.0 (10 ≤ α_{H}) μ : 隣接杭の影響による水平方向 地盤反力係数に関する補正係 数 $\mu = \frac{1}{6}\sqrt{\left(\frac{P_{1}}{D}+1\right)\left(\frac{P_{2}}{D}+1\right)}$ k_{H} : 基礎前面の水平方向地盤反力 係数 (kN/m ³). 式(2)を用い α_{k} は 1.5 として算出する.	$k_{H1} = (1 + \alpha_H)k_H \left(\frac{y}{y_0}\right)^{-1/2}$ (4) $k_{H1} : ひずみ依存性を考慮する場合 の水平方向地盤反力係数 (kN/m3) \alpha_H : 井筒部側面の水平方向せん断 地盤反力,内部土の抵抗による 分担等を含めた割増係数,載荷 試験結果に対する解析に基づ き 1.0 としてよい. k_H : 基礎前面の水平方向地盤反力 係数 (kN/m3).式(2)を用い\alpha_kは 1.5 として算出する.y : 設計上の地盤面での基礎の水 平変位 (mm).ただし,10mm 以下の場合は10mm とする. y_0 : 基準変位で, 一般に基礎幅の 1%とする.ただし,50mm を上 回る場合には50mm とする.$		
基礎側面の 水平方向 せん断地盤反 力係数 <i>ksHD</i> 基礎前背面の 鉛直方向 せん断地盤反 力係数 <i>ksyB</i>	k_{SHD} =0.6 k_{HD} $k_{HD} = \alpha_k k_{H_0} \left(\frac{D_H}{0.3}\right)^{-3/4}$ k_{SHD} : 基礎側面の水平方向せん断地盤反力係数 (kN/m ³) k_{HD} : 基礎側面の水平方向地盤反力係数 (kN/m ³) D_H : 基礎側面の換算載荷幅 (m) で, $D_H = D_e$ ($\leq \sqrt{D_e L_e}$) D_e : 基礎の有効側面幅 (m) k_{SVB} =0.3 k_H k_{SVB} : 基礎前背面の鉛直方向せん断地盤反力係数 (kN/m ³)				
基礎側面の 鉛直方向 せん断地盤反 力係数 <i>k_{svp}</i>	k _{SVD} =0.3k _{HD} k _{SVD} :基礎側面の鉛直方向せん断地				

表 2.1.3 H24 道示における柱状体基礎の地盤反力係数の推定式

2.1.5 地盤反力度の上限値

表 2.1.4 に H24 道示における柱状体基礎の地盤反力度の上限値を示す.

ケーソン基礎,地中連続壁基礎,深礎基礎および鋼管矢板基礎の地盤抵抗要素モデルは,常時・暴 風時および L1 地震時における基礎底面の鉛直方向地盤反力および基礎底面の水平方向せん断地盤反 力を除き,地盤反力度の上限値を設定し基礎をバイリニア型モデルとしている¹³⁾.

基礎底面の鉛直地盤抵抗について、ケーソン基礎および深礎基礎では常時・暴風時および L1 地震時において許容鉛直支持力度の上限値が定められている.L2 地震時において、基礎底面が砂質土、砂れき又は粘性土の場合は、基礎底面の極限支持力度を上限値とし、ケーソン基礎、深礎基礎で基礎底面が岩盤の場合は、既往の 5m 以深の硬岩及び軟岩に対する平板載荷試験結果に基づき提案された値¹⁴が上限値として定められている.また、地中連続壁基礎では、L2 地震時で基礎底面地盤の極限支持力度、鋼管矢板基礎では、鋼管杭に準じ鋼管矢板先端の極限支持力度が上限値とされている.

基礎底面のせん断地盤反力度の上限値 p_{su} は,基礎底面と地盤との間に働くせん断抵抗力 H_u を基礎 底面の有効載荷面積 A_e で除したものであり(表 2.1.4 中の式(5)),地中連続壁基礎のみ異なる式(表 2.14 中の式(6))のように見えるが、これは内部土とのせん断抵抗力を考慮したためであり、その意図 することは同様である.

ケーソン基礎および地中連続壁基礎の常時・暴風時および L1 地震時における基礎前面の水平方向 地盤反力度の上限値は,地盤反力度の上限値の抵抗領域として3次元的な広がりを考慮していない.

一方で,L2 地震時においては上限値 *p_{Hu}*の算出において3次元的な広がりを考慮している(表 2.1.4 中の式(7)). これは,柱状体基礎の最大水平地盤反力度に関する模型実験¹⁵⁾結果に基づき,基礎前面の水平抵抗に地盤抵抗の3次元的な広がりを考慮したものである.

次に,受働土圧強度もしくは最大周面摩擦力度(ケーソン基礎,地中連続壁基礎のみ)を減じる補 正係数が乗じられている.この補正係数は,過度な地盤の塑性化を生じさせないよう,変位を大きめ に評価する安全余裕として定められたものと考えられるが,値の根拠は必ずしも明確ではない.また, 地盤反力度の上限値を安全側に補正することにより,設計計算で得られる応答が平均的な挙動から乖 離することとなる.

深礎基礎においては,斜面のすべり土塊の概念から算出した極限水平支持力 R_q を深さ方向に微分し て算出した受働土圧強度 p_p とし(表 2.1.4 中の式(8)),常時・暴風時および L1 地震時,L2 地震時と もに3次元的な広がりを考慮している.なお,基礎周辺地盤が堅固な岩盤の場合,ピーク強度後の残 留強度が著しく低下する傾向にあるため,基礎前面地盤が塑性化するまでの受働土圧強度と塑性化し た後の受働土圧強度とを使い分ける必要がある⁴⁾.具体的には,図 2.1.2 に示すように,土塊のすべ りに基づく塑性化範囲の極限抵抗力 R_0 (kN)は式(2-1)により求めるが,塑性化範囲のせん断抵抗角 ϕ_{res} および c_{res} はピーク強度と異なる残留強度を用いることとしている.

$$R_0 = \frac{(\cos\alpha_0 + \sin\alpha_0 \tan\phi_{res})W_0 + c_{res}A}{\sin\alpha_0 - \cos\alpha_0 \tan\phi_{res}}$$
(2-1)

図 2.1.2 深度 zo における塑性化範囲のすべり土塊の概念(塑性化後抵抗)

基礎周面(側面および前背面)の水平方向せん断地盤反力度および鉛直方向せん断地盤反力度は, 基礎形式ごとに設定された最大周面摩擦力度であるが,深礎基礎においては,表 2.1.4 に示すように, ケーソン基礎および地中連続壁基礎とは異なる補正係数を採用している.これは水平支持力の照査と しての位置付けだったため,鉛直支持力照査と同じ安全率を適用してきたことによる.

このように、柱状体基礎の地盤反力度の上限値やその補正係数は、常時・暴風時および L1 地震時 や L2 地震時といった設計ケースや基礎形式によって異なる値を採用している. したがって、平均的 な挙動を捉えるという観点で、各荷重条件での設計計算モデルがどのような傾向となっているか明ら かにする必要がある.

御然左右甘林	調唱 「常時・暴風時およびLI 地震時】 規定なし 「相込みに対して) qu・h (押込みに対して) 零 (引抜きに対して) qu:鋼管失板先端の極限支持力度	規定なし(線形)	 【常時・暴風時・L1 地震時】 規定なし (ひずみ依存性を考慮した線形) (Dun = 4 pu pun = 4 pu pun = 4 pu pun = 2 pu pun = 4 p
<u> </u>	 「常時・暴風時・L1 地震時】 ◆許容鉛直支持力度の上限(常時) (砂れき): q_a=48D/+700 (砂れき): q_a=48D/+700 (砂): q_a=48D/+700 (砂): q_a=48D/+400 (砂): q_a=48D/+400 (砂): q_a=48D/+400 (砂): a_a=48D/+400 (砂): a_b=2500 寒風時・L1 地震時 3000 (砂1き・砂)◆基礎底面地盤の極限支持力度 q_a q_a= a_b (acN_c+1/2h)(BN_c+y₂D,N_a) a_b: 基礎底面地盤の極限支持力度の低減係数 (敵告) 7500 (常時の 3 倍) (硬告) 7500 (常時の 3 倍) 	「 席時・泰風時・L1 地震時 】 規定なし 【L2 地震時】 ◆下式で算出される受動土圧強度 p ₃₄ =H ₄ A ₆ (5)	【常時・暴風時・L1 地震時】 • 受働土圧強度を補正係数で除した値 常時:3 暴風時・L1 地震時:2 受動土圧強度 $p_{\mu} = \frac{3R_{\theta}}{c^{2}D} R_{q} = \frac{W(\cos \alpha_{s} + \sin \alpha_{s} \tan \beta) + cA}{\sin \alpha_{s} - \cos \alpha_{s} \tan \beta}$ (8) $p_{\mu}: 深度 z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深度 z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深度 z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深度 z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深度 z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深e z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: 深e z ot treader - cos \alpha_{s} \tan \beta$ $R_{\mu}: \Re = \frac{W(\cos \alpha_{s} + \sin \alpha_{s} \tan \beta) + cA}{\sin \alpha_{s} - \cos \alpha_{s} \tan \beta}$ (8) $p_{\mu} = \frac{\partial R_{\mu}}{\partial z} R_{\mu} = \frac{W(\cos \alpha_{s} + \sin \alpha_{s} \tan \beta) + cA}{\sin \alpha_{s} - \cos \alpha_{s} \tan \beta}$ (8)
14 中学校 14 14	$_{uv}$ 「常時・暴風時・L1 地震時] 規定なし ◆ 基礎底面 地盤の極限支持力度 q_{u} (砂れき及び砂(N ² 30)) $q_{d} = 3000$ (良好な砂力き及び砂(N ² 50)) $q_{d} = 300$ (粘性上 N ² 20, $q_{u} \ge 0.4 \text{N/mm}^{2})$ $q_{d} = 3q_{u}$ $q_{u} : - 軸距縮強度(\text{N/m}^{2})$ N: 標準員入試驗の M m m m	「宮時・泰風時・L1 地震時」 規定なし [12 地震時] ◆下式で算出される受動士圧強度 $p_{aa} = c_{\mu} + p_{\mu} \tan \phi_{\mu} + \frac{1}{4} (A_{\mu}c + W_{\mu}^{*} \tan \phi)$ $p_{aa} = c_{\mu} + p_{\mu} \tan \phi_{\mu} + \frac{1}{4} (A_{\mu}c + W_{\mu}^{*} \tan \phi)$ $c_{\mu} : 悲魂底面と地盤との間の付着力 p_{\mu} : 悲魂底面と地盤との間の摩擦角 A_{\alpha} : 悲魂底面と地盤との間の摩擦角 A_{\alpha} : 悲魂底面と地盤との間の摩擦角 M_{\mu} : 悲魂底面か有効嗽荷面積 (内部士含まず)r : 北雄底面か自の料着力 W_{\mu} : 基礎底面からの+20 内部士合有効重$	[常時・暴風時・L1 地震時] • 受働士圧強度又は最大周面摩擦力度を補正係数 で除した値 常時:1.5 暴風時・L1 地震時 : 1.1 最大周面摩擦力度 (砂質士) $f = \min[SN, (c+p_0 \tan \varphi)] \leq 200$ (粘性土) $f = (c+p_0 \tan \varphi) \leq 150$ (粘性土) $f = (c+p_0 \tan \varphi) \leq 150$ (粘性土) $f = (c+p_0 \tan \varphi) \leq 150$ (粘性土) $f = (c+p_0 \tan \varphi) \leq 150$ (指性土) $f = (c+p_0 \tan \varphi) \leq 150$ (出土地震時] ~ 下式により算出 $p_{ia} = \alpha_p p_{FP}$ $p_{ia} = \alpha_p p_{FP}$ $p_{ia} = \alpha_p p_{FP}$
たことに甘水	$\gamma = \gamma - \gamma - \chi$ weite [常時・暴風時・L1 地震時] (砂れき・砂) 寺容銘前置支持力度の上限(常時) = $\lambda = \forall \mp \gamma \beta (砂れき): q_a=48D + 700$ = $\lambda = \forall \mp \gamma \beta (砂): q_a=48D + 400$ $\pi 7 \vee (砂れき): q_a=48D + 400$ $\pi 7 \vee (砂れき): q_a=48D + 300$ (砂岩)常時 2500, 暴風時・L1 地震時 3750 (12 地震時) (砂れき - 砂) - 基礎低面 地鑑の極限支持力度 q_a $q_a = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = ± = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \frac{1}{2}$ ($\psi h_i = \gamma - \psi$) - 基礎低面 地盤の極限支持力度 q_a $q_a = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + \gamma_2 D_N$ $\alpha_i = \frac{1}{2}$ ($\psi h_i = 2 N_c + 1/2 \rho_1 BN_c + 2 N_c N_i$); $z_i + \gamma_i \rho_i \otimes \psi_i$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + 2 N_c N_i$); $z_i + \gamma_i \rho_i \otimes \psi_i$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + 2 N_c N_i$); $z_i + \gamma_i \rho_i \otimes \psi_i$ $\alpha_i = \pm = acN_c + 1/2 \rho_1 BN_c + 2 N_c N_i$; $z_i + \gamma_i \rho_i \otimes \psi_i$ $\alpha_i = \pm = acN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm acN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm acN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm acN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$ $\alpha_i = \pm aCN_c + 1/2 P_1 = 2 N_c$	【 席時・泰風時・11 地震時】 規定なし [12 地震時] ◆下式で算出される受動士圧強度 $p_{ai}=H_i/A_i$ (5) $p_{ai}: 基礎底面のせん断地盤反力度の上限値H_i: 基礎底面の有効載荷面積A_i: 基礎底面の有効載荷面積$	[常時・暴風時・L1 地震時] ◆受働土圧強度又は最大周面摩擦力度を補正係 数で除した値 常時:1.5 暴風時・L1 地震時:1.1 最大周面摩擦力度 (砂質士) $f = 1.5$ 暴風時・L1 地震時:1.1 最大周面摩擦力度 (砂質士) $f = 1.5$ (モPotamp)] ≤ 50 (粘性土) $f = 0.5$ (f
甘林亚生	基礎店面の 始度方向 (kN/m ³)	基礎底面の 水平方向 地盤反力度 (kN/m ³)	基礎前面の 水平方向 北盤反力度 (kN ^m ³)

表 2.1.4 H24 道示における柱状体基礎の地盤反力度の上限値(その1)

鋼管矢板基礎	で除した値 で除した値 約] ≤ 200 [常時・暴風時・LI 地震時] 規定なし ϕ)] ≤ 200 [1.2 地震時] $\bullet rr式により算出\bullet rr式により算出\bullet rr式により算出\bullet rr式により算出\bullet rrd (2200)問面摩擦力度正通度\bullet r 1 - 1 地震時\bullet r 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$	$y_{rese = 1.00}$ 現定なし [1.2 地震時]	c : 粘着刀(kN/m²) ゟ・++2,断括計角 (°)
	度を補正係 度を補正係 (常時・暴風時・L1 地震時] 度を補正係数($c+p_0 \tan \phi$ (約性上) $f=c+p_0 \tan \phi \leq 150$ (約性比) $f=c+p_0 \tan \phi \leq 150$ (載 世) $f=c+p_0 \tan \phi$ 塑性成 $f=ccac+p_0 \tan \phi$ 型性成 $f=ccac+p_0 \tan \phi$ 型性成 $f=cacac-p_0 \tan \phi$ f: : 是大周面摩擦力度 f: : 是大周面摩擦力度 f: : 是大昭面摩擦力度 f: : 是大昭面摩擦力度 f: : 是大昭面摩擦力b cac: : 出つ發留性心的抵抗角 cac: : 出つ發留性心的抵抗角 cac: : 出の發留能着力 f=cacy the mate for $f=cacyf=tacy for f=cacyf=tacy for f=cacy for f=cacy for an \phif=f=tacy for f=cacy fac for f=cacy fac for f=cacy fac for f=cacyf=tacy for f=cacy fac for f=cacy fac for f=cacy fac for f=cacy fac fac fac fac fac fac for f=cacy fac fac fac fac fac fac fac fac fac fac$	第1元戦 Jo = Creat P0 entry 第1)度を補 ただし、0 ≤ cras ≤ c3 時) 1.1	
11000000000000000000000000000000000000	前正 【常時・暴風時・L1 地震時】 載正 ◆受動土圧強度又は最大周面摩擦力 数で除した値 (約置上)/= min[5N, (c+ p_0 tan p)]≤ (粘性土)/= c+ p_0 tan p ≤150 / 治性土)/= c+ p_0 tan p ≤150 / 治性力)= c+ p_0 tan p ≤150 前正係数 前正係数 (活時) 1.5 (暴風時・L1 地震時 0 (治性土)/= c+ p_0 tan p ≤150 (粘性土)/= c+ p_0 tan p ≤150	 【常時・暴風時・LI 地震時】 	
ケーソン基礎	【常時・暴風時・L1 地震時】 ◆受動土圧強度又は最大周面摩擦力度を補 係数で除した値 (砂質土) $f=\min[1N, 0.5(c+p_0 \tan p_0)] \leq 50$ (約性土) $f=0.5(c+p_0 \tan p_0) \leq 100$ (約性土) $f=0.5(c+p_0 \tan p_0) \leq 100$ (約性土) $f=0.5(c+p_0 \tan p_0) \leq 100$ (約件土) $f=0.5(c+p_0 \tan p_0) \leq 500$ (約性土) $f=0.5(c+p_0 \tan p_0) \leq 500$ (約性土) $f=0.5(c+p_0 \tan p_0) \leq 100$	 【常時・暴風時・L1 地震時】 ◆受動土圧強度又は最大周面摩擦力度: 補正係数で除した値 (砂質土) f= min[1N, 0.5(c+p₀tanφ)]≤50 (粘性土) f= 0.5 (c+p₀tanφ) ≤ 100 補止係数 補正係数 (常時) 3.0 (暴風時・L1 地震時) 1.1 (常時) 3.0 (暴風時・L1 地震時) 1.1 [L2 地震時] ◆最大周面摩擦力度 (砂質土) f= min[1N, 0.5(c+p₀tanφ)]≤50 (粘性土) f= 0.5 (c+p₀tanφ) ≤ 100 	
基礎形式	 基礎側面の 水平方向 水平方向 地込所 (KN/m³) (KN/m³) (KN/m³) (KN/m³) 	基礎側面の 給直方向 せん断 地盤反力度 (kN/m ³)	

表 2.1.4 H24 道示における柱状体基礎の地盤反力度の上限値(その2)

2.2 鉛直荷重に対する安定照査の概要と課題

2.2.1 鉛直荷重に対する安定照査の概要

H24 道示では,鉛直荷重に対して基礎底面の鉛直地盤抵抗で抵抗すること,地中連続壁基礎の場合 には自重以外の鉛直荷重に対して外周面及び内周面の鉛直せん断地盤抵抗も考慮できることが規定さ れている.また,周面地盤が良質で施工の乱れも少ないと考えられるケーソン基礎や,自立性の高い 地山で地山のゆるみが抑えられ,地山と基礎の一体化が図られる深礎基礎に対しても,鉛直せん断地 盤抵抗を考慮してよいとされている.

しかしながら,柱状体基礎の場合,一般には基礎底面の鉛直地盤抵抗によって荷重を負担すること が多く,また,側面の鉛直せん断地盤抵抗を考慮する場合においても,底面の方が多くの荷重を負担 すると考えられる.

以上の理由から、本節は基礎底面の鉛直地盤抵抗に限定して述べることとする.

(1) 砂,砂れき,粘性土を支持層とする場合

H24 道示における柱状体基礎の鉛直方向の安定照査方法(常時・暴風時およびL1 地震時)を表 2.2.1 に示す.基礎形式によって照査内容に違いはあるが,いずれの基礎形式に対しても基礎底面の鉛直地 盤反力度が許容鉛直支持力度を超えないことを照査する(表 2.2.1 の照査①).ケーソン基礎及び深 礎基礎においては,許容鉛直支持力度の照査に加え,過大な沈下(変位)の発生を防止する観点から 地盤反力度の上限値の照査(表 2.2.1 の照査②)を行う.この照査は常時・暴風時およびL1 地震時の いずれに対しても行うが,荷重条件により安全率や上限値は異なる.

ケーソン基礎の極限支持力度の推定式は、平成8年道示(以下,H8道示)¹⁶に規定されていた直接 基礎の極限支持力推定式を底面積で除して支持力度に換算したものである.なお、直接基礎の極限支 持力推定式については、平成14年道示(以下,H14年道示)において寸法効果の影響を考慮するため の補正係数が加えられたが、ケーソン基礎に対しては寸法効果の影響を定量的に評価できるだけの試 験結果がなかったことなどから、H24道示まで変更されていない.深礎基礎についてもケーソン基礎 に準じて定めることとされている.

地中連続壁基礎の極限支持力度は、先端地盤の状況に応じて場所打ち杭の極限支持力度や単壁式の 壁式基礎の載荷試験結果に基づいた値が定められており、鋼管矢板基礎の極限支持力度は、その施工 方法が鋼管杭と同様であることから、鋼管杭工法の極限支持力度の算出方法に準じて算出することと なっている.

いずれの基礎に対しても,許容支持力度は極限支持力度に安全率(常時:3,暴風時およびL1地震時:2)を乗じて求めることとされている.

ケーソン基礎の地盤反力度の上限値は、直接基礎の最大地盤反力度の上限値に根入れ効果として 48 D_f (D_f は基礎の有効根入れ深さ(m))を加えた値とされているが、これは昭和55年道示(以下、S55 道示)¹⁷から記載されている値である.この48という数字はせん断抵抗角 ϕ =30°の砂質地盤の支持 力係数 N_q (=18)に単位体積重量(8kN/m³)を乗じ、常時の安全率3で除した値(18×8/3)である.なお、 単位体積重量はS55 道示 I 表-解 2.2.1 に示される、自然地盤の砂質土の値(1.7 t/m³)から地下水位以下 にある土の単位重量として 0.9 t/m³を減じたもの((1.7-0.9)=0.8 t/m³≒8 kN/m³)であると考えられる. 図 2.2.1 に概念図を示す.

また,L1 地震時には常時の地盤反力度の上限値を1.5 倍した値を上限値とするが、これは許容支持力の安全率の比率と合わせたものではないかと推察される.

(2) 岩盤を支持層とする場合

いずれの基礎形式に対しても基礎底面の鉛直地盤反力度が許容鉛直支持力度を超えないことを照査 することは(1) と同様であるが、以下に示す点が異なる.

- 1) 岩盤を支持層とする深礎基礎の地盤反力度の上限値は,5m 以深の硬岩及び軟岩に対する平板載 荷試験結果に基づき設定されており、ケーソン基礎もこれに準じて定められている.
- 2) 地中連続壁基礎,鋼管矢板基礎について,岩盤を支持層とする場合の照査は規定されていない.

		支持地盤と照査項目等			
		砂,砂れき,粘性土	岩盤		
	照查①	基礎底面の鉛直地盤反力度 ≦許容鉛直支持力度 (静力学公式による理論値)	基礎底面の鉛直地盤反力度 ≦許容鉛直支持力度 (静力学公式による理論値)		
ケーソン基礎	照査②	基礎底面の鉛直支持力度 ≦地盤反力度の上限値 (平板載荷試験より求めた経験値に 有効根入れを考慮)	基礎底面の鉛直支持力度 ≦地盤反力度の上限値 (深礎基礎に準じる)		
	照査①	基礎底面の鉛直地盤反力度 ≦許容鉛直支持力度 (静力学公式による理論値)	基礎底面の鉛直地盤反力度 ≦許容鉛直支持力度 (静力学公式による理論値)		
深礎基礎	照査②	基礎底面の鉛直支持力度 ≦地盤反力度の上限値 (ケーソン基礎に準じる)	基礎底面の鉛直支持力度 ≤地盤反力度の上限値 (5m以深の硬岩及び軟岩に対する 平板載荷試験結果に基づく)		
地中連続壁基礎	照査①	基礎底面の鉛直地盤反力度 ≦許容鉛直支持力度 (場所打ち杭の値および単壁式の 壁式基礎の載荷試験結果に基づく)	規定なし		
鋼管矢板基礎	照査①	基礎底面の鋼管矢板1本の鉛直反力 ≦鋼管矢板1本の許容鉛直支持力 (鋼管杭に準じた経験値)	規定なし		
照査の意図		地盤の支持力の喪失を防止する. 過大な沈下及び不同沈下を避ける.	岩の地盤定数と支持力推定の不確実性を 踏まえて最大強度点に対する照査を行う.		

表 2.2.1 H24 道示における柱状体基礎の鉛直方向の照査方法(常時・暴風時および L1 地震時)

2.2.2 鉛直荷重に対する安定照査の課題

近年の研究成果により、直接基礎や杭基礎については、それぞれの照査で達成すべき目的が明確に され、それに伴って対応する照査の考え方が提案されている.すなわち、直接基礎・杭基礎ともに、 今までの設計においては、常時に対しては持続的に作用する荷重に対して過度な変位が生じないこと、 L1 地震時に対しては地盤抵抗の可逆性を確保し、有害な残留変位が生じないことを担保しているもの と解釈された.その結果、例えば直接基礎の常時における鉛直荷重に対する照査では、ケーソン基礎 や深礎基礎と同様に、地盤反力度の上限値の照査と極限支持力に対して安全率を乗じて求める許容支 持力に対する照査の両方が行われていたが、持続的に作用する荷重に対して過度な沈下を生じさせな いようにするためには地盤反力度の上限値に対する照査が適切であることが載荷試験結果との比較等 から明らかになっている.また、直接基礎及び杭基礎のいずれについても、L1 地震時においては基礎 の応答の可逆性を担保するという観点から、極限支持力ではなく降伏支持力を限界状態とする照査が 提案されている.その際、近年の載荷試験結果を分析しなおし、降伏支持力を精度よく評価できるよ うな推定式が提案されている.柱状体基礎に対しても照査の位置付けを明確にし、必要に応じて特性 値の推定式を見直したうえで、照査目的に照らして適切な照査を提案していくことが必要である.

2.3 水平荷重に対する安定照査の概要と課題

2.3.1 常時・暴風時およびL1 地震時

H24 道示においては常時・暴風時および L1 地震時に作用する水平荷重に対し,2.1 に示した 6 種類の地盤抵抗を全て考慮できることとされている.H24 道示における柱状体基礎の水平方向の安定照査は、表 2.3.1 に示すようにまとめられるが、いずれの基礎に対しても、設計地盤面における水平変位の照査と、基礎底面の滑動の照査が行われる.ただし滑動の照査については、最近の研究成果により、根入れの浅い場合を除いては不安定にならないことなどから、基礎形状によっては照査の必要がないことが提案されている¹³.

柱状体基礎の水平変位の照査については、杭基礎と同様に橋脚基礎の場合は基礎幅の 1%(上限 50mm),橋台基礎の場合は常時は 15mm,L1 地震時は基礎幅の 1%(上限 50mm)を許容変位とし、応答変位が許容変位を上回らないことを照査する.この許容変位は、杭基礎に準じて、基礎の挙動が弾性範囲内にとどまるようにすることを意図して定められたものであるが¹⁰,柱状体基礎に関する載荷試験結果の分析を行うなどにより,柱状体基礎の実挙動に照らした検討が必要であると考えられる.

また,文献¹⁰⁾の検討においては,弾性限界点を評価するにあたり,地盤抵抗の塑性化と基礎の部材 の塑性化の両方のデータを踏まえて提案されていた.しかしその後,この照査は安定照査であること から,弾性限界点は地盤抵抗にのみ着目して定めるべきであるとされ,杭基礎に対しては地盤抵抗の 塑性化のみに着目して弾性限界点の再評価と対応する許容変位が提案されている¹⁾.したがって,柱 状体基礎についても杭基礎と同様の考え方による評価が必要となる.さらに,2.2 で示したように, それぞれの照査の意図を明確にした上で適切な設計上の限界値を提案する必要がある.

基礎形式	水平変位の照査	基礎底面のせん断抵抗の照査 (滑動の照査)
ケーソン基礎		
地中連続壁基礎	設計地盤面位置の基礎直角方向変位	基礎底面の設計方向作用力 ≦ 設計最大せん断抵抗力
深礎基礎	≧ 設計弾性販外変位 (基礎幅の1%,最大 50mm)	
鋼管矢板基礎		規定なし
照査の意図	地盤の限界変位(地盤抵抗の可逆性の担 保)に対して安全余裕を確保する.	最大強度点に対して安全性を確保する.
備考		深い基礎の場合は照査不要

表 2.3.1 H24 道示における柱状体基礎の水平方向の照査方法

2.3.2 L2 地震時

H24 道示では,L2 地震時に作用する荷重に対し,基礎と地盤を一体ととらえた基礎全体系で照査し, 原則として基礎の降伏に達しないことを照査する.ここにいう基礎の降伏とは,地盤抵抗の塑性化や 基礎本体の部材抵抗の塑性化に伴って上部構造からの慣性力が作用する位置における水平変位が急増 するときであり,全ての基礎形式で共通である(表 2.3.2 参照).

杭基礎における降伏の目安は、載荷試験などに基づいて、押込み側の全ての杭の支持力が極限支持 力に達した時、又は全ての杭が部材の曲げ降伏に達した時と定義されている.一方、柱状体基礎につ いてはケーソン基礎、鋼管矢板基礎に対しては降伏の目安が示されているが、地中連続壁基礎及び深 礎基礎については示されていない.また、ケーソン基礎の降伏の目安は H8 道示改定時に一般的な地 盤条件、標準的なケーソン形状に対しての計算結果から近似的に規定されたものであり、例えば軟岩・ 土丹等の硬い地盤中に深く根入れする場合や、根入れ深さと基礎幅の比(*L*_e/*B*)が一般的なケーソン 基礎と異なる場合などといった、ケーソン基礎が特殊な地盤中に設置される場合やケーソン基礎の形 状が特殊な場合等については、基礎の全体挙動における水平荷重 *P*-水平変位 *S* の関係を確認したう えで、log*P*-log*S*法等で設定する必要があるとしている.

したがって、ケーソン基礎以外の柱状体基礎も含め載荷試験結果を分析し、基礎の降伏の目安について検討する必要があると考えられる.

基礎形式	降伏の定義	降伏の目安
杭基礎		次のいずれかの状態に最初に達するとき. 1)全ての杭において杭体が塑性化する. 2)一列の杭頭反力が押込み支持力の上限値に達する.
ケーソン 基礎	基礎の塑性化,地盤 の塑性化又は基礎の 浮上りにより,上部 構造の慣性力の作用 位置での水平変位が 急増し始めるとき.	 1)から3)に示すいずれかの状態に最初に達するとき. 1) 基礎の塑性化 i) 円形断面:基礎本体水平断面のうち,90°の円弧内に含まれる全ての軸方向鉄筋が降伏する. ii) 長方形断面:基礎背面側の壁における全ての軸方向鉄筋が降伏する. iii) 小判形断面:基礎背面側の壁が半円の場合はi),平面の場合はi), 2) 基礎前面地盤の塑性化 前面地盤の塑性化 前面地盤の塑性領域率が 60%に達する. 3) 基礎底面の浮上り面積率が 60%に達する.
地中連続壁 基礎		形状が多様であるため,基礎の降伏の目安は設けていない.
深礎基礎		周辺地盤の抵抗特性等に応じて基礎の降伏が著しく変わるため,一律に目 安を示すことは困難.
鋼管矢板基礎	鋼管矢板の塑性化又 は鋼管矢板の鉛直反 力が上限値に達する ことにより,上部構 造の慣性力作用位置 での水平変位が急増 し始めるとき.	 一般には次のいずれかの状態に最初に達するとき. 1) 鋼管矢板の塑性化:外壁鋼管矢板の押込み側の 1/4 範囲の鋼管矢板の縁応力度が降伏点に達する. 2) 基礎底面の極限支持力 1/4 以上の鋼管矢板の先端において,鉛直反力が鋼管矢板先端の 極限押込み支持力に達する. 鋼管矢板の先端において,鉛直反力が鋼管矢板先端の極限押込み 支持力に達したものと浮上りが生じたものとの合計が,全鋼管矢板の60%に達する.

表 2.3.2 H24 道示における柱状体基礎の降伏の定義

2.4 H24 道示における柱状体基礎の安定照査の課題

H24 道示における柱状体基礎の設計計算モデルおよび照査方法の課題を以下にまとめる.

(1)設計計算モデル

柱状体基礎各形式の設計手法は、荷重支持機構等共通する部分が多いにも関わらず、これまで施工 法が確立されてきた歴史的経緯が異なることから、個別の計算モデルが与えられている.

各々の計算モデルの精度確認や、補正係数の根拠を明確にする等の検証を行い計算モデルの統一を 図り、変位レベルや形式によらない平均的な基礎の挙動を、一定の精度で推定できる設計計算モデル を構築する必要がある.

(2)安定照查

常時・L1 地震時の鉛直荷重及び水平荷重に対する安定照査で担保している意図について,近年の研究にて得られた知見に基づき整理し,照査や限界状態,特性値,許容値を適切に定める必要がある.

杭基礎等の整理と整合させる観点から,常時では持続的な荷重に対して過度な変位が生じないこと, L1 地震時では基礎の応答を可逆的な範囲に留めることを目的とした照査体系とする必要がある.

鉛直荷重に対しては常時・L1 地震時の照査として複数の照査が行われているが,照査の目的に鑑み, 照査項目や特性値又は許容値の見直しが必要である.水平荷重に対しては,水平変位の照査のみ行わ れているが,弾性限界変位の再評価及びこれを踏まえた許容変位の再検討が必要である.

また,L2 地震時の安定照査における基礎の降伏の目安については,載荷試験結果データを用いて検証する必要がある.

第3章 水平載荷試験による設計計算モデルの推定精度の検証

3.1 検証内容

H24 道示における柱状体基礎の設計計算モデルの推定精度を検証するために,水平載荷試験の再現 解析を行った.分析を行うために収集した水平載荷試験の概要を表 3.1.1 に,それぞれの水平載荷試 験のモデル図を図 3.1.1 に,各ケースの詳細な地盤条件を表 3.1.2 に示す.なお,表 3.1.1 の周辺地盤 は,各々の載荷試験基礎をその特性長さ 1/β (β:基礎の特性値)の範囲までの深度において,砂質土 層と粘性土層のそれぞれの合計層厚の厚い方を示したものである.

ここで、分析を行う載荷試験は以下の条件を満たすものを選定する.

(1) ワイブルフィッティングで得られた弾性限界点の荷重の1.2 倍以上の荷重が載荷されている.

(2) 地盤に先んじて基礎本体が降伏していない.

(1)は、ワイブル分布曲線式による近似精度をある程度大きな荷重レベルまで確保するための条件と して文献¹⁾を参考に設定した.(2)は、ワイブル分布曲線式による近似で得られる変位急増点が基礎本 体の降伏に起因していないことを担保するための条件である.これは、地盤抵抗の降伏に先んじて基 礎本体が降伏に達した場合には、地盤抵抗から決定されるべき水平変位の限界点が評価できず、安定 に着目して検討する本研究の目的に合致しないためである.

ここで, No.3 ケーソン基礎 (PC ウェル) は条件(1)を満たしていないため,対象から除外した.同様に No.10 および 11 についても条件(1)を満たしていないが,鋼管矢板基礎の試験結果が 2 ケース以外に収集できなかったため,参考として記載する.

したがって,設計計算モデルの推定精度検証のための再現解析は,表 3.1.1 のうち 10 ケース (No.1,2 (ケーソン基礎), No.4,5 (地中連続壁基礎), No.6,7,8,9 (深礎基礎), No.10,11 (鋼管矢板基礎)) に ついて行った.

No.	基礎形式	試験体 平面形状	試験体寸法 (<i>h</i> :高さ)	周辺 地盤	備考
1	ケーソン基礎 (コンタクトグラウト有)	円形	ϕ 1.4m×h 5.3m	粘性土	
2	ケーソン基礎 (コンタクトグラウト有)	円形	ϕ 1.4m×h 6.8m	砂質土	
3	ケーソン基礎 (PC ウェル)	円形	¢ 2.98m×h 24.3m	砂質土	条件(1)を 満たさないため 対象外とする
4	地中連続壁基礎	矩形 (中空断面)	B 3.6m×W4.5m ×h 13.0m(壁厚 0.8m)	粘性土	載荷方向: 3.6m 面に直角
5	地中連続壁基礎	矩形 (充実断面)	$B 1.2m \times W 5.0m \\ \times h 25.0m$	粘性土	載荷方向: 1.2m 面に直角
6	柱状体深礎基礎	円形	$\phi 2.0\mathrm{m} \times h$ 12.0m	砂質土	
7	柱状体深礎基礎	円形	$\phi 2.0\mathrm{m} \times h$ 12.0m	砂質土	
8	柱状体深礎基礎	円形	ϕ 3.0m×h 12.0m	砂質土	
9	柱状体深礎基礎	円形	ϕ 3.0m×h 12.0m	粘性土	
10	鋼管矢板基礎	小判形	9.36m×10.16m <i>h</i> 17.2m	粘性土	条件(1)を 滞たさないが
11	鋼管矢板基礎	小判形	7.396m×18.626m <i>h</i> 43.6m	粘性土	めたっないか 参考として掲載

表 3.1.1 収集した水平載荷試験

鋼管径: φ 1.0m

(j) No.10 鋼管矢板基礎

(k) No.11 鋼管矢板基礎

図 3.1.1 水平載荷試験のモデル図 (その3)

表 3.1.2	水平載荷試験の詳細地盤条件	(その1)

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 <i>φ</i> (°)	粘着力 C(kN/m ²)
\bigcirc	砂質土	0.500	5	15.0	10.0	10.0
2	砂質土	0.200	5	5.0	10.0	10.0
3	粘性土	1.200	1	4.5	8.0	8.5
4	粘性土	0.600	0	1.0	7.5	4.3
5	粘性土	0.300	1	4.5	7.5	7.0
6	粘性土	0.590	1	6.8	17.0	4.0
\overline{O}	粘性土	0.810	1	6.8	17.0	4.0
8	砂質土	0.500	45	7.2	18.0	13.0

(a) No.1 ケーソン基礎 円形 ϕ 1.4m×h 5.3m

(b) No.2 ケーソン基礎 円形 ϕ 1.4m×h 6.8m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 v (kN/m ³)	内部摩擦角 の([°])	粘着力 C(kN/m ²)
① 盛土	砂質土	0.500	5		— —	
② 砂質シルト	砂質土	0.700	5	—	—	—
③ ピート	粘性土	0.800	1	_	_	
④ 砂質シルト	砂質土	1.000	0	_	_	
⑤ 砂質ローム	砂質土	0.700	1	_	_	
⑥ 細砂	砂質土	0.900	1			
⑦ 細砂	砂質土	1.600	1			

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ (kN/m ³)	内部摩擦角 <i>φ</i> (°)	粘着力 C(kN/m ²)
① 砂	砂質土	8.000	20	19.0	20.0	0.0
②シルト	粘性土	3.000	5	16.0	0.0	30.0
③ 砂礫	砂質土	13.300	30	19.0	20.0	0.0
④ 砂礫	砂質土		40	20.0	40.0	0.0

(d) No.4 地中連続壁基礎 □3.6m×4.5m×h14.5m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 <i>q</i> (°)	粘着力 C(kN/m ²)
① 埋土	粘性土	1.800	_	14.5	0.0	10.0
② 砂/シルト	粘性土	3.000		17.0	10.0	10.0
③ シルト	粘性土	1.900		17.0	8.0	8.5
 ④ 砂混じり シルト 	粘性土	1.600		17.0	7.5	4.3
⑤ 砂質シルト	粘性土	0.600		18.0	7.5	7.0
⑥ 砂質シルト	粘性土	1.800		18.0	17.0	4.0
⑦微細砂	粘性土	0.900		18.0	17.0	4.0
⑧ 固結シルト	粘性土	3.700		18.0	18.0	13.0

表	3.1.2	水平載荷試験の詳細地盤条件	(その2	!)
---	-------	---------------	------	----

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 $arphi$ (°)	粘着力 c(kN/m ²)
① 粘土	粘性土	0.900		18.0	0.0	40.0
 ② 砂混じり シルト質粗砂 	砂質土	1.100		18.0	14.0	40.0
③ 粘土	粘性土	2.000	—	17.0	15.0	60.0
④ 粘土	粘性土	2.300		17.0	15.0	60.0
5 細砂/シルト 質細砂	砂質土	3.000		17.0	28.0	0.0
⑥ 細砂/シルト 質細砂	砂質土	3.000	_	17.0	28.0	0.0
 ⑦ シルト質 粗砂/細砂 	砂質土	1.900		17.0	34.0	0.0
⑧ 粘土/シルト	粘性土	4.100	_	17.0	0.0	140.0
⑨ シルト	粘性土	5.500		18.0	30.0	700.0

(e) No.5 地中連続壁基礎 □1.2m×5.0m×h25.0m

(f) No.6 深礎基礎 円形 \$\phi 2.0m \times h12.0m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 $arphi$ (°)	粘着力 c(kN/m ²)
1	砂質土	5.000	3-10	16.0	30.0	26.0
2	砂質土	5.000	10-43	18.0	41.0	60.0

(g) No.7 深礎基礎 円形 ϕ 2.0m×h12.0m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 <i>φ</i> (°)	粘着力 c(kN/m ²)
1	砂質土	5.000	3-10	16.0	32.0	30.0
2	砂質土	5.000	10-43	18.0	40.0	61.0
		(h) No.8	架礎基礎 円差	形 ϕ 3.0m× <i>h</i> 12.0m		

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 $arphi$ (°)	粘着力 c(kN/m ²)
1	粘性土	5.000	2-17	14.0	17.0	80.0
2	岩盤	5.000	50/11	19.0	50.0	270.0

(i) No.9 深礎基礎 円形 ϕ 3.0m×h12.0m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 <i>φ</i> (°)	粘着力 c(kN/m ²)
1	砂質土	8.500	20-35	14.0	34.0	20.0
2	砂質土	1.500	20	19.0	37.0	50.0

表 3.1.2	水平載荷試験の詳細地盤条件	(その3)
---------	---------------	-------

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 $arphi$ (°)	粘着力 c(kN/m ²)
\bigcirc	粘性土	1.000	0.0	17.0	0.0	0.0
2	粘性土	1.000	0.0	17.0	0.0	7.0
3	粘性土	6.500	0.0	17.0	0.0	7.0
4	砂質土	0.142	10.0	18.0	35.0	0.0
5	砂質土	1.858	10.0	18.0	35.0	0.0
6	粘性土	5.000	25.0	17.0	0.0	310.0
\bigcirc	粘性土	1.700	50.0	18.0	0.0	600.0

(j) No.10 鋼管矢板基礎 小判形 9.36m×10.16m×h 17.2m

(k) No.11 鋼管矢板基礎 小判形 7.396m×18.626m×h 43.6m

地層	地層 区分	層厚 (m)	N 値	単位体積重量 γ(kN/m ³)	内部摩擦角 <i>φ</i> (°)	粘着力 c(kN/m ²)
1	砂質土	2.400	5.4	18.0	23.0	0.0
2	砂質土	2.100	8.9	18.0	37.0	0.0
3	砂質土	1.500	8.9	18.0	37.0	0.0
4	粘性土	10.800	4.1	17.0	0.0	56.0
5	粘性土	13.200	9.5	17.0	0.0	118.0
6	砂質土	3.906	5.4	18.0	23.0	0.0
(7)	砂質土	1.494	5.4	18.0	23.0	0.0
8	砂質土	3.200	50.0	18.0	44.0	0.0

3.2 検証結果

図 3.2.1 に水平載荷試験で得られた水平荷重と荷重作用位置の水平変位との関係(荷重変位関係) と,H24 道示モデルの再現解析で得られた荷重変位関係を示す.なお,基礎幅 B は換算基礎幅(H24 道示表-解 9.6.2 に示される B_H)としている.図 3.2.1 の凡例に示す設計計算モデルの詳細を表 3.2.1 の再現解析条件に示す.

図 3.2.1 中の H24 道示モデルのうち,常時・暴風時および L1 地震時のモデルを用いた解析結果は 試験結果を下回る傾向にある.一方,L2 地震時のモデルを用いた解析結果は試験結果をよく再現でき ていることがわかる.

以上より,基礎形式の如何を問わず,地盤反力度の上限値の補正係数により上限値を低減させずに, 地盤反力度の上限値の抵抗領域に3次元的な広がりを考慮したL2地震時のモデルが最も実挙動を忠 実に再現できていることが確認できた.

設計ケース	補正係数 ※1	抵抗領域 ※2	水平方向地盤反力係数 <i>k_H</i>
H24 道示(常時)	1.5	3 次元的な広がりを考慮しない	H24 道示
H24 道示(L1 地震時)	1.1	3次元的な広がりを考慮しない	H24 道示
H24 道示(L2 地震時)	—	3 次元的な広がりを考慮する	H24 道示

表 3.2.1 再現解析条件

※1:地盤反力度の上限値に用いる補正係数(表 2.1.4 参照). 深礎基礎は表 2.1.4 の通り.

※2:地盤反力度の上限値の抵抗領域

図 3.2.1 水平載荷試験結果および H24 道示モデルによる再現解析の荷重変位関係 (その2)

第4章 水平載荷試験による弾性限界点の検討

4.1 検討内容

杭基礎では文献¹⁾において,弾性限界点に対応する水平変位を多数の原位置載荷試験データに基づき評価していることは**第2章**で述べた.そこで,柱状体基礎についても水平挙動における地盤抵抗の 弾性限界点を評価するために水平載荷試験データの分析を行った.分析に用いた水平載荷試験は,3 章の分析に用いた8ケースである(荷重変位関係を図 4.1.1 に示す).

図において,縦軸は水平荷重 P(kN)を極限荷重 $P_u(kN)$ で除し,横軸は水平変位 d(mm)を荷重方向 に直交する基礎幅 B(mm)で除した,ともに無次元化した値である.ここで,極限荷重 $P_u(kN)$ はワイ ブル分布曲線式より算出した P_{uw} (5.1 に示す式 (9) 参照),基礎幅 Bは換算基礎幅 B_H (3.2 参照) と している.

検討においては,柱状体基礎の8ケースに加え,文献¹⁾において単杭の地盤水平抵抗の弾性限界点 の分析に用いた載荷試験データを含めて分析を行うこととした.なお,場所打ち杭は杭体抵抗が地盤 抵抗に先行して弾性限界に達すると考え,対象データから除外している(本文3.1の条件2)と同義). 表 4.1.1 に分析の対象としたデータの一覧表を示す.

No.	基礎形式	試験体平面形状	験体平面形状 試験体寸法(h:高さ)	
1	ケーソン基礎	円形	ϕ 1.4m×h 5.3m	粘性土
2	(コンタクトク゛ラウト有)	円形	ϕ 1.4m×h 6.8m	砂質土
4	地中海结路甘林	地中連結時其礎 矩形 (中空) B 3.6m×W4.5m×h 13.0m (壁厚 0.8m)		粘性土
5	地中建航空基礎	矩形 (充実)	$B 1.2 \mathrm{m} \times W 5.0 \mathrm{m} \times h 25.0 \mathrm{m}$	粘性土
6		円形	<i>ϕ</i> 2.0m× <i>h</i> 12.0m	砂質土
7	7 8 柱状体深礎基礎	→ 比体源2株世2株 円形 Ø2.0m×h12.0m		砂質土
8		円形	形 Ø 3.0m×h 12.0m	
9		円形	<i>ϕ</i> 3.0m× <i>h</i> 12.0m	粘性土

図 4.1.1 水平載荷試験の荷重変位曲線
	基础	 遊形式		Like Mark on		基礎		方	法1 ワイブル	方法	去2 logP-logS	方法	去3 変位急増							
(C: NC:∌		复合杭, ‡複合杭)	杭の 施工方法	種類	断面	幅 (m)	載荷方法	採否	不採用 理由	採否	不採用 理由	採否	不採用 理由	備考						
		ケーソ	ン基礎	粘性土	円形	1.40	繰返し載荷	0	—	0	—	×	最大荷重時 変位間隔							
		ケーソ	ン基礎	砂質土	円形	1.40	繰返し載荷	0	_	0	_	0	—							
		РСウ	エル	砂質土	円形	2.98	単調載荷	×	3.1 条件(1) を満たさない	×	急折点の 確認困難	×	単調載荷 のため除外							
1	È	地中運	車続壁	粘性土	空矩	3.60	繰返し載荷	0	—	0	—	×	残留変位0 の過程有							
4 1	状 体 基 礎	地中連	車続壁	粘性土	充矩	1.25	繰返し載荷	0	_	0	—	0	_							
2 A		柱状体液	榮礎基礎	砂質土	円形	2.00	繰返し載荷	0	—	\bigcirc	—	0	—							
		柱状体液	架礎基礎	砂質土	円形	2.00	繰返し載荷	0	—	0	—	0	—							
		柱状体浴	榮礎基礎	粘性土	円形	3.00	繰返し載荷	0	—	0	—	0	—							
		柱状体浴	榮礎基礎	粘性土	円形	3.00	繰返し載荷	0	—	0	—	0	—							
			柱状体	基礎 分标	斤ケース	数			8件		8件		6件							
	NC	鋼管杭	打込み	砂質土	円形	0.60	繰返し載荷	\bigcirc				0	—							
	NC	鋼管杭	打込み	粘性土	円形	0.61	単調載荷	\bigcirc				×	繰返し載荷でない							
	NC	鋼管杭	打込み	不明	円形	0.61	単調載荷	\bigcirc	—			×	繰返し載荷でない							
	NC	鋼管杭	打込み	不明	円形	0.61	単調載荷	\bigcirc				×	繰返し載荷でない							
	NC	鋼管杭	打込み	砂質土	円形	0.61	単調載荷	\bigcirc	—			×	繰返し載荷でない							
	NC	鋼管杭	打込み	粘性土	円形	0.81	単調載荷	\bigcirc				×	繰返し載荷でない							
	NC	鋼管杭	打込み	粘性土	円形	0.81	単調載荷	\bigcirc	—			×	繰返し載荷でない							
	NC	鋼管杭	打込み	砂質土	円形	0.80	繰返し載荷	\bigcirc	—			0	—							
	NC	鋼管杭	打込み	粘性土	円形	0.91	単調載荷	0	—			×	繰返し載荷でない							
	NC	鋼管杭	打込み	粘性土	円形	0.91	単調載荷	\bigcirc	—			×	繰返し載荷でない							
	NC	鋼管杭	打込み	砂質土	円形	0.51	単調載荷	0	—		-							×	繰返し載荷でない	
	NC	鋼管杭	打込み	粘性土	円形	0.61	単調載荷	0	—				×	繰返し載荷でない						
	NC	鋼管杭	打込み	粘性土	円形	0.61	繰返し載荷	0				0	—							
	NC	鋼管杭	打込み	粘性土	円形	0.61	繰返し載荷	0	_					0	_					
	NC	鋼管杭	打込み	不明	円形	0.60	単調載荷	0					繰返し載荷でない							
	NC	鋼管杭	打込み	不明	円形	0.60	単調載荷	0	_			×	繰返し載荷でない							
	NC	鋼管杭	打込み	砂質土	円形	0.60	単調載荷	0	—		人為的誤差	×	繰返し載荷でない							
杭	NC	鋼管杭	打込み	砂質土	円形	0.51	単調載荷	0			か入りやすい × ため実施して いない (文献1))		繰返し載荷でない	文献1)						
基	NC	鋼管机	打込み	砂質土	円形	0.51	里調載荷	0		\times			< ため実施して	×	線返し載何でない	文献2)				
礎	NC	 鋼官机	回転仇	砂質土	円形	0.01	申調載何	0					裸返し載何でない							
	NC		回転抗	砂質土	円形	0.01	裸返し載何	0					(文献1))							
	NC		回転抗	砂頂工	円形	1.20	一線返し載何 編返1 載荷	0						$\overline{)}$						
	NC	则官机 PC.PHC结	回転机	11/1 頁上	円形	0.60	裸返し戦何 過返 載荷	0												
	NC	PC.PHC抗	中国の	半州上	口形	1.20	米区し戦何	0					編返し載荷でない							
	C	PC·PHC杭	〒 からり プレボールノカ	北佐十	口形	0.38	単調載荷	0					繰返し載荷でない 繰返し載荷でかい							
	NC	细管症	ナレホ リンソ セエンス ひ	北佐十	口形	0.81	半	0					緑坂し載荷でかい							
	NC	鋼管抗	11.2000	不旧	口形	0.60	半	0					繰返し載荷でない 繰返し載荷でかい							
	C	鋼管切り	日本の精	动哲士	口形	0.80	半	0												
	C	鋼管ソイ	レヤメント右	<u> </u>	口形	0.80	繰返し載荷	$\overline{0}$				$\overline{\circ}$								
	C	鋼管りな	レヤカント柿	初留十	日形	1.10	緑坂1 載荷	$\overline{0}$	<u> </u>											
	C	鋼管ソイバ	レヤカント杭	<u> </u>	田形	1.00	単調載荷	$\overline{\circ}$				×	繰返し載荷でない							
	C	鋼管ソイバ	レヤカント杭	砂質十	田形	1.40	単調載荷	$\overline{\circ}$				×	繰返し載荷でない							
	C	鋼管ソイバ	レセメント杭	砂質十	円形	1.20	単調載荷	$\overline{\cap}$	—	1		×	繰返し載荷でない							
	NC	鋼管杭	回転杭	粘性十	円形	0.51	繰返し載荷	Õ	—	1		\cap	_							
	NC	鋼管杭	回転杭	砂質十	円形	1.20	単調載荷	$\overline{\cap}$	—	1		×	繰返し載荷でない							
	NC	鋼管杭	回転杭	砂質十	円形	0.51	単調載荷	Õ	—	1		×	繰返し載荷でない							
		-1 - H 1/ M	杭基礎	<u> </u>	- 夕数	0	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		37件		0件		12件							
			合計	データ数					45件		8件		18件							

表 4.1.1 水平載荷試験データー覧

4.2 弾性限界点の評価方法

荷重変位曲線上にある弾性限界点は、荷重変位曲線の初期勾配から二次勾配へ移行する点として考 えることができる.この移行点を見つける手段として、1)荷重変位曲線を観察し、変位が急増する点 あるいは残留変位が急増する点を弾性限界点とする方法、2)荷重変位曲線を数学的にフィッティング し、得られる降伏荷重に対応する点を弾性限界点とする方法が考えられる.1)、2)の方法で定義し た弾性限界点がほぼ対応することは確認されている¹⁰⁾が、方法によっては精度の高い推定が困難な場 合も想定されるため、あえて1方法に特定せず、次に示す3方法により行うこととした.

(1) 方法①: ワイブル分布曲線による方法(柱状体基礎:8 ケース,杭基礎:37 ケース²⁾)

第5章で後述するワイブル分布曲線による方法である.ここで,柱状体基礎を評価する場合には,変位指数 *m* =1 では十分な近似精度とは言い難いため,*m*を変化させた *m*≠1 で評価を行うこととした.
(2) 方法②: log *P*−log *S* 法による方法(柱状体基礎:8 ケース)

一般に、地盤の塑性化が生じた時には水平変位が急増する.この変位が急増し始める点を押さえる ために、水平荷重 P とその荷重段階での水平変位 S を両対数グラフ上にプロットし、これらの試験値 を結ぶ直線が急折する点を見出し、その点を弾性限界点とする方法である.極限荷重については(1) と同様、ワイブル分布曲線式から求めた.なお、No.3 は試験値を結ぶ直線が急折する点を見出すこと が困難であったため、検討から除外した.

(3) 方法③:残留変位急増点による方法(柱状体基礎:6ケース,杭基礎:12ケース²⁾)

3 つ目の方法は、繰返し載荷試験から求められる残留変位急増点を弾性限界とする方法¹⁾である. この方法を用いて弾性限界点を見出すためには、繰返し載荷過程のデータが必要である. 図 4.2.1 に 表 3.1.1 における No.5 の残留変位急増点による方法を示す. 図 4.2.1 (a) は繰返し載荷試験の荷重変 位曲線である. この荷重変位曲線の載荷ステップ[1]-[1]~[4]-[4]における最大荷重時の変位 (d_p) と 荷重 R = 0 に戻した時の残留変位 (d_r) をそれぞれ抽出し、最大荷重時の変位 d_p を横軸に、荷重 R = 0に戻した時の残留変位 d_r を縦軸に示したものが図 4.2.1 (b) である. この図より点を結ぶ直線が急折 する点を見出し、その点を弾性限界点とする. なお、No. 1、No. 3 および No. 4 は次の理由により方法 ③による検討からは除外した(方法①、②について、弾性限界点を定めることは可能なため、No.1 及 び4については検討対象としている).

①No.1 は、最大荷重時の変位 (*d_p*)の間隔が 103mm と大きく、文献²⁾の杭基礎の繰返し載荷試験データを分析したところ、最大荷重時の変位 (*d_p*)の間隔は大きいもので 70mm 程度であり、残留変位急増点を精度良く推定することが困難なため.

②No.3 は、繰返し載荷試験でないため.

③No.4 は,載荷ステップ[1]-[1]~[4]-[4]のうち,[1]と[2]の残留変位 (*d_r*)が0であり,残留変位 急増点を精度良く推定することが困難なため.

30

4.3 検討結果

4.2で示した弾性限界点の評価方法によって求めた弾性限界変位d₀と基礎幅Bの関係,および弾性限 界変位レベルd₀ / Bと基礎幅Bの関係を図 4.3.1から図 4.3.3に示す. それぞれの図の左図が (a) 弾性限 界変位d₀と基礎幅Bの関係,右図が (b) 弾性限界変位レベルd₀ / Bと基礎幅Bの関係を示している.

図 4.3.1から図 4.3.3について,以下に補足する.

- > 方法①:ワイブル分布曲線(m≠1)から求めた変位急増点および方法②:log P-log Sから求めた変 位急増点の図中の杭基礎は、ワイブル分布曲線(m=1)から求めた変位急増点の37点をプロットし たものである.
- ▶ 方法③:残留変位急増点から求めた変位急増点の図中の杭基礎は、残留変位急増点から求めた変 位急増点の12点をプロットしたものである.
- ▶マーカー「○」は、非複合杭(Non-composite pile、N.C.と表示)を表している.これは、杭体が 直接地盤と接し、杭体の周囲に地盤を改良した物質が存在しない杭を指し、打込み杭、回転杭及 び中掘り杭をこれに分類している.
- >マーカー「●」は、複合杭(Composite pile、C.と表示)を表している.これは、杭体周囲にソイ ルセメント等、地盤を改良した物質が存在している杭を指し、プレボーリング杭と鋼管ソイルセ メント杭をこれに分類している.
- ▶ 図中の黒実線は杭基礎のみの平均値、赤実線は柱状体基礎のみの平均値、青実線は全体(杭基礎 と柱状体基礎)の平均値を示している.

全体(杭基礎および柱状体基礎)の弾性限界変位レベルd₀/Bは,3方法のいずれも5%程度,柱状体 基礎のみの弾性限界変位レベルd₀/Bは3~4%程度である.また,いずれの評価方法においても基礎幅 Bが大きくなるにつれて弾性限界変位レベルd₀/Bは小さくなる傾向にあることがわかる.また,本文 で参照した載荷試験結果に限定すると,杭基礎に比べ柱状体基礎の方が基礎幅は大きく,基礎幅が大 きくなるにつれて地盤抵抗が小さくなる載荷幅依存性が影響しているのではないかと推察される.

文献¹⁾において, 複合杭 (C.) はその構造的要因に起因する非線形性の影響により, 非複合杭 (N.C.)

よりも弾性限界変位レベルが小さな値を示す傾向であると考察しているが、これは杭基礎(基礎幅 0.6 ~1.4m 程度)という、柱状体基礎(基礎幅 1.0~3.6m 程度)に比べ基礎幅の小さな範囲に着目して得られた知見であり、柱状体基礎を含めた弾性限界変位レベルの傾向分析という観点からはさほど大きな影響として捉える必要はないと考える.

このことから,基礎の弾性限界変位レベルは基礎の形式(ここでは杭種,ケーソン,地中連続壁, 深礎などの柱状体基礎の形式)や使用材料(鋼,コンクリート等)にかかわらず,平均的に基礎幅の 5%という一定の傾向を示しており,また地盤抵抗の影響のみに依存しているといえる.

一方で、杭基礎と柱状体基礎それぞれで異なる弾性限界変位レベルを設定するという考え方もでき るが、実際の設計・施工の現場においては、組杭深礎基礎の杭径よりも大口径の杭基礎の杭径の方が 大きくなる事例もあり、杭基礎と柱状体基礎の違いで弾性限界点が異なる扱いをすることに不整合が 生じる.

また,柱状体基礎の水平載荷試験データは,杭基礎形式に比べてデータ数が少ないため,引き続き 試験的,解析的な検討が必要であるが,現時点では基礎の弾性限界変位は,基礎形式によらず,基礎 幅の5%とすることが考えられる.

B(mm)(a)弾性限界変位 d_0 と基礎幅Bの関係(方法1)

(b)弾性限界変位レベルd₀/Bと基礎幅Bの関係(方法1)

方法1 ワイブルゲ	ケ布曲線(m≠1) か	基礎幅	弹性限界変位	弾性限界変位レベル
ら求めた変位急増	自点	B(mm)	$S_y(mm)$	$S_y/B(\%)$
No.1	ケーソン基礎	1120	60.1	5.4
No.2	ケーソン基礎	1120	52.7	4.7
No.3	ケーソン基礎	2384		
No.4	地中連続壁基礎	3600	37.6	1.0
No.5 地中連続壁基礎 No.6 深礎基礎 No.7 深礎基礎 No.8 深礎基礎 No.9 深礎基礎		1250	73.6	5.9
		1600	101.2	6.3
		1600	125.0	7.8
		2400	52.7	2.2
		2400	40.4	1.7
柱状	本平均值			4.38
全体	、 平均值			5.40

図 4.3.1 弾性限界変位 d_0 と基礎幅 Bの関係および弾性限界変位レベル d_0/B と Bの関係

(方法①:ワイブル分布曲線による方法)

方法2 logP-logS	から求めた変位急増	基礎幅	弹性限界変位	弾性限界変位レベル
点		B(mm)	$S_y(mm)$	$S_y/B(\%)$
No.1	ケーソン基礎	1120	86.3	7.70
No.2	ケーソン基礎	1120	133.3	11.90
No.3	ケーソン基礎	2384		
No.4	地中連続壁基礎	3600	16.1	0.45
No.5	地中連続壁基礎	1250	71.8	5.74
No.6	深礎基礎	1600	4.9	0.31
No.7	深礎基礎	1600	5.4	0.34
No.8	深礎基礎	2400	90.8	3.78
No.9	深礎基礎	2400	27.5	1.15
柱状	本平均值			3.92
全体	S 平均值			5.35

 図 4.3.2 弾性限界変位 d₀と基礎幅 B の関係および弾性限界変位レベル d₀/B と B の関係 (方法②: log P-log S 法による方法)

方法3 残留変位	急増点から求めた変	基礎幅	弹性限界変位	弾性限界変位レベル
位急増点		B(mm)	$S_y(mm)$	$S_y/B(\%)$
No.1	ケーソン基礎	1120		
No.2	ケーソン基礎	1120	36.4	3.25
No.3	ケーソン基礎	2384		
No.4	地中連続壁基礎	3600		
No.5	No.5 地中連続壁基礎		64.3	5.14
No.6 深礎基礎 No.7 深礎基礎 No.8 深礎基礎 No.9 深礎基礎		1600	57.0	3.56
		1600	57.2	3.58
		2400	99.5	4.15
		2400	107.0	4.46
柱状体平均值				4.02
全体	×平均値			4.57

図 4.3.3 弾性限界変位 d₀と基礎幅 B の関係および弾性限界変位レベル d₀/BとBの関係 (方法③:残留変位急増点による方法)

第5章 水平載荷試験による柱状体基礎の降伏の目安の検証

5.1 はじめに

第2章で述べたとおり,H24 道示においては,L2 地震時に作用する水平荷重に対して基礎と地盤を 一体ととらえた基礎全体系で照査し,原則として基礎の降伏に達しないことを照査する.ここで,基 礎の降伏の目安として,杭基礎に対しては載荷試験などに基づき①全杭が塑性化する②一列の杭頭反 力が押込み支持力の上限値に達する,のいずれかの状態に最初に達するときと定義されている.

一方で柱状体基礎に対しては、ケーソン基礎や鋼管矢板基礎については試設計による解析結果から 降伏の目安が定義されているが、地中連続壁基礎や深礎基礎については降伏の目安は示されていない.

基礎形式	降伏の目安
ケーソン基礎	次の1)から3)のいずれかの状態に最初に達するとき 1)基礎本体が塑性化するとき 2)基礎前面地盤の塑性領域率が60%に達する 3)基礎底面の浮上り面積率が60%に達する
地中連続壁基礎	降伏の目安は示されていない
深礎基礎	
鋼管矢板基礎	 次のいずれかの状態に最初に達するとき 1)鋼管矢板の押込み側の1/4範囲の縁応力度が降伏点に達する 2)基礎底面の極限支持力 ①1/4以上の鋼管矢板の先端において,鉛直反力が鋼管矢板先端の極限押込み支持力に達する ②鋼管矢板先端において,鉛直反力が鋼管矢板先端の極限押込み支持力に達したものと浮上りが生じたものとの合計が60%に達する

表 5.1.1 H24 道示に示される柱状体基礎の降伏の目安

ここで、ケーソン基礎における「降伏の目安」とされている「基礎前面地盤の塑性化率 60%、基礎 底面の浮上り率 60%」について、過去の載荷試験結果を確認すると、変位急増点と上記の降伏の目安 とが対応していなかったり、前面塑性化 60%のときの変位レベルが常時の許容変位よりも小さかった りするなど、降伏の目安が必ずしも基礎の降伏を示しているとは言い切れない可能性がある.

しかしながら、降伏の目安を撤廃してしまうと、降伏の判定にばらつきが生じることが想定される ため、実務上の観点からも柱状体基礎における降伏の目安を残すことが望ましいと考えられる.

よって,水平載荷試験のデータを用いた降伏点(変位急増点)とH24 道示モデルの再現解析の降伏 点(変位急増点)の比較を行うことにより,柱状体基礎の降伏の目安について検証を行った.

5.2 検証内容

水平載荷試験の降伏点の算出にはワイブル分布曲線による方法によるものとした.ワイブル分布曲線による方法は次に示すとおりである.

- ①それぞれの水平載荷試験において,水平荷重 Pをワイブル分布曲線式により算出した極限荷重 P_uで除して無次元化したワイブル分布曲線を作成する.
- ②ワイブル分布曲線より算出した極限荷重 *P*_uおよび弾性限界変位 *S*₀,の平均値を求め、この値を用いて平均値のワイブル分布曲線(mean 曲線)を作成する.
- ③作成した mean 曲線の極限荷重の 0.63 倍の位置を弾性限界点(=降伏点)とし,その時の変位レベルを求める.

ここで,弾性限界点を極限荷重の 0.63 倍としたのは,ワイブル分布曲線式(式 (9))において変位 Sが弾性限界変位 S_{0v} のときには, $P_{0v}/P_{uv} = 1 - e^{-1} = 0.63$ の関係が成立するためである.

$$\frac{P}{P_{uw}} = 1 - \exp\left[-\frac{S}{S_{0y}}\right]^m \tag{9}$$

ここに,

P :水平荷重 (kN)

- Puw: ワイブル分布曲線式により推定した極限荷重 (kN)
- S : 変位 (mm)

Sov : ワイブル分布曲線式により推定した弾性限界変位 (mm)

m :曲線の曲がり具合を示す変位指数

変位指数 m はワイブル分布曲線の曲がり具合を示すが、杭基礎の分析を行っている文献¹⁾では m=1 として分析を行っている.これは、m=1 としても十分な近似を示していたためである¹⁷⁾が、柱状体基礎の載荷試験データについては、m=1 とした場合に十分な近似を示しているかどうかは不明である.

したがって、変位指数 m の違いにより柱状体基礎の載荷試験データのワイブル分布曲線がどの程度 近似しているかを確認することとした.確認方法としては、ある変位レベルにおける載荷試験データ

(実測値 P_i) と m=1 又は m=1 としたワイブル分布曲線(計算値 P_{0i})の残差平方和 $\Sigma(P_i - P_{0i})^2/P_u$ を 算出する.極限荷重 P_u で除すこととした理由は、大きな差があった各載荷試験の載荷荷重差の影響を 排除できると考えたためである.残差平方和を求めるための着目変位は、小〜大変位の全体的な挙動 に着目する観点から、文献¹⁾を参考にして次の 3 点とした.

・変位レベル1として基礎幅の1.0%変位時(H24 道示の許容水平変位相当)

・変位レベル2として基礎幅の3.5%変位時(H24道示の緩和した許容水平変位相当)

・変位レベル3として基礎幅の5.0%変位時(杭基礎の弾性限界変位相当(第4章参照))

ここで、実験において荷重保持としているケースについては、荷重保持後の値を用いた. 図 5.2.1 に縦軸に $\Sigma (P_i - P_{0i})^2 / P_u$ 、横軸に基礎幅 $B(\mathbf{m})$ として各ケースをプロットした図を示す. 図において、〇

は柱状体基礎 8 ケース(*m*=1), ●は柱状体基礎 8 ケース(*m*≠1), □は杭基礎 37 ケース(*m*=1)を示している. $\Sigma(P_i - P_{0i})^2/P_u$ が小さいほどワイブル分布曲線は精度よく近似しているといえる. 図より, 杭基礎 (*m*=1)に比べて柱状体基礎(*m*=1)の近似精度が悪いことがわかる. 一方で, 柱状体基礎(*m*≠1)は杭基礎 (*m*=1)と同程度の近似精度である. 以上より, 柱状体基礎を評価する場合には, 変位指数 *m*=1 では杭基礎(*m*=1)と同程度の十分な近似精度とは言い難いため, *m* を変化させた *m*≠1 で評価を行うこととした. 検証に用いる水平載荷試験データは, **第 3 章**で再現解析の対象とした 8 ケース (参考記載したNo.10,11 を除く) である.

図 5.2.1 $\Sigma (P_i - P_{0i})^2 / P_u$ と基礎幅 Bの関係

5.3 検証結果

図 5.3.1 に水平載荷試験結果および設計計算(H24 道示(L2 地震時))の降伏点の比較を示す.図 より,基礎形式によって載荷試験から求められる降伏点と設計計算から求められる降伏点がほぼ同様 の変位レベルとなるケースもあるが異なるケースも確認される.また,多くのケースで設計計算から 求められる降伏変位の方が,載荷試験から求められる降伏変位よりも小さくなっている.

この要因を載荷試験結果による考察のみで明らかにすることは難しい.一方,多くのケースで設計 計算から求められる降伏変位の方が小さい値に抑えられることを踏まえると,当面の降伏の目安とし てはH24道示に示される定義を踏襲し,今後の課題として引続き検討を行っていくことが考えられる.

図 5.3.1 水平載荷試験結果および設計計算(H24 道示(L2 地震時))の降伏点の比較

第6章 鉛直載荷試験による鉛直方向の弾性限界点の検討

6.1 はじめに

本章では鉛直荷重を受ける柱状体基礎の安定照査方法に着目し、柱状体基礎の鉛直載荷試験の分析 に基づき H24 道示の照査方法における許容値と弾性限界点の関係を確認したうえで、鉛直荷重を受け る柱状体基礎の限界状態や許容値について検討する.

6.2 検討内容

第4章で示した水平挙動における地盤抵抗の弾性限界点の評価と同様に,鉛直挙動における地盤抵抗の弾性限界点を評価するために,鉛直載荷試験データの分析を行う.分析に用いた鉛直載荷試験は表 6.2.1 に示す鉛直載荷試験 7 ケースである.このうち,No.1 はケーソン基礎,No.2 から No.7 が地中連続壁基礎である.なお,No.1 は PC ウェル基礎に対して行われた載荷試験であるが,設計法や施工法はオープンケーソン基礎に類似しているため,ここではケーソン基礎として取り扱う.

図 6.2.1 に鉛直載荷試験モデル図および土質柱状図を示す.

No.	基礎形式	試験体形状(hは地盤面からの根入深さ)	載荷種類
1	ケーソン基礎 (PC ウェル基礎)	円 形(中空断面-底版コンクリート有) Ø1.6m × h 14.3m	単調載荷
2	地中連続壁基礎	小判形(充実断面)(0.60m×2.52m)×h19.8m	単調載荷
3	地中連続壁基礎	小判形(充実断面)(0.67m×1.92m) × h 26.3m	繰返し載荷
4	地中連続壁基礎	矩 形 (充実断面) (0.60m×2.10m) × h 21.0m	単調載荷
5	地中連続壁基礎	小判形(充実断面)(0.60m×1.86m) × h 19.0m	繰返し載荷
6	地中連続壁基礎	矩 形 (充実断面) (1.20m×2.40m) × h 28.5m	単調載荷
7	地中連続壁基礎	小判形(充実断面)(0.60m×2.52m) × h 16.6m	繰返し載荷

表 6.2.1 分析に用いた鉛直載荷試験

図 6.2.1 鉛直載荷試験モデル図および土質柱状図 (その1)

図 6.2.1 鉛直載荷試験モデル図および土質柱状図 (その2)

各実験ケースの荷重変位関係を図 6.2.2 に示す. 図において,縦軸は鉛直荷重 P (kN) を極限荷重 P_u (kN) で除し,横軸は鉛直変位 d (mm) を基礎幅 B (mm) で除して無次元化している. ここで,極限 荷重 P_u (kN) はワイブル分布曲線式より算出した値としている. (式 (9) 参照)

なお,水平載荷試験と同様に,変位指数 m は実験結果を最も精度良く推定できる値としている.

図 6.2.2 鉛直載荷試験の荷重変位曲線

6.3 検討結果

図 6.3.1および図 6.3.2に、載荷試験で得られた荷重変位関係とH24道示における鉛直荷重に対する 安定照査の許容値を示す.縦軸は、載荷試験で計測された荷重を計算で得られた極限支持力度で除し、 横軸は、載荷試験で計測された沈下量を基礎幅で除している. 第2章に示した通り、H24道示における 鉛直荷重を受ける柱状体基礎の設計法は、常時においては過大な沈下を生じさせないよう、L1地震時 においては基礎の挙動の可逆性が担保されるように定められているものと考えられる.

そこで表 6.3.1に、図 6.3.1および図 6.3.2に示す荷重変位関係において常時・L1地震時の照査を満 足させた場合に、常時において生じる沈下量、及びL1地震時の許容支持力の降伏支持力に対する比率 を示した.ここで、表 6.3.1には比較のために直接基礎や杭基礎についても示した.なお、直接基礎 の常時に関しては、地盤反力度の上限値を比較対象としている.

6.3.1 ケーソン基礎

図 6.3.1 に示すケーソン基礎の結果を見ると、常時において、地盤反力度の上限値に抑えた場合に は、基礎幅の約 0.4%の沈下量(*B*=1.6mの場合、約 0.6 cm)が生じている.一方、許容支持力の照査 で生じる沈下量は、基礎幅の約 2.5%(*B*=1.6mの場合、約 4.0 cm)であり、地盤反力度による照査で 抑えるよりも大きな沈下量が生じている.そもそも、直接基礎やケーソン基礎の極限支持力推定式は、 沈下量に着目して定められたものではないことも踏まえると、常時において沈下量を抑制するための 照査としては、直接基礎と同様に、地盤反力度の上限値の照査のみでよいと考えられる.

L1 地震時の結果を見ると、地盤反力度の上限値で留める場合には、基礎底面に作用する荷重を降伏 支持力の2割程度(0.110/0.63≒0.2)に留めることとなり、直接基礎や杭基礎と比べて安全余裕度が かなり大きくなっている.一方、L1 地震時の照査を許容支持力の照査のみとすれば、他の基礎形式と 同程度の安全余裕となる.

図 6.3.1 鉛直載荷試験のワイブル分布曲線の弾性限界点と H24 道示照査方法における許容値の関係 (ケーソン基礎)

6.3.2 地中連続壁基礎

地中連続壁基礎においては、常時で極限支持力度の 1/3、L1 地震時で極限支持力度の 1/2 を許容支 持力とする照査が行われる.ここに、極限支持力度 q_d は地盤種別によって異なるが、今回整理した結 果と同じ条件である良質な砂・砂れきの場合では、場所打ち杭の値を準用して $q_d = 5,000 \text{ kN/m}^2$ となっ ている.

表 6.3.1, 図 6.3.2 を見ると, $q_d = 5,000 \text{ kN/m}^2$ とした場合の常時の沈下量は 0.1~0.3% ($A^{0.5} = 1.0 \text{m}$ の場合 0.1~0.3 cm), L1 地震時の許容支持力は載荷試験で得られた極限支持力の約 2 割となり,直接 基礎や杭基礎,ケーソン基礎と比較して担保している安全余裕が極めて大きい.この要因を分析する ために,縦軸を極限支持力度で除さず,載荷試験で計測された荷重とした図を,図 6.3.3 に示す.こ の結果を見ると,載荷試験での極限支持力度の値(鉛直変位が基礎換算載荷幅の 10%相当の値)は平 均で 10,423 kN/m²が得られており,場所打ち杭に準じて定められた 5,000 kN/m²は地中連続壁基礎の 極限支持力度を著しく過小評価していることがわかる.

以上より,地中連続壁基礎が直接基礎や杭基礎,ケーソン基礎に比べて大きな安全余裕を有している理由は,極限支持力度を過小評価しているためであると考えられる.ここで,砂れきの場合の極限 支持力度を 10,000 kN/m² と仮定すると,常時で生じる沈下量は 0.1~0.6%程度(A^{0.5} =1.0mの場合 0.1 ~0.6 cm),L1 地震時の許容支持力は降伏支持力の 4 割程度となる(表 6.3.2 参照).

なお,地中連続壁基礎の極限支持力度が場所打ち杭よりも大きな値を期待できる理由として,掘削 完了時の掘削機による一次スライム処理に加えて,鉄筋建込前に二次スライム処理を実施して安定液 を完全に良液と置換することから,スライム成分をほぼなくすことができ,場所打ち杭に比べて先端 の品質が良いことなどが考えられる.

(c) No. 3

(d) No. 4

図 6.3.2 鉛直載荷試験のワイブル分布曲線の弾性限界点と H24 道示照査方法における許容値の関係 (地中連続壁基礎)(その1)

(e) No. 5

(f) No. 6

(g) No. 7

図 6.3.2 鉛直載荷試験のワイブル分布曲線の弾性限界点と H24 道示照査方法における許容値の関係 (地中連続壁基礎)(その2)

図 6.3.3 地中連続壁基礎の鉛直載荷試験結果

表 6.3.1 各基礎の H24 道示における許容値と安全余裕等との関係

1	表礎	常時	L1 地震時
直接基礎		【地盤反力度の上限値】	【許容支持力】
		基礎の換算載荷幅 A ^{0.5} の 0.1~0.3%	降伏支持力の約8割
		(A=8m の場合, 0.8~2.4 cm)	
杭基礎		【許容支持力】	【許容支持力】
		杭径 D の 0.4~1.6%	降伏支持力の約8割
		(D=1.0mの場合,約0.4~1.6cm)	
ケーソン基礎		【地盤反力度の上限値】	【地盤反力度の上限値】
(PC ウェル基礎))	換算基礎幅 B の約 0.4%	降伏支持力の約2割
		(B=1.6m の場合,約 0.6cm)	
		【許容支持力度】	【許容支持力度】
		換算基礎幅 B の 2.5%程度	降伏支持力の約8割
		(B=1.6m の場合約 4.0 cm)	
地中連続壁基礎 H24 道示 (q _d =5,000 kN/m ²)		【許容支持力度】	【許容支持力度】
		基礎の換算載荷幅 A ^{0.5} の 0.1~0.3%程度	降伏支持力の約2割
		$(A^{0.5}=1.0m $ の場合 $0.1\sim 0.3 $ cm)	
	極限支持力度を	【許容支持力度】	【許容支持力度】
	見直した場合	基礎の換算載荷幅 A ^{0.5} の 0.1~0.6%程度	降伏支持力の約4割
	$(q_d=10,000 \text{ kN/m}^2)$	$(A^{0.5}=1.0m $ の場合 $0.1\sim 0.6 $ cm)	

0050	L1 地類	雲時の					
Case	許容支持力度/降伏支持力						
q_d (kN/m ²)	5,000	10,000					
case2	0.17	0.36					
case3	0.18	0.38					
case4	0.20	0.44					
case5	0.19	0.40					
case6	0.13	0.27					
case7	0.20	0.42					
平均	0.18	0.38					

表 6.3.2 許容支持力度の降伏支持力に対する比率

6.4 まとめ

鉛直荷重を受ける柱状体基礎の安定照査に関して,H24 道示における許容値と限界状態等との関係 を明らかにするため,載荷実験結果を分析した.

本検討により、ケーソン基礎については常時の照査としては許容支持力度の照査を行わず地盤反力 度の上限値のみとすることで、直接基礎や杭基礎と同等の沈下量に留めることができること、L1 地震 時の照査としては地盤反力度の上限値の照査を行わず許容支持力度の照査のみとすることで、直接基 礎や杭基礎と同等の安全余裕の確保することができることがわかった.

地中連続壁基礎については,他の基礎形式に比べて常時・L1 地震時ともに大きな安全余裕を確保していたが,極限支持力度を見直すことにより他の基礎形式の安全余裕と近づくことがわかった.

なお、本検討ではニューマチックケーソン基礎に対する試験結果が入手できなかったため、検証が できていない. 今後の載荷試験結果の蓄積が待たれるが、基準における極限支持力度の推定式はオー プンケーソン基礎と同じであり、また、オープンケーソン基礎よりも極限支持力度が低下する要因は 特段ないと考えられることから、ニューマチックケーソン基礎についてもオープンケーソン基礎と同 じ扱いでよいと考えられる.

地中連続壁基礎については、支持層が砂れき以外の場合についての載荷試験結果がなく検証が行え ていない.砂れきにおいて場所打ち杭よりも大きな支持力度が得られた要因を鑑みれば、砂や粘性土 においても場所打ち杭以上の支持力度が得られることが期待されるが、これらについては定量的な評 価や確認を行うことができていないため、現時点ではH24 道示と同じ値としておくのがよいと考えら れる.

第7章 まとめ

柱状体基礎の設計計算モデルおよび安定照査方法に対する検討を行い,次のような結果を得た.

- (1) 水平載荷試験の再現解析を行った結果,地盤反力度の上限値の補正係数により上限値を低減せず, 地盤反力度の上限値の抵抗領域に3次元的な広がりを考慮した設計計算モデルの方が,荷重や変位 レベルにかかわらず,実挙動を忠実に再現できることが確認できた.
- (2) 水平載荷試験データについて,柱状体基礎における弾性限界点をワイブル分布曲線による方法, log *P*-log *S* 法による方法,残留変位急増点による方法の3つの方法で評価した結果,基礎幅が大きく なるにつれて弾性限界変位レベルは小さくなる傾向にあることがわかった.

しかしながら,弾性限界変位レベルは平均的に基礎幅の5%であること,基礎形式の違いで弾性 限界点が異なる扱いをすると不整合が生じることを踏まえ,現時点では基礎形式によらず,弾性限 界変位は基礎幅の5%とすることを提案した.

- (3) ケーソン基礎の降伏の目安について,水平載荷試験の降伏点と H24 道示モデルの再現解析の降伏 点との比較検証を行ったところ,一致しないケースもあるものの,多くのケースで設計計算から求 められる降伏変位の方が小さい値に抑えられることがわかった.このため,今後の課題として引続 き検討を行う必要があるものの,当面の降伏の目安としては H24 道示に示される定義を踏襲する ことでよいと考えられる.
- (4) 鉛直載荷試験データ分析の結果,次のような結果を得た.
 - 1) ケーソン基礎は、常時は地盤反力度の上限値の照査、L1 地震時は許容鉛直支持力度の照査を 実施することで,他の基礎形式と同程度の沈下レベルおよび安全余裕度が確保されることがわ かった.
 - 2) 地中連続壁基礎は、H24 道示(特にL1 地震時)における許容鉛直支持力度の照査が直接基礎 や杭基礎に比べ過剰に安全側の評価となっていることがわかった.これは極限支持力度を過小 評価していることが要因と推察されるため、鉛直載荷試験結果の分析に基づき、砂れきについ ては極限支持力度を10,000 kN/m²とすることを提案した.

参考文献

- 1) (独) 土木研究所:性能規定体系における道路橋基礎の安定照査法に関する研究,土木研究所資料 第4136号,2009.3
- 2) (独) 土木研究所: 杭の水平支持における限界状態に関する研究, 土木研究所資料第4151 号, 2009.8
- 3) (社) 日本道路協会:道路橋示方書・同解説IV 下部構造編, 2012.3
- 4) (社)日本道路協会:斜面上の深礎基礎設計施工便覧, 2012.4
- 5) (財)高速道路調査会:平成7年度 基礎工の諸問題に関する調査研究(その3)報告書, 1996.2
- 6) 建設省 土木研究所: 柱状体基礎の設計計算法に関する調査, 土木研究所資料第3455 号, 1996.10
- 7) (財) 高速道路調査会:基礎構造に関する調査研究 昭和46年度, 1972.2
- 8) (社)日本道路協会:道路橋下部構造設計指針 くい基礎の設計篇, 1964.3
- 9) 日本国有鉄道 日本国有鉄道建設局場所打ち杭の設計施工に関する委員会:場所打ちコンクリー ト杭の設計施工指針(案), 1969
- 10)建設省 土木研究所:単杭の支持力と柱状体基礎の設計法に関する研究,土木研究所資料第 2919 号,1991.1
- 11) 和田克哉:鋼管矢板基礎の設計,基礎工,25(2), pp.51-56, 1997.2
- 12) (社) 日本道路協会:道路橋下部構造設計指針 ケーソン基礎の設計篇, 1970.3
- 13) (独) 土木研究所: 柱状体基礎の要求性能及び安定照査法に関する研究, 土木研究所資料第 4273号, 2013.10
- 14) (独)土木研究所:岩盤上の基礎の鉛直方向の安定照査法のための地盤反力度の評価に関する研究, 土木研究所資料第 4222 号, 2012.3
- 15)秋田直樹,福井次郎,木村嘉富,七澤利明:柱状体基礎の最大水平地盤反力度に関する模型実験, 土木学会第52回年次学術講演会, III-B, pp.74-75, 1997.9
- 16) (社) 日本道路協会:道路橋示方書・同解説IV 下部構造編, 1996.12
- 17) (社) 日本道路協会:道路橋示方書・同解説IV 下部構造編, 1980.5

付属資料1. 柱状体基礎の設計法についての情報収集結果

本資料第2章で述べたように、柱状体基礎の各形式は、これまで基礎形式として設計手法や施工方 法が確立されてきた歴史的経緯が異なることから個別の計算モデルや照査方法が与えられており、そ の根拠が必ずしも明確となっていない.このような状況から、柱状体基礎における計算モデルや安定 照査方法の見直しを行うにあたり、各柱状体基礎の設計手法が確立されてきた経緯等について各形式 の施工に携わる団体等を通じて情報収集を行った.次ページ以降に情報収集結果一覧表を添付する。 参表 1.1.1 柱状体基礎の設計手法に関する情報収集結果(基礎の剛性,荷重分担)

滅(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($\pi_{X,T_h} = 5000$ $\pi_{X,T_h} = 5000$ $\pi_{X,T_h} = 10$ $\pi_{X,T_h} = 10$ $\pi_{X,T_h} = 10$ $\pi_{X,T_h} = 1000$ $\pi_{X,T_h} = 10000$ $\pi_{X,T_h} = 10000$ $\pi_{X,T_h} = 100000$ $\pi_{X,T_h} = 10000000$ $\pi_{X,T_h} = 100000000000000000000000000000000000$	超える 2 例の水平 他正士研述/12 たお、2 例の朝暇 2 モデルについ 直よりも解析結算 他盤抵抗定考慮す	構成でない。 市成でので、 したがって、 したがって、 したがって、 したがって、 のな 和 正 にののな 報 にののな 強 で したの の の の で の の で の の で の の で 一 に 一 に の の で 一 に の の で 一 に の の で 一 に 一 一 一 一 一 一 一 一 一 一 一 一 一	を考慮し、水平州 にみな存住を考慮 におよびでその所得 時が応知するの所得 第二デルを選択、 第二デルを選択、 第二デルを選択 第一ビル、 を考慮した、
鋼管矢板基	4 例の水平廠情能驗の実現 (「滅症 エッかい」、「就是型線 計算モデルに、10.44比較」 計加モデルに、10.44比較」 特化を考慮した、7.54地時間 解析のから自ったして実験的に 酸情能酸。 単価は果のディン 酸化分析、広力分析につい 変化分析、広力分析につい 変化分析、広力分析につい 変化分析、広力分析につい 変化分析、広力分析につい 変化分析、広力分析につい が相でしいては、10.46十 の一本の一個年少が が相では、5.40時間には と一杯の 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一個年少、 一本の一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	・国鉄大融業化が30mm を称 ・スは研究した1・デッシュ (肉素線形的)の比較を実施。 地型。 ※低曲線がよく一致する。 ※低曲線がよく一致する。 ・、200、国し、4001 ・、100、国し、4001	新確学大統領を結議を準続けする病 施工液(打撃、中期の全況) つという考えが消除。用約を実現 うという考えが消除す。 予約電液(数) 予約電気(数) 一般でに対応の包括線(数) 一般での包括線(数) 一般での包括線(数) 一般での包括線(数) 一般での包括線(数) 一般での名字のの一次 のの 一次のの一次であ 一次のの 一次のの 一次の 一次の 一次の 一次の 一次の 一次の 一次の 一	用面および内部士の技術を 用面および内部士の技術を → 水平地鑑定力係数は、ひっ → 小正、載行環境結果 がいちいたきいかで計り (の面子変形が違いで計力) の一個子変形による曲 (の面子変形が定式) ・離手のせん断子れな野活 ・離手のせん断子れな野活
	田辺市の国家市政 開催大板: 源形 進手のせん制能抗: 森二の「山」の町大山、市町大山、 を考慮/山2 東則-(家山 春 考慮/山2 東則-(家山 春 年) (B ≤ 30m カック LB>1 カック (B ≤ 20m カック LB>1 カック 語 4 つ h) 第 4 つ h) 9 4 う h) 9 年 ラ 中人 小師 松市 : 一 「 り = 丁 望 9 年 ラ 中人 h)	福管大校1 兼形 (練言へな1 兼形 イ) ニア型 人動電灯) ×($f_{K,0}$ 使用 1 地能広力度 の上取値でいく1) ニア型 一修正士研式 $L2$ モデル	1) 1) 2) 読載成正でした 2) 読載が行ったの 1) 読載で 約1 1) 読載 1) 読載 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)) 基礎成正の会正地能反 力 こ) 活成成正のセム防地能 反力 方での子が在学社整成 力」での子が在学社を施 引えたが在学校 前子の会社での基礎 前子のかっキャーム 前子他能区プリ の評価能区プリ の活成子が新聞の会正 と人が性能区プリ の活成子が行き を通 が自己の会正 と人が性能 に力 として が の の の の の の の の の の の の の の の の の の
長礎 	考元万元,植能导 村活品能に消灼	物透過酸に降酸	(品類語の会社が設備) (品類語の会社が設備) 単、上資業能して 中に、上資業能して 中に、大型、メリンクリートマイ マシロンクリートマイ マンクリートマイ マンクリートマイ マンクリートマイ マンクローン マンクローン マンクローン マンク ローマン マンクローン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マンク ローマン マン マンク ローマン マン マン マン マン マン マン マン マン マン マン マン マン マ	値に発発した。
¥魏浙	H和4面小400版前的	曲け剛性の低下を考慮	1)諸礎成正の永正地接接区力 2)諸礎成正の永平社人期他 総反力 第二級的前面の永正社人期他 確反力 ディナーレントートを存置 して用いる場合などに 北部周面の水平社人断地 統領元の水平社人断地 批は無視する。	1)活躍成面の鈴鹿地盤医力 3)活躍成面のセ人利中盤反力 5)活躍的地盤の 100-10-10-10-10-10-10-10-10-10-10-10-10-
. Arres & dis Andre	 私地中連続電馬蔵ご 総反力度などの計算 総反力度などの計算 総長力度などの計算 さ考慮入止 部止だき業 本指針で 前した結果 本指針で 市にたま 第二十13年7月」) 施工指針13年7月」) 		水平価にに対する基礎 水平価にに対する基礎 い能通行向せん断地酸 に部価が向けせん断地酸 前面の始度が可かそう 前面の始度がする、 前面の始直地酸能がたなう の第二次の一般がです。 「はれのはイント と確正1997」) れた内側面のの値でもし れた内側面のの値でもし またい、 部分がは他 一部である。(「はだのはく」 ででする。(「はだのがく になぜのがは し、 「はてのがく」 にないがく になぜのが、 し、 し、 し、 になずのが、 し、 し、 し、 し、 し、 し、 し、 になずのが、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し	連続課題設計施工計 連続課基の設計法の 方向せん断地鑑页力係 活力せん断地鑑页力係 出計算能として扱う 工程決体基礎の設計計算 小研究可写資料第3455 小研究において考慮して 研究において考慮して 研究において考慮して 研究において考慮して 研究において考慮して 研究において考慮して 研究において考慮して 研究したれる。また、均 が少みでせん断地酸低 の設計子には考慮され が変と的の。主た、10 が少みでせん断地酸低
地中連続壁基礎	大平力やモーメス 大平力やモーメス は、「「「市する場合の世 市」であために、「「市」の法律の明確 にたいのにいる後 にたいのにいる役 大手読録全体の曲げ 床上の研究現現。 たいしたした。 「地中連続電基礎設計	ケーンン装織で回線	◆一回の比較確認不 上がいや表認問面 上がいや表認問面 技術が、 なったため、 素酸 なったため、 素酸 なったため、 素酸 なったいため、 素酸 なったいため、 素酸 なったいため、 素酸 やったいため、 素酸 での でで、 一般 での でで、 一般 での でで、 でで、 一般 での でで、 でで、 一般 での でで、 でで、 一般 での でで、 でで、 一般 での でで、 一般 での でで、 一般 での でで、 一般 での でで、 一般 での でで、 一般 での でい、 一般 ので 一般 ので でい 一般 ので 一般 ので 一般 ので 一般 ので 一般 ので 一般 ので 一の での でため、 一般 一般 ので でため、 一般 ので 一般 ので 一の でため、 一般 ので 一般 ので 一の でため、 一般 ので 一般 ので 一の でため、 一般 一般 ので でた 一の 一の でた 一の でた 一の 一の でた 一の 一の でた 一の 一の でた 一の 一の 一の 一の 一の 一の 一の 一の 一の 一の	● 建行(H3 年版地中 会+「両編約の地中」に、1000年 まっに適面の水平 ため、2000年 とが望ましい、(弦に関する調査:100 4) 一、1000年 4) 一 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二
	H14_01750 版計计25-	原則として義好 基礎の塑性化を考慮す る場合は曲け剛性の臣 下を考慮	1) 基礎依面の約面也能 医力 2) 基礎外周面の約面 せ 人動電機医力 周面の約面 生人物的 激反力	1)法融底面の約泊也盤 因力 因力 進設的面のセ人動地 進設的面の水平地盤 反力 加速盤区力 前で水平社社 前一の水平社社 医 支 成一社人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊世人動中健能区力 約泊前一人動中態度 力 力
 Area 2.46 4440 	の、福祉学校には、 一次というの、 加速したいため、 地球水体では たいいため、 たいいため、 たいたいため、 地球水体を開催かし、 で成 たいたいため、 での したいため、 本学校を開催では、 での したいため、 本子校 たいため、 本子校 たいたいの。 一次にいため、 たいたいの。 一次にたいる、 での たいため、 本子校 での たいため、 本子校 での たいため、 本子校 での たいため、 本子校 での たいため、 本子校 での たいたい。 での たいため、 本子校 たの での たいため、 本子校 たの での たいため、 本子校 たの での たいため、 本子校 たの での たいため、 でいたでの での たいため、 たいたの、 たいため、 たいたの、 たの、 たいたの、 たの、 たの、 たの、 たの、 たの、 たの、 たの、	精織の変位を正確に評 「副社の低下を考慮、 時候有大平部が充金 時候有大平部が充金 時候有大平部が充金 市会報告で かられて、 同びよう。 のしてわたで なった。 一部に のして た で した の した の の た の の の の の の の の の の の の の	て確範には、1.地能に式限 着えるわる、しかかっ 時から周囲の解説がは おから周囲摩線抵抗は あとから見画面摩線低力向降 ていくものとふなせる ないくものとふなせる ないたものとぶなせる ないたものとぶなせる	由酸粧店実験にしたお計 も酸粧店実験のシミュ 「住法体基礎の設計計 開催上に中部に開催した。 「たた体基礎の設計計 開催した中部で解放に 時代 たらから出催症に たりたたい、 たりたたい、 たりたたい、 たりたたい、 たりたたい、 たりたい、 たしたない、 ましてない、 ましたない、 たいたい、 たいたい、 たいたい、 たいたい、 たりたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい、 たいたい。 たいたい、 たいたいで、 たいたいで、 たいたいで、 たいたいで、 たいで
ケーソン基礎	新語、 新聞、 の優先を考慮で の優先を考慮で の優先を考慮で かした。 ためになり、 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためた、 一 ためで ため、 ため、 ため、 ため、 ため、 ため、 ため、 ため、 ため、 ため、	●開出:回日: ●「開出:回日: 一「「「「「「「」」」 一「「「「「」」」 一「「「「」」」 一「「」」」 一「」」 「」」」 「」」」 「」」」 「」」 「	サインンは指 サカガンはから、現時 大市大学会の、 大市、安全がしていた。 参議部 地部連合していいの経過にしていい の経過にしていい の経過していい が現場の周辺 は第1、 の周辺 は指し、	大学内部の高額の、 第一部の高額の、 第一部では、 14年の 14年の 14年のの 14 0 14 0 14 0 14 0 14 0 14 0 14 0 14
	11月 1日	Hとして親術 診の塑性化を考慮す 給合は曲げ剛性の伝 - 考慮	戦気面の給直体器反	調整医面の統領地態度 調整医面の大型地盤反 電動面の水平地盤反 電動面の水平地と場 開設 開設 開設 開設 開設 に した に 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
	常時、暴風時、レベルー地震時説	レベル2地震時原 基る下目 登場る	鉛直支持基力	本平支持107月(1997) 107月(1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997) 1997 1997

			ケーソン基礎	地中連続	壁基礎	深礎理	adda and a second and	朝	育管矢板基礎
		H24道示の設計法 ^絶 が	考え方、経緯等	H24 道示の設計法	考え方、経緯等	H24 道示の設計法	考之方, 経緯等 	H24 道示の設計法 ^{絶元}	考え方、経緯等 #1444-2014年の144444444
	常時,暴風時,	244.242	Jumeの入身に計学問いているため、 降大まで に至らないようにしているため、	1990172	クーンノ曲線で回換	14X 14X	クーンノ始続と同様	266.17.S	参岐民間に1951、の約1度欠ノ113、70回除係ノノの国際係ノノの影響を考慮せず、軸力一定として算定、代わりに、許容支持力は周面摩擦力を含めて算出 、
第一 世	L1 地震時								照査は、鉛直反力、許容支持力ともに鋼管 矢板1本当たりで算出した値で実施。
方向地震									鋼管矢板の許容支持力は、鋼管杭と同様。 極限支持力に所定の安全率で除して算出.
鶴枝: ヨピ		バイリニア型	線形にすると最大地艦反力度はかなり大きく やまやめ、「暗ばむ部は一种部に十年の非維新	バイリニア型	ケーソン基礎と同様	バイリニア型	ケーソン基礎と同様	バイリニア型	鋼管杭と同様、極限支持力度、
捝		上限値は基礎底面の 極回まゆも電けよ	はのにめ,工候他と取り い地強又力度の非微が 性を考慮した.	上限値は基礎底面の個面である。	жүн	上限値は基礎底面の極限支持力度 パトェーキビリーは端底面が出始の	上限値は、「平板載荷試験結果」及び、「久森物理が除せます。」というます。	上限値は、押込みは極限支持力 産 。 訓性をは悪いナエ	引抜きは、周面摩擦力と同じ鉛直方向せん ms バッさなままし プレンエキル®
	L2 地震時	極限文持刀度による. ただし, 基礎底面、 ただし, 基礎底面、 ただし, 基礎底面、	地盤反力度-変位関係の非線形性は、モデルが 長ま 徳岡おバノニーアヨーレーテニス - バノニー	の極限支持刀度に よる		による. たたし, क徳氐面が岩盤の 場合には,最大地盤反力度の上限値 パトェス	い 「 各種物理試験結果」 より設定.	度,り抜きは等とする	即ハイを考慮しているため発
		国が石薙の場合に は,最大地盤反力度 の上限値による.	取ら間年47イ ソーノ至こしている、イイシー ア型としたため,上限値は極限値にしたものと 考えられる.						
审	常時,暴風時,	線形	基礎底面の鉛直方向地盤抵抗と同様、	線形	ケーソン基礎と 同様	線形	ケーソン基礎と同様	線形	15 基×荷重2方向×設計モデル2ケース(有限長、土研式にて試設計を実施。
せん蜥薩底面	L1 地震時								許容値の 40%以下.
2 王 王 王 武 朝 日 子 新		バイリニア型	基礎底面の鉛直方向地盤抵抗と同様、	バイリニア型	ケーソン基礎と 同緒	バイリニア型	ケーソン基礎と同様	線形	28 橋の I2 モデル(修正土研式)にて説設計 実権
抵抗 平方向	L2 地震時	上限値は基礎底面の せん断地盤反力度の 上限値による		上限値は基礎底面 のせん断地盤反力 度の上限値による		上限値は基礎底面のせん断地盤反 力度の上限値による			→ 許容値の 40%以下.
		バイリニア型	基礎底面の鉛直方向地盤抵抗と同称。	バイリニア型	ケーソン基礎と同様	バイリニア型	ケーソン基礎と同様	ひずみ依存性を考慮した線形	4 例の水平載荷試験の実測値と解析値の照 本を宙始
	常時,暴風時,	上限値はクーロンの 受働抵抗土圧による	かっての実務設計では、地盤反力度が受働土圧 を超えると地盤反力係数を低減しており、この	上限値はクーロン の受働抵抗土圧に	SPLICH	上限値は斜面の影響を考慮した基 礎前面地盤の受働土圧強度による	上限値は,極限釣合いによる理論 式.		H.C.XMB.
# 本 世	L1 地震時		作業はベイリニア型モデレビ等価なものとなっていた.	ъ К		硬岩の場合, 岩のピークせん断強度 とピーク強度に達したあとの強度 低下の影響を考慮できるモデルと			
方向金融		田小一二、六	[산산대학 - 11] [11] 11] 11] 11] 11] 11] 11] 11] 11	国皇二二二八	L 22.474	する. <i>メノ</i> ルーズ型			· 바라에 바라
地盤抵抗則面の	L2 地震時	レイリット) 望 上限値は受機抵抗領 城の3次元的な広が りを考慮	・ 時の市、家庭の本に、100%からしていた単ふなの (単成の3 次元的なたがりと準備していることで あるが、この広がりは設任領域が増大す。12 出機関ロウが、影響の顕美するもないものです。21 出機関ロウが、影響の顕美するもないも、44 し、るとあたらたれる。 3 次元的効果を考慮すったための整確保教が、11 よ数することにより設定している。1 に使訂のポイント、ケーンと基礎の設計、基礎日 (「彼訂のポイント、ケーンと基礎の設計、基礎日 (「彼訂のポイント、ケーンと基礎の設計、基礎日 (「彼訂のポイント、ケーンと基礎の設計、基礎日 (「彼訂のポイント、ケーンと基礎の設計、基礎日	レーレーン 至 上限値は受働抵抗 値がの 3 次元的な 広がりを考慮	√ / / / 海霧 ⊂	レムリーノ 注 上限値は約面の影響を考慮した基 磯前面地盤の受働士圧強度による		レイリーノュ 上限値は受動抵抗領域の 3 次元 的な広がりを考慮	- 1 Pilot 人文演奏出 1 sun C 3 un V Wein A
-	常時,暴風時,	バイリニア型	10011) 基礎底面の鉛直方向地盤抵抗と同様.	バイリニア型	ケーソン基礎と	バイリニア型	ケーソン基礎と同様		4 例の水平載荷試験の実測値と解析値の照
地略水平方	L1 地震時	上限值は最大周面摩		上限値は最大周面	同様	上限値は最大周面摩擦力度による	モルタルライニング及びコンクリ	— (前面地盤の水平抵抗に含める)	査を実施.
簧抵抗 向せん断 側面の	L2 地震時	欲り良いよる		降祭り返による		硬岩の場合, 岩のピークせん断強度 とピーク強度に達したあとの強度 低下の影響を考慮できるモデルと	ー F いいいに、「新世の回廊国家祭子のの評価に関する武廠(コンクリート供試体の上下載荷試験)により確認。	バイリニア型 上限値は外壁の凹凸を考慮した 神殿間へみと廊に枯げ、トス	2 例(最大天端変位 31.8cm と 35cm)の載荷詠 験と解析結果を実施
船	常時,暴風時,					±5.	(「H7 年度 基礎工の諸問題に関する 研究(その 3)報告書 H82 (財)高速道 い細エイム、)	→四元1月1~ 5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 例の水平載荷試験の実測値と解析値の照 本を実施:
地般 (直方: 基礎:	L1 地震時						路調查会」)	(鋼管矢板の支持力に含める)	H. C. XVIIII
気せん 同せん 問背面	1 2 社 個田荘							バイリニア型	2 例(最大天端変位 31.8cm と 35cm)の載荷試 験と解析結果を実施.
) 第 の	1.12 A.12							上限値は最大周面摩擦力度によ る(鋼管杭に準拠)	
法	常時,暴風時, L1 地震時							— (鋼管矢板の支持力に含める)	4 例の水平載荷試験の実測値と解析値の照 査を実施
観抵抗 向せく 側面の	L2 地震時							バイリニア型	2 例(最大天端変位 31.8cm と 35cm)の載荷試 験と解析結果を実施.
斛								上限値は疲べ周面摩擦刀度によ る(鋼管杭に準拠)	

参表 1.1.2 柱状体基礎の設計手法に関する情報収集結果(地盤抵抗要素)

	ケーン	() - 基礎 本 3 十 22 体位	出 まで言語の 小沢 Fcm	5中連続壁基礎 歩った 22後始	十代丁書に得い、十十字、FUI	深礎基礎 本立士 22倍位	鋼管矢板 11.4 米テできゅいせ	.基礎 本ら七 双体位
	1124 JE2/2026X目 (25	与んの, 細華寺 地盤反力係数算出式の-3/4 乗即(載着	1174 追小い405目 位 ケーソン基礎と同様	ちんぴ、 程確す ケーソン基礎と同様	1174 追小いAREI ほケーソン基礎と同様	ちんぴ、 腔陣す ケーソン基礎と同様	II.24 追小い2001 GC ケーソン基礎と同様	与への, 細華寺 847.1 矢板式基礎の設計と施
	$k_y = k_{y_0} \left(\frac{B_y}{0.3} \right)^{-3/4}$	幅依存)は、平板寸法を変えた実験に 基づくものである。 (「地盤反力係数とその載荷幅による補正: 土木研究所資料第 229 号」)						工指針では <i>Br=√Ar</i> H9 年鋼管矢板基礎設計施工便 覧にて <i>Br</i> =D ₀
基礎底面の 鈴鹿方向 地盤反力係数 私	k_r : 給證:方向地鑑成力係級(LN ⁱⁿ) k_n : 給證:方向地鑑成 非態度の面: 日期当于る。第二方中総成 力係級(LN ⁱⁿ) $B_1: 基礎的 (LNin)B_1: 和智文 校法碼 (GM + A_1(C))Z^{-1}_{-1}, 劉智文 校法碼 (GM + A_1(C))Z^{-1}_{-1}, M^{-1}_{-1} \otimes M^{-1}_{-1}A_1: 會加之例如做面關 (m)$							
基礎底面の 水平方向 せん断 地盤反力係数 格	$k_s = 0.3 k_r$ $k_s : 基礎底面の水平方向せん断地鑑反力$ $k_s : 基礎底面の水平方向せん断地鑑反力$	845 道路橋で語病型 (ケーソン基礎の 設計値) に、実例では、12~15 に計 週まれでいると記述されてきり、 そ の間の 13.3333=0.3 に固定したもの と思われる.	ケーンン基礎と同様	ケーソン基礎と同僚	ケーソン基礎と同僚	ケーンン基礎と同僚	ケーンン基礎と同僚	ケーンン基礎と同僚
	$\left\{ k_{\mu} = \alpha_{k} k_{\mu 0} \left(\frac{B_{\mu}}{0.3} \right)^{3/4} \\ k_{\mu} = \alpha_{k} k_{\mu 0} \left(\frac{B_{\mu}}{0.3} \right)^{3/4} \\ k_{\mu} : 基礎前面の火平方向地盤圧力係数\alpha_{\mu} : m \Sigma M_{\mu}$	-34 乗則(載荷福依存)は、底面鉛直方 向と同様、 「今回の公式では木平方向の地盤反 一分係級の補正系数としてa を違くしている。これは、従来弊性としてき ている、これは、従来弊性としてき。初	ケーンと諸感と同様	ケーンと離れ国家	k ₁₀ , μ - α ₀ μ k ₀ k ₀ , μ - μ ₀ μ k ₀ λ ₀ , μ - μ ₀ μ k ₀ - μ ₀ μ - μ ₀ μ k ₀ - μ ₀ μ - μ ₀ μ μ ₀ - μ ₀ μ - μ ₀ μ μ ₀ - μ ₀ - μ ₀ μ μ ₀ - μ ₀ - μ ₀ μ μ ₀ - μ ₀ - μ ₀ μ μ ₀ - μ ₀ - μ ₀ μ μ ₀	An は、ケーソンを準用、 【斜面の影響: ang) [目1月の頭射結果を基に、斜面上の地鑑反力 係数を設定。 (「基礎構造に雪する調査研究 S46 年度報告書」 (「基礎構造に雪する調査研究 S46 年度報告書」 3.212、目的通道語調查会	(常時, 兼風時友びL1 地標時) $k_{II1} = (1 + \alpha_{II})k_{II} \left(\frac{y}{y_0}\right)^{-I/2}$ $h_{II1} : (1 + \alpha_{II})k_{III} \left(\frac{y}{y_0}\right)^{-I/2}$ $h_{II1} : (2 + 3-h)K + K + 4 = 8 = 3 - 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +$	4 例の水平載荷容額の実調値と 解析値の展査による。
基礎前面の水平方向	 「ソン構成にコンタラトグラクトを 行う場合・地中地総定記載は14,42,5 ゲーンン準確でコンタラトグラウト ゲーンン差徴でコンタラトグラウト ゲーンン業額でコンタラトグラウト Monsi 直径 03m 09個体円線による平均成 体の: 直径 03m 09個体円線による平均成 加速 Bu: 当場許「面の換案載 術幅(m) 6, 	んくので、載点ない。 の後当体を確認していた。 の後当体を確認していた的でものであ る。れだし、ケーンと構成のものです 超野は下の過程の増融圏面地離や出 中おやれたいあめため。ケーンソウチ 周囲しと撮照回の経済にセメントモク			る補正係数 $\mu: 陽凌骸の之形能による水平 方向社能形態に力係級に関す 本部正成成に関す k_0: 基礎前面の水平写向地盤 反功係数(NNm)、このと きのa_i(1, 1.5.)$	● (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	41:5年日前時間についたり回ったとか時間 金行力、内部上の設備によった時間であった時間 を行った時間保険であっり、確認に載ってい されたする物質に直ってしたし、 し、し、し、し、し、し、し、し、し、 し、これ、する物質に直ってしたし、 に、し、し、し、し、し、し、し、し、し、 (m)、ござい、(um)以下の場合には (m)、ござい、(um)以下の場合には 3)、基準整定い、(km)以下の場合には 3)、基準整定い、(km)というなか。	
ku	- Different = Warder (m) B. : 基礎の有効前面偏(m) L _e : 基礎の有効視入れ梁さ(m)	ククレトシを原則とし、その場合に成りる。1.8 を挟用できるものとする. しゅー1.8 を採用できるものとする. しかし、課題条件などから汚填を行 えない場合れぬ=1.0 としなければな			$\mu = \frac{1}{6} \sqrt{\left(\frac{P_1}{D} + 1\right) \left(\frac{P_2}{D} + 1\right)}$	1994次れの死害」 旧、川、試験研究所の実験結果及び道路橋下 部構造設計指針等の諸基準の値をグラフに プロットし、全体を包括する近似式より係	る. ただし, 20mm を上回る場合に は 20mm. 【12 地震時】 ケーソン 基礎と同じ	2 例(最大天端変位 31.8cm と 35cm)の載荷試験と解析結果を
		らない・」 (「改訂のポイント ケーンン基礎の設計: 基礎工 1997.2」)			$\begin{array}{l} \alpha_{iji} = 0 (0 \leq \alpha_{ij} < 0.5) \\ \alpha_{iji} = 0.3 \log 10 \alpha_{ij} + 0.7 \\ 0.5 \leq \alpha_{ij} < 10) \\ \alpha_{iii} = 1.0 (10 \leq \alpha_{ii}) \end{array}$	数μを設定。 (「深確ぐいの設計に関する研究報告書 粘性土地 盤の水子方前群グイ模型試験」) ※実験概要		実施. 12 モデル:地職反力度の上限 値でパノリニア
						開東 ローム 総盤に 鋼・スプ(ター6.5mm, F3.2mm, F3.2m, 大平線術記載を実施。祥 別採掘(5 ケース) 微軟別からたる部肪振動(5 ケース)を増加、前の中心間隔が基礎後の 5 倍鶴度(2)下にたると解析効果の影響を受け ること者編認。		砂質地盤では、L2 の方がL1 よ り早い既暗で k _i が低減され る.
	$k_{\rm SHD} = 0.6 k_{\rm HD}$	地中連続壁基礎から引用 (地中連続墜基礎設計施工指針・同解説, H3 年)	ケーソン基礎と同様	$k_{\rm F} = \alpha_{\rm F} k_{\rm H}$	ケーソン基礎と同様	ケーソン基礎と同様	【常時, 暴風時及びL1 地震時】 	4 例の水平載荷試験の実測値と 解析値の照査を実施.
基礎側面の 水平方向	$k_{HD} = i \alpha_{\rm k} k_{H0} \left(\frac{D_{\rm H}}{0.3} \right)^{-3/4}$			ke:基礎底面の水平方向セル断地盤反力 係数(kgfom ³) ku:基礎前面の水平方向地盤反力係数			[12 地藤時]	2 例(最大天端変位 31.8cm と
在A的 地盤反力係数 ksno	Asse:基礎側面の水平方向せん断地酸反力 (Asse:基礎側面の水平方向地毯反力係数 Asse:Asse:Asse:Asse:Asse:Asse:Asse:Asse			 な:米平方向せん価値優反力係数の水平 方向地盤反力係数の水平 で求める。たざし、13<(09)<3、 のまめる。たざし、13<(09)<3、 のまの のまの			ケーンン基礎と同僚	35cm)の歌句記録と賢竹格米を 実施
基礎前背面の 約直卡向	$k_{\cdots} = 0.3k_{\cdots}$	基礎底面の水平方向せん断地盤反力 係数と同様、	ケーソン基礎と同様	ケーンン基礎と同様	ケーソン基礎と同様	ケーソン基礎と同様	【常時,暴風時及び L1 地震時】 	4 例の水平載荷試験の実測値と 解析値の照査を実施.
areのin せん断 地盤反力係数 ksra	**>18 *********************************						(鋼管矢板の支持力に含める) 【12 地震時】 ケーンン基礎と同能	2 例(最大天端変位 31.8cm と 35cm)の載荷試験と解析結果を 車歯
基礎側面の 鉛直方向	$k_{SVD} = 0.3 k_{HD}$	基礎底面の水平方向せん断地盤反力 係数と同様.	ケーソン基礎と同様	ケーソン基礎と同様	ケーソン基礎と同様	ケーソン基礎と同様	【常時, 暴風時及びLI 地震時】 	4 例の水平載荷試験の実測値と 解析値の照査を実施
せん断 地盤反力係数 ksrp	kstra:基礎側面の鉛直方向せん断地盤反力 Kstra:系破(NTM)						(PH B 1/1 (1) 11 (1) (1) (1) (1) (1) (1) (1) (1)	2 例(最大天端変位 31.8cm と 35cm)の載荷試験と解析結果を 実施.

参表 1.1.3 柱状体基礎の設計手法に関する情報収集結果(地盤反力係数)

地盤反力係数

	- 考え方, 経緯等 	鋼管矢板は鋼管充 法口標に打込み たり保護に打込み によって離りした によって離しせた たため、回線に算 后.	 [L1 地應時] [L1 地應時] 5 志べ商庫2 方 6 ○ 股市式に下向設設 計を実施 計を実施 計 4 ○ 40%以下: (修正土研式)にて (修正土研式)に (修正土研式)に (修正土研式)に 7 	4 例の水平蔵背武 験の実測値と解析 値の照査による、 値の照査による。	ケーソン諸歳と同様	井筒部外周面の凹口を考慮して地盤問ったも厳値して地盤開っせん断抵抗を用っせん断抵抗を用いる。	◆羅暗衣に回に簡 市力が完全のに 市力が、御確なの 成に確認 廃に推動 厳が加回藤 強子の 同絵面にの臣膝 団絵面での臣膝 団会心医膝 同なないでもの に中め、
翻管矢板基礎	H24 道示の設計法 【常時 桑風時・11 地線時】 規定なし	(1.2 地理時) (投力さ、砂) (砂力さ、砂) 本蔵他面の極限支持力度(q, 4.1) q,:鋼管矢板の先端で支持する単位面 4.1,鋼管矢板の先端で支持する単位面 4.1,鋼管矢板1本の閉動師面領(m) A.1,鋼管矢板1本の閉動師面領(m) A.1,>	(纪·德)	【常時, 桑國時及び口, 把震時 	ケーンン聴聴と同僚	砂質土 $c+\rho_0 \tan \phi$ (≤ 200) 粉性士 $c+\rho_0 \tan \phi$ (≤ 150)	$\begin{array}{c c} \frac{\Theta W_{1}}{\Theta W_{1}} & \frac{116 A_{1} A_{1}}{16 A_{1}} \\ \frac{\Theta W_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 A_{1}} \\ \frac{\Theta W_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 A_{1}} \\ \frac{\Theta W_{1}}{16 A_{1}} & \frac{116 A_{1}}{16 $
料	考え方, 福緯等 オーンン志徳(ニーマーカー) 岩盤の値は、全国各地から切集した 「平板蔵術討範結果」と10次(各種物 同語の総括果」よ10次(各種物 (一部座上の基礎の創造方向の安定照在社の ための地盤反力度の評価に関する研究: 土木研究所資料第 422 号」)		ケーノンと基礎と同僚	◆種限水平支持力は、すべり面の境 弊位面での地盤の支持力 を其持力の大きさは、すべり面に治 支社人動抵抗力の水平分力の最小 値 な、などにさせて練返し計算により な、の良小値を算出 → 極限水平支 持力 れ、土地のつり合い式から算出 本は、水平支持力の照査としての位 置付けだったため、常時3、地震時2を 853年から採用。		(砂面土・お粉土エクン上部) 場所打ちお工法の周面解除力度準約 進子は水体基礎の設計件算手法に関する調 並上水研究所資料第345 %,18,10」) (執法・練送の上限価) そモルシーロンの破壊基準に送っ そそルニ	****の由上に年にしる七人時広辺 むと一嶋田活館度の、との関係、 など一嶋田活館度の、との関係、 日本の一嶋田語設蔵の下限値を基 に、も人が由融定方度の上限値を 設定 軟岩:10003 → 300K/m ² 酸注:10003 → 300K/m ² 酸注:10003 → 300K/m ² 酸注:10003 → 300K/m ² 酸注:10003 → 340K/m ² 酸子:10003 → 340K/m ² 0.0014/m ² 0.0
筆觀談	H24 道示の設計法 (常時・薬師時・11 地震時時) 許等給店支持力度の上限(常時) (砂丸き): (3-42)+700 (砂丸き): (3-42)+700 (砂丸き): (3-42)+400 (軟 当):200 (軟 当):200 (陳 当):250 (陳 当):250 (陳 当):250 (陳 当):250	11.2 把骤时 ($\partial^{\mu}\chi_{1} \approx \cdot \partial^{\mu}_{\mu}$ 基础。 ($\partial^{\mu}\chi_{2} \approx \cdot \partial^{\mu}_{\mu}$ 基础。 ($a_{\mu} = a_{\mu} (a_{\nu} \chi_{1} + 1/2 \beta_{\mu} M_{\mu} + \gamma_{\nu} D_{\mu} \eta_{\mu})$ $a_{\mu} : 基礎 這面地塗の 個很 支持力 度の 低減係 軟(截岩) 5000 (常時の 3 倍)(硬岩) 7500 (常時の 3 倍)$	ケーンン基礎と同様	【你時, 豪風時及びL1 地震時】 受働士圧強度を補正係数で除した値 常時 暴風時, L1 地震時 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[1.2 地震時] 受働上症強度 $P_{\rho} = \frac{\partial R_{\mu}}{\Delta} \frac{1}{D} R_{\eta} = \frac{W(\cos \alpha_{\mu} + \sin \alpha_{\mu} \tan \theta) + cd}{\sin \alpha_{\mu} - \cos \alpha_{\mu} \tan \theta}$	$(200) = 100 \text{ min}[5\text{M}, (c+p_{\text{damp}})] ≤ 200 (200) \text{ min}[5\text{M}, (c+p_{\text{damp}})] ≤ 100 (200) \text{ min}[200] min$	 ▲ LBE(0.2)和正系数 補正系数 常助, L1 希助, L1 水平七人所 第0.4 1.5 1.1 1.5 1.1 約.0 3 2 約.0 4
	考え方, 経緯等	いたまってにあっていた。 たたまってに装備や たまんや荷可設備活 力成やかまいした結 ためたないた結 ためたや ためたや 層及での 層及での 層及での 一種及での 層のの一部の のの のの の の の の の の の の の の の の の の	地中連続慶恭祿氏 山のせんが勝恭歳氏 山のせんが勝先行 に、満識価で提択 に、満識価でおけた がの時のはという たりの たした。 かっしい たした。 かっしい	ターノン 繊 	ケーソン基礎と同様	場所打ち杭工法の 周面標務力度準拠 (「柱状器都の設計 計算手法に関する副 査:上木研究所資料第 355号,H8,101)	
一般推過整理中研	H24 道示の設計法 【常時・薬師時・L1 地源時】 規定なし	山に 地職時 基礎に 近地置い 基礎に 近地置い 他が1 き 次 (5時)(N \ge 30)) $q_{d,=} 3000$ (第六1 き 次 (5時)(N \ge 30)) $q_{d=} = 3000$ (第六日 -200 , $q_{i,=} = 0.4$ N/mm ²) $q_{i} = 3q$, $q_{i} = 3q$, $q_{i} : -$ (軸日報強度(kN/m ²)	【常時 - 暴風時 - L1 地震時 現定なし 現定なし [L2 地震時] 受動止圧強度 $p_{aa} = c_{b} + p_{a} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $p_{aa} = c_{b} + p_{a} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $p_{aa} = z_{b} \pm p_{a} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $p_{aa} = z_{b} \pm p_{b} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $p_{aa} = z_{b} \pm p_{b} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $p_{aa} = z_{b} \pm p_{b} \tan \phi_{a} + \frac{1}{A_{a}} (A_{a} c + W_{a}^{*} \tan \phi)$ $A_{aa} = z_{b} \pm p_{b} \tan \phi_{a} + \frac{1}{A_{b}} (A_{b} c + W_{a}^{*} \tan \phi)$ $A_{aa} = z_{b} \pm p_{b} \tan \phi_{a} + \frac{1}{A_{b}} (A_{b} c + W_{a}^{*} \tan \phi)$	クーンと基礎と同様 ケーンと基礎と同様	ケーソン基礎と同様	$(39\%\pm)/=\min\{5.N, (c+p_0 \sin \varphi)\} \le 200$ $(34.14\pm1)/= c+p_0 \tan \varphi \le 150$ ◆	10.mmm変カン)(第一) 振行 (11) 11) 11) 11) 11) 11) 11) 11)
40%	考之方, 磁磷等 二=-+7-3/P-1/2/2, 磁磷等 影影結果运得方。5次定、4820 は。p=30%に相当子方支持力係数 路備下据常运能针指针,10%机 路備下据常运能针指针,10%机 是級20值代直接运动的工编1_3。		せん断抵抗力 4, は直接基礎か る 月日、 この前日、 で除しているのは、他の地酸 抵抗要素に合わせたためと考 えられる、 えられる、	843 道路橋下部構造「直接基礎 2019) 着しの大支持力の安全 率が基とたり、その後ケーング 基礎に引続がない、補正係数とし て設定されたと考えられる。	a,は、受働抵抗領域の3次元 ながたがりを示したもの。 まの税拠に回体板による模型 実験で設定 後田らに比Y体基礎の最大地 能気力度に関する模型製錬、土 未学会5日年次学術課業高会	中報9約二法の周面離滅力度 に建設 (日秋体基礎の設計計算手法に関 する關意土木研究所資料第 3435 9,18101)	
ケーンン基礎		11.2 地震中約 (約):1.2 地震中約 (約):1.2 ・ (約):1.2 - (約):1.2 - (約):1.2 - (約):1.2 - (約):1.2 - (約)	【常時・暴風時・L1地震時】 規定なし [1.2 地震時] 受動士圧強度 [1.2 地震時] 受動士圧強度 [1.3 地震時]のそん断地鑑反力度の上限値(Num) Pa: 基礎底面と地震との間に働くせん)射能抗力 4.5 基礎底面と地震との間に働くせん)射能抗力 4.5 基礎底面の有効軟荷面積(m ²)	【常時、桑囲時及びL1 地震時】 受働 土圧強度を下表の補正係数で除した 値 第15 泰風時、L1 地震時 1.1	【1.2 地震時] [1.2 地震中] $p_{1n} = a_n p_{1n}$ $a_p = 1.0 + 0.5 \langle B_1 \rangle \leq 3.0$ $p_{1n} :$ 載識前面の次型地鑑反力度の上限值(kNm ²) $a_p : \chi + u \approx 7.5$ $a_{10} : \chi = 1.0 + 0.5$ $p_{1n} : $ 載載前面の次型地鑑反力度の上限値(kNm ²) $a_p : \chi + u \approx 7.5$ $a_{10} : \chi = 1.0 + 0.5$ $a_p : \chi + u \approx 7.5$ $a_{10} : \chi = 1.0 + 0.5$ $a_p : \chi = 1.0 + 0.5$ $a_{10} : \chi = 1.0 + 0.5$	$(20 $ 領土)/= min[1N, 0.5(c+ $h_0 \tan m_0)] \le 50$ (約約七二)/= 0.5 (c+ $p_0 \tan m_0$) ≤ 100 ◆ 上四代版の输出后係数 和 $m_{max} m_{max}$	Rummary201
	続破成面の	鉛直方向 地盤反力度	基礎成而の 法平分向 地態反力度	5		基礎側面の 水平方向 セム斯 地盤反力度 基礎部計画の 水平方向 水平方向 地盤反力度	基礎側面の 発通方向 せん断 地感交力度

参表 1.1.4 柱状体基礎の設計手法に関する情報収集結果(地盤反力度の上限値)

54

 ◆1本様として評価 すると左記の考え すると, 杭基礎の 設計と一致する. ◆継手でずれ変形を 起こさないとする ケーンン基礎と同様 と単杭の計算に-方が整理される. ◆継手の合成を無 考え方, 経緯等 試設計にて実証. 致する. (m)
 Li: 井筒部外周面の周面攀線力を考慮する各層の層厚(m)
 Lj: 井筒部内周面の周面攀線力を考慮する各層の層厚(m). 底 岻 ◆許容押込み支持力=極限支持力を下表に示す安全率で除した K»:基礎先端と周面摩擦力を含めた鋼管矢板 1 本あたりの極限支持力(kN本))基礎底面の鋼管矢板1本の鉛直反力≤鋼管矢板1本の許容鉛 R_a: 基礎先端と周面摩擦力を含めた鋼管矢板1本あたりの極 q_{s} :鋼管矢板の先端で支持する単位面積あたりの極限支持力 Ui: 外冑を包絡する線の周長(m) Ui: 内冑を包絡する線の周長及び中打ち単独杭の周長の総計 f:井筒部外周面の周面摩擦力を考慮する各層の最大周面摩擦 f:
井筒部内周面の周面摩擦力を考慮する各層の最大周面摩擦 ◆許容引抜き抵抗力=極限引抜き抵抗力を下表に示す安全率を U2:内閣を包絡する線の周長及び中打ち単独杭の周長の総計 f:井筒部外周面の周面摩擦力を考慮する各層の最大周面摩擦 f:井筒部内周面の周面摩擦力を考慮する各層の最大周面摩擦 n: 外壁鋼管矢板の本数(本) n: 隔壁鋼管矢板の本数(本) n_1 : 外壁鋼管矢板の本数(本) n_2 : 隔壁鋼管矢板の本数(本) Li: 并简部外周面の周面摩擦力を考慮する各層の層厚(m) Lj: 并简部内周面の周面摩擦力を考慮する各層の層厚(m). 面から内部土短辺長(1%)の範囲のみを考慮する. 面から内部土短辺長(To)の範囲のみを考慮する. 鋼管矢板基礎 ③設計地盤面における水平変位≦許容水平変位 暴風時, L1 地震時 H24 道示の設計法 A_1 :鋼管矢板1本の閉鎖断面積 (m^2) $-(U_1 \sum L_1 f_1 + U_2 \sum L_j)$ 許容水平変位=基礎幅の 1%(≦50mm) ただし,橋台基礎は 15mm n3: 中打ち鋼管矢板の本数(本) U1: 外周を包絡する線の周長(m) 暴風時, $-(U_1\sum L_1f_1+U_2\sum L_1f_2)$ m3:中打ち鍋管矢板の本数(本) 基礎底面のせん断力の照査なし 確保して、下式より算出 常時 限支持力(kN/本) n+n+n<押込み支持力> 力度(kN/m²) 力度(kN/m²) 力度(kN/m²) 力度(kN/m²) 【引抜き抵抗力】 度(kN/m²) $n_1 + n_2 + n_3$ $=q_{d}A_{1}+-$ Ē 直支持力 直 斜角 50度以下の支持層となり得る斜面上に建設された場合を増合して武 面上に建設された場合を想定して武 第(=斜面上の基礎の極限支持力度/水平地盤上の極限支持力度)水 ◆Meyerhof 理論を応用した方法及び Girud-Nhiem の方法を用い, 支持力 ◆基礎径と根入れ長をパラメータと した試算を実施し、低減係数 αgを 基礎底面以深の基礎前面斜面 係数の低減係数を近似的に算出(近 ※出典:深礎ぐいの設計に関する研究 <u>結果」及び「各種物理試験結果」</u>よ り設定. ※土研資料第 4222 号「岩盤上の基礎 の鉛直方向の安定照査法のための 気の板 基礎径2~15m程度,有効根入れ深さ が基礎径以上の深礎基礎が、地表面傾 全国各地から収集した「平板載荷試験 ※深礎基礎が,谷側に滑ろうとする事 象に対する照査.深礎長が長くなる 地盤反力度の評価に関する研究」 と, 基礎底面でのせん断力 1 1回参向くため, 照査6 ◆岩盤の地盤反力度の上限値 考え方, 経緯等 の影響による低減係数 し、山地。. いに注意が必要. ケーソン 基礎と 同様 ケーソン基礎と 同様 報告書 (武式). 設定. 深礎基礎 D_j:基礎の有効根入れ深さ(m) α₈:基礎底面以深の基礎前面斜面の影響 ○基礎底面の鉛直地盤反力度≤許容鉛直 ◆許容鉛直支持力度=静力学公式による極 限支持力度に斜面の影響を考慮して求 q₆:基礎底面地盤の許容鉛直支持力度 у₂:基礎底面より上にある周辺地盤の単位 ①、基礎底面の鉛直支持力度≤地盤反力度 ②基礎底面のせん断地盤反力≤基礎底面 ◆許容せん断抵抗力=基礎底面と地盤との 間に働くせん断抵抗力を下表に示す安 ③設計地盤面における水平変位≦許容水 (kN/m²) *q₄*: 基礎底面地盤の極限支持力度(kN/m²) 平変位 許容水平変位=基礎幅の 1%(≦50mm) 暴風時、L1 地震時 L1 地震時 $\leq \frac{1}{n} (q_d \alpha_B - \gamma_2 D_f) + \gamma_2 D_f$ H24 道示の設計法 調を一般 地盤の許容せん断抵抗力 ただし、橋台基礎は15mm 暴風時, 体積重量(kN/m³) による低減係数 「公」を信 常時 常時 支持力度 の上限値 北魏 小图 q_a ●「道路橋示方書・同 (解説 IV下部構造 編:H14年3月」に 基礎に合わせたも ◆安全率はケーソン - ーソン基礎と同様 r ーソン 基礎と 同様 考え方、経緯等 のと思われる. £З. 地中連続壁基礎 る部分の土の有効重量(KN) A:基礎の底面積(内部土を含まな ②基礎底面のせん断地艦反力≤基 礎底面地盤の許容せん断抵抗力 盤との間に働くせん断抵抗力を 下表に示す安全率で除した値 基礎底面の鉛直地盤反力度≤許 ◆許容鉛直支持力度=静力学公式に qa: 基礎底面地盤の許容鉛直支持力 q₄:基礎底面地盤の極限支持力度 Ws:地中連続壁基礎に置換えられ ◆許容せん断抵抗力=基礎底面と地 ③設計地盤面における水平変位≤ 許容水平変位 許容水平変位=基礎幅の 1%(≤ よる極限支持力度を下表に示す もの問題 暴風時、L1 地震時 H24 道示の設計法 ただし,橋台基礎は15mm $\left| q_{a} \hspace{-.5mm} = \hspace{-.5mm} \frac{1}{n} \hspace{-.5mm} \left(q_{d} \hspace{-.5mm} - \hspace{-.5mm} \frac{W_{s}}{A} \right) \hspace{-.5mm} + \hspace{-.5mm} \frac{W_{s}}{A}$ 暴風時. 上陸」と話 容鉛直支持力度 度(kN/m²) (²)(m²) (kN/m²) 常時 50mm) 直接基礎から引用 したものと考えら れる. 入れ部の地盤重 量を安全率で修 正しない)は, 杭 基礎と同様と考 支持力式におい て偏心、傾斜を考 たものと考えられ る. ただし,杭基礎のよ うに載荷実験で確 ていないも ◆基礎底面の許容 鉛直支持力式(根 極限支持力式は, 直接基礎の極限 杭基礎から引用し 認したものではな のとなっている. 考え方、経緯等 ン基礎の えられる. 心體 9a: 基礎底面地盤の許容鉛直支持力度 qu: 基礎底面地盤の極限支持力度 (kN/m²) ①[・]基礎底面の鉛直支持力度≤地盤反 力度の上限値)基礎底面のせん断地盤反力≤基礎 ③設計地盤面における水平変位≦許 ◆許容鉛直支持力度-静力学公式によ る極限支持力度を下表に示す安全 基礎底面の鉛直地盤反力度≤許容 **У₂:基礎底面より上にある周辺地盤** との間に働くせん断抵抗力を下表 ◆許容せん断抵抗力=基礎底面と地盤 容水平変位 許容水平変位=基礎幅の 1%(≦50mm) ケーンン基礎 暴風時、L1 地震時 も間日本 底面地盤の許容せん断抵抗力 D₁:基礎の有効根入れ深さ(m) $q_a \leq \frac{1}{n} (q_a - \gamma_2 D_f) + \gamma_2 D_f$ H24 道示の設計法 の単位体積重量(kN/m³) に示す安全率で除した値 ただし,橋台基礎は15mm も国用た [砂れき・砂] 鉛直支持力度 (kN/m²) 常時 [治盤] 水平支持 鉛直支持 照查法

参表 1.1.5 柱状体基礎の設計手法に関する情報収集結果(安定照査方法)

(基礎の降伏等)
犬体基礎の設計手法に関する情報収集結果
参表 1.1.6 柱

Intervention extra lates meansature extra lates meansature extra lates meansature extra lates		7	が基礎	地中連続	意基礎	深礎基礎		鋼管矢板基	幾
$ \frac{1}{10000000000000000000000000000000000$		H24 道示の設計法	考え方、経緯等	H24 道示の設計法	考え方、経緯等	H24 道示の設計法	考え方、経緯等	H24 道示の設計法	考え方、経緯等
contact c		上部構造の慣性力作用位置で水平変位が急増	日本道路協会にて行った試算により左記の	上部構造の慣性力作用位置で水平変		上部構造の慣性力作用位置で水平変	ケーソン基礎と同様	上部構造の慣性力作用位置で水	試設計を実施し,上部構
International sector Internati		し始めるとき	妥当性を検証 .	位が急増し始めるとき	地中連続壁基礎はその形状が多様	立が急増し始めるとき		平変位が急増し始めるとき	造慣性力作用位置での水
$ \frac{1}{10000000000000000000000000000000000$					であることから、基礎の降伏につい				平変位が急増し始める状
Administration on construct. Lumber of construction of construc		◆基礎本体が塑性化する.			ての目安を一般的に示すことが難			◆1/4 の鋼管矢板が塑性化する.	態の目安を定めた. 結果,
Amenu ductic ho. Image: monomentation of the section of the sect		◆基礎前面地盤の 60%が塑性化する.			しいことから、個々の地中連続壁基			◆1/4 の鋼管矢板の先端地盤反力	鋼管矢板の降伏、基礎底
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	翅	◆基礎底面の 60%が浮上る.			礎の水平カー水平変位曲線に基づ			が極限支持力に達する.	面の支持力のいずれかが
All Bell	¥€·				いて基礎の降伏を定義する必要が			◆鋼管矢板の先端地盤反力が極	左記の状態に達したとき
	定義				ÞS.			限支持力に達したおのと浮上	が、水平変位が急増しは
Image: constraint of the constrain					(「道路橋示方書V耐震設計編:H14.3」)			りを生じたものの合計が 60%	じめる状態とよく対応し
$ \frac{1}{10000000000000000000000000000000000$								に達する.	ていることがわかった.
International state in the state									(「鋼管矢板基礎設計施工便
Introduction Introduction Introduction Introduction Introduction Introduction Introduction Internation Internatered Internation Internation </th <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>覧 H9.12 3. 鋼管矢板基礎</td>									覧 H9.12 3. 鋼管矢板基礎
Antonic definition Antoni			And Andrews States 11 1 - 1400 Allower Advector Allower 2014	alata da serie de la companya de la	Actual Control of the second				の降伏に関する資料」)
Triant Instruction		部はの上摘縁においてコンクリートが終同し	鉄筋コンクリート橋脚の終局曲けモーメン	部内の圧縮酸においてコンクリート	ケーンン基礎と同様	部村の圧縮隊においてヨンクリート	ケーンン基礎と同様	郵管 れと 回様 、	
Anticide(a - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		ずみに達するとき	トを,最外縁の軸方向圧縮鉄筋位置におけ	が終局ひずみに達するとき		が終局ひずみに達するとき			
Interface <			るコンクリートのひずみが終局ひずみに達						
Anti-Alian Anti-A			したときであり、橋脚に比べて安全側を考						
Apply the set latter set of a matrix of the set of a matrix of the set latter set of a matrix of the set latter set lat	绿		慮して定めたと考えられる.						
AndConsistential (10)Co	E 6								
$ \mu_{1} = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} $	定業		「道路橋の耐震設計に関する資料:H9 年 3						
Image: constraint in the set of	×.		月」のケーソン基礎の設計計算例では, 終局						
$\frac{1}{(1+1)^{-1}} = \frac{1}{(1+1)^{-1}} = \frac{1}{(1+1)^$			時とは基礎本体の圧縮縁においてコンクリ						
Incrude ($L_{1} = 1 - \delta_{-1} - \delta_{-1}$)Incrude ($L_{1} = 1 + \delta_{-1} - \delta_{-1}$)I			ートのひずみが終局ひずみに達したときと						
補助価値の組合は1 参数の正式交報確実験が行われているは 動物風の組合は4 体価価に増加 <td< th=""><th></th><td></td><td>している.</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			している.						
はたいの能活っとりした(細胞に)、このう 物に形大や脂肪目が開いていた。 地にし、 し、 し、 し、 し、 し、		橋脚基礎の場合は、下式による。	多数の正負交番載荷実験が行われている単	橋脚基礎の場合は、下式による.	ケーソン基礎と同様	基礎が降伏しない範囲に留める.	岩における塑性化後のせん	橋脚基礎の場合は4	抗基礎に準拠。
(μ=1+bbb) (μ=			柱式の鉄筋コンクリート橋脚や、このうち				断強度の低下や地震時の斜	橋台基礎の場合は3	杭基礎の許容塑性率とし
(1 = T α δ) (1 = T α δ) (1 = T α δ) (2 = T α δ)		$\delta_{u} - \delta_{y}$	特に形状や配筋細目が類似する中空断面鉄	$\delta_u - \delta_y$			面の不安定化など、塑性化		ては、組杭を対象とした
本: ケーンン振動の指常批注。 係 は捕動状況との関係を参考に、ケーン ろ 術 電気(加陽床と植像水) る 術 電気(加陽床と植像水) 本: ケーンン振動の指常批注。 繊細に進生化た考慮する場合でも水平可能 ル: ケーンン振動の形容批注。 シ に 地震人にある(本) ひ の 明床の検討よりだの 3: 法職が終月に進止たときの上部に式作力 3歳、大での避性率は もからくなるように あ、 北市が客日に進化たを考慮する場合でも水平可能 ル: ケーンン振動の所容加圧 シ に 小血素(小量) シ の 明床の検討よりたの シ に 小血素(小量) シ に 小血素(小量) シ に 小血素(小量) シ に 小山 シ に 小血素(小量) シ に 小山 シ に シーンション シ いろい シ に 小し シ に シーン・シーン シ いろい		$\mu_L = 1 + \frac{\alpha \delta_y}{\alpha}$	筋コンクリート橋脚における荷重-変位関	$\mu_L = 1 + \frac{\alpha \delta_y}{\alpha}$			後の深礎基礎の挙動につい		正負交番載荷実験におけ
加い: ケーンン基礎の管管塑性率 繊維に塑性化を考慮すても水平術面 施・ カ: ボーンン基礎の管管塑性率 カ: ボーンン基礎の管管塑性率 (2): 活職が採用に塗したときのLITT か: ボーンシン基礎の管管塑性 シ: 活職が採用に塗したときのLITT (2): 活職が採用に塗したときのLITT が用した い. 地臓後にが使くしなくても迷やかな酸 エザ酸性力作用化酸にはおける水平 ボード用化酸にはおける水平変(nm) い. 地臓後に修復をしなくても迷やかな酸 エザ酸性力作用化酸にはおける水平 ボード用化酸における水平変(nm) い. 地臓後に修復をしなくても迷やかな酸 エザ酸性力作用化酸における水平変(nm) ボード用化酸における水平変(nm) 能の目復が行える損傷に抑えられるように 変位(nm) ボード用化酸における水平変(nm) 酸定している・ 3,: 基礎が除伏に塗したときの上部 市田化酸における水平変(nm) 酸定している・ 3,: 基礎が除伏に塗したときの上部 ボード用化酸における水平変(nm) 酸定している・ 3,: 基礎が除伏に塗したときの上部 ボード用化酸における水平変(nm) アビード・ 3,: 基礎が除伏に ボード日化酸における水平変(nm) アビード・ 3,: 基礎が除伏に ボード日本 1 アビード・ ボード日本 1 1 ボード日本 3,: 基礎が除くに塗した アビー ボード日本 1 1 ボード日本 1 1 ボード日本 1 1 ボード日本 1 1 ボード日本 1			係と損傷状況との関係を参考に、ケーソン				て不明な点が多いことに配		る荷重変位関係と損傷状
4 6.: 基礎が終用に進したときの上部工慣性力 5.6 70.05. 第 作用化面にされする水平変位(m) 1. 地理後に核復をしなくでも建やうかな機 工慣性力作用位面にされする水平 加速(k1と能力をとかなくも建やうかな機 工慣性力作用位面にされする水平 変位(m) 6.: 基礎が除んに塗したときの上部工慣性力 他の回復が行える損傷に与えるもれるようは 変位(m) ア でいる. 6.: 基礎が除人に塗したときの上部工慣化力 他の回復が行える損傷に与えるもれるようは 変位(m) ア でいる. 6.: 支援数で、18 とする. 約: 基礎が除人に塗したときの上部工慣化 カ: 基礎が除人に塗したときの上部 ア でいる. 6.: 支援数で、18 とする. 約: 基礎が除くに適じとおける水平 次(m) 第 空信 でいる. 6.: 支援数で、18 とする. 1.1 をする. 2 2 2 2 2 2 橋台基礎の場合に3 1.1 をする. 3 3 2		μ1:ケーソン基礎の許容塑性率	基礎に塑性化を考慮する場合でも水平荷重	μι: ケーソン基礎の許容塑性率					況の関係の検討より定め
第 作用位置によおじる水平変位(m) し、地震後に修復をしなくても速やかみ機 工慣性力作用位置における水平 す): 基礎が除化に進したときの上部工慣性力 値の回復が行える損傷に抑えられるように 変位(m) 作用位置における水平変位(m) 設定している. 変位(m) a: 笑全係載で, 1.8 とする. b: 生くる. b: 日本(m) <li< th=""><th></th><td>δ″: 基礎が終局に達したときの上部工慣性力</td><td>が最大での塑性率よりも小さくなるように</td><td>δ₂: 基礎が終局に達したときの上部</td><td></td><td></td><td></td><td></td><td>ている.</td></li<>		δ″: 基礎が終局に達したときの上部工慣性力	が最大での塑性率よりも小さくなるように	δ ₂ : 基礎が終局に達したときの上部					ている.
株 め: 基礎が除代に進したときのし部TTT(性力) 液(加) 酸(加) 作用化置における水平致位(m) 酸: しいろ。 の: 基礎が降代に進したときの上部 a : 安全係数で, 18 とする。 の: 基礎が降代に進したときの上部 a : 安全係数で, 18 とする。 の: 基礎が降代に進したときの上部 都合基礎の場合は3 a: 安全係数で, 18 とする。 都台基礎の場合は3 a: 安全係数で, 18 とする。	容塑	作用位置における水平変位(m)	し、地震後に修復をしなくても速やかな機	工慣性力作用位置における水平					
作用位置にさおする水平変位(m) 設定している. Ø,:基礎が降化達止ときの上部 a : 安全係数で, 18 とする. 工慣性力作用位置における水平 変位(m) 変位(m) 都台基礎の場合は3 a: 安全係数で, 18 とする. 縮台基礎の場合は3 a: 安全係数で, 18 とする.	牡樹	δ,: 基礎が降伏に達したときの上部工慣性力	能の回復が行える損傷に抑えられるように	変位(m)					
a:安全係数で,18とする. 工慣性力作用位置における水平 工慣性力作用位置における水平 酸合基礎の場合は3 変位(m) 術合基礎の場合は3 a:安全係数で,18とする.		作用位置における水平変位(m)	設定している.	δ,: 基礎が降伏に達したときの上部					
 変位m) a:安全係数で、18とする、 都台基礎の場合は3 縮台基礎の場合は3 		a:安全係数で, 1.8 とする.		工慣性力作用位置における水平					
橋台基礎の場合は3 a:安全係軟で、18 とする. 橋台基礎の場合は3				変位(m)					
橋台基礎の場合は3		橋台基礎の場合は3		a:安全係数で、1.8 とする.					
				極台 基礎の損合は 3					
				1回口 255156~~200日(チ・フ					

付属資料2 基礎底面地盤の極限鉛直支持力推定式における粘着力項について

参 2.1 はじめに

H29 道示におけるケーソン基礎底面地盤の極限鉛直支持力の特性値は,式(参 2-1)により求めら れる.式(参 2-1)は、直接基礎の極限支持力推定式と同じく、テルツァーギにより提案された支持 力式を基本とするものであるが、土木研究所資料第 4255 号^{参 2-1)}でも報告されているように、直接基礎 やケーソン基礎の支持力推定式における粘着力項は、その推定精度が低いことから、支持力推定式の 粘着力項に補正係数ζ_cが乗じられている.本資料では、式(参 2-1)の提案に至った、粘着力項にお ける補正係数ζ_cに関する検討や粘着力 c の算出に関する留意点について示す.

 $Q_u = A \left\{ \alpha_{\kappa} c N_c S_c \zeta_c + \kappa q N_q S_q + (1/2) \gamma_1 \beta B N_\gamma S_\gamma \right\} \quad \cdot \quad \cdot \quad (\not \otimes 2\text{-}1)$

ここに,

Q_u	:	基礎底面地盤の極限鉛直支持力の特性値(kN)
A	:	基礎の底面積 (m ²)
С	:	粘着力(kN/m ²)
q	:	上載荷重の特性値(kN/m^2)で, $q=\gamma_2 D_f$
<i>Y</i> ₁ , <i>Y</i> ₂	:	支持地盤及び根入れ地盤の単位体積重量(kN/m³),
		ただし,地下水位以下では水中単位体積重量を用いる.
В	:	基礎幅 (m)
α,β	:	基礎の形状係数
ĸ	:	支持層への根入れ効果に関する割増係数
D_f	:	上載荷重として考慮する基礎の根入れ深さ(m)
N_c, N_q, N_γ	:	帯基礎の支持力係数
ζ	:	地盤の種類の違いを考慮する係数.
		支持層が砂地盤又は砂れき地盤の場合には 1.00, 粘性土地盤の場合には 0.55 とする.
S_c, S_q, S_γ	:	支持力係数の寸法効果による補正係数で <i>Sc=(c*)^à, Sq=(q*)^v,S₇=(B)⁴</i>
λ,ν,μ	:	寸法効果の程度を表す係数で、 $\lambda = \nu = \mu = -1/3$ とする.
<i>c</i> *	:	c/c_0 , ただし, 1 $\leq c^* \leq 10$ とする.
C_0	:	10 (kN/m^2) とする.
q^*	:	<i>q</i> / <i>q</i> ₀ , ただし, 1≦ <i>q</i> [*] ≦10とする.
q_0	:	10 (kN/m^2) とする.

参2.2 補正係数 ζ による粘着力項の補正

文献^{参 2-1)}では,基礎底面地盤の支持力推定式について,実験的結果に対する近似精度が十分に確か められていないこと,これまでの検討が砂質地盤を中心に行われていることなどを指摘し,粘着力が 卓越する地盤における支持力推定式の精度を検証している.

検証を行った結果,過去にケーソン凾内で実施した平板載荷試験結果における極限鉛直支持力の実 測値と,同一現場からサンプリングした試料の三軸試験結果に基づく支持力推定式による計算値とを 比較した場合,砂地盤や砂れき地盤では実測値と計算値が同等である一方,粘性土地盤では実測値が 計算値を大きく下回ることが明らかとなった.この要因は,図-参2.1に示すように,支持力推定式の 粘着力項が,実測値を過大評価していることにある.

こうしたことから、この粘着力項の実測値と計算値のバイアスを補正する必要がある(補正係数な). 粘着力項が実測値を過大評価した要因として、平板載荷試験実施地盤の乱れ、強度の空間的なばらつ きや異方性等が考えられるが、検証に用いた載荷試験結果のデータ数が少ないこともあり、今後さら なる検証が必要である.

なお,粘性土の一面せん断試験結果については,拘束方法の違いやサンプリング試料の乱れにより, 一面せん断試験結果に基づく支持力推定式による計算値が同一現場で実施した平板載荷試験結果によ る極限鉛直支持力の実測値を大きく下回る結果となっている.

参 2.3 cの排水条件を考慮した補正係数 ζ_cの検討

文献^{参2-1)}においては、粘着力項の算出に用いる粘着力 c は、排水強度(有効応力強度)を用いて整理されていた.一方、粘性土における排水強度は、長期にわたって排水される状況等における強度を示すには適切であるが、地震時荷重等の短期的な荷重を受ける場合のように十分に排水されない状況における強度を表現するには必ずしも適切ではない.平板載荷試験の荷重の作用速度は比較的早いため、平板載荷試験と比較する場合には非排水強度と比較するのが適切である.以上から、本文では、非排水強度を用いた場合の補正係数*ζ*の値を検討する.

非排水強度の求め方としては、以下のような方法がある.

①一軸圧縮試験において、すべり面とモールの応力円の交点の値として求める方法

②非圧密非排水試験(UU試験)により求める方法

③圧密非排水試験(CU試験・CU試験)により求める方法

①の方法は、一軸圧縮試験から求める方法であり、三軸圧縮試験に比べてせん断強度を簡易に求めることができる. ただし、ケーソン基礎のように支持層が比較的深い位置にある場合には、サンプリングによる応力解放の影響により供試体に亀裂が生じ、負圧が保持できなくなるので、 $\phi_u=0$ の仮定が成り立たず、強度を過小評価する可能性がある. また、②の方法についても、供試体を再圧密しないためにサンプリングによる応力解放の影響を除去することはできない. したがって、CU 試験もしくはCU試験により求めることとする.

図-参 2.2 に、CU 試験又はCU試験により求めた非排水強度を用いて算出した極限支持力(計算値) と、平板載荷試験で得られた極限支持力(実測値)を比較した結果を示す.非排水強度を用いた場合 にも、実測値と計算値のバイアスは 0.55 程度となった.

载荷宝殿 十质区公		平板載荷試験による実測値(荷重変位関係 をワイブル近似して求めた値)		原位置(深度)における有効土被り圧として 補正して求めたcu※を用いた計算値		5 (0)
戦1 可夫崇	工具位力	基礎幅長辺 (mm)	極限荷重実測値(kN) <i>F_m</i>	粘着力 (kN/m ²)	計算値(kN) Qcal= <i>α ₀N₀</i> ∙ <i>A</i>	Fm/Qcal
A	粘性土	300	79.65	270	162.37	0.49
В	粘性土	300	79.06	270	162.37	0.49
С	粘性土	750	395.48	270	1014.83	0.39
D	粘性土	750	468.81	270	1014.83	0.46
E	粘性土	300	82.32	250	150.34	0.55
F	粘性土	300	94.98	240	144.33	0.66
G	粘性土	750	482.16	250	939.66	0.51
Н	粘性土	750	520.30	240	902.07	0.58
					単純平均	0.52

図-参2.2 非排水強度を用いた場合の極限支持力算出結果

参2.4 粘着力項 c の算出に関する留意点

以上から、基礎底面地盤の極限鉛直支持力の特性値を求める際には、粘着力 c に CU 試験又は \overline{CU} 試験により求めた非排水強度を用いた上で、補正係数 ζ_c の値として 0.55 を用いるのがよいと考えられる. ここで、CU 試験と \overline{CU} 試験の使い分けについては、地下水位等との関係も考慮して適切に定める必要があるが、直接基礎の場合には支持層が浅く、完全に飽和状態にない場合も多いことを考慮すると、 一般的には \overline{CU} 試験により求めるのがよいと考えられる.

一方ケーソン基礎の場合には、多くの場合支持層が深く、飽和状態にあると考えられるため、一般 的には CU 試験により求めるのがよいと考えられる.いずれの場合にも、サンプリングによる応力解 放の影響を最小限にとどめるために、適切な応力で再圧密を行うのがよいと考えられる.

参考文献

- 参 2-1) (独) 土木研究所: 性能規定体系における直接基礎の安定照査法に関する研究, 土木研究所 資料第 4255 号, 2014.3
- 参 2-2) (公社)日本道路協会:道路橋示方書·同解説IV 下部構造編, 2017.11
- 参 2-3) (社) 土質工学会: N 値および c・ φ -考え方と利用法-, 1998

土木研究所資料 TECHNICAL NOTE of PWRI No.4369 April 2018

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754