断層変位等の影響を考慮した 道路橋の地震時応答に関する 共同研究報告書

令和5年6月

国立研究開発法人土木研究所 国立大学法人筑波大学

Copyright © (2023) by P.W.R.I.

All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認を得て刊行し たものである。したがって、本報告書の全部又は一部の転載、複製は、国 立研究開発法人土木研究所理事長の文書による承認を得ずしてこれを行っ てはならない。

共同研究報告書 第576号2023年6月

断層変位等の影響を考慮した道路橋の 地震時応答に関する共同研究

国立研究開発法人土木研究所 構造物メンテナンス研究センター 上席研究員 大住 道生 国立研究開発法人土木研究所 構造物メンテナンス研究センター 研究員 二宮 智大^{※1} 国立研究開発法人土木研究所 構造物メンテナンス研究センター 研究員 横澤 直人^{※2} 国立研究開発法人士木研究所 構造物メンテナンス研究センター 専門研究員 中尾 尚史³³ 国立研究開発法人土木研究所 構造物メンテナンス研究センター 交流研究員 河原井耕介 国立大学法人筑波大学 システム情報系 教授 庄司 学 国立大学法人筑波大学理工情報生命学術院システム情報工学研究群 山本 翔吾 研究当時 国立大学法人筑波大学理工情報生命学術院システム情報工学研究群 皆川 大雅 研究当時 国立大学法人筑波大学 理工学群 工学システム学類 北島 祐

※1 現 国土交通省中国地方整備局 広島国道事務所 計画課 事務所課長

※2 現 国立研究開発法人土木研究所 つくば中央研究所 研究員

※3 現 国立高等専門学校 舞鶴工業高等専門学校 建設システム工学科 講師

要 旨:

本共同研究は、断層変位の影響を考慮した耐震設計手法の提案を大局的な目標とし て、断層変位を考慮した地震応答解析のためのモデル化に関する知見の拡充等を目的 に、解析的検討を実施した。2016 年熊本地震で被災した道路橋を対象とし、複数のモ デル化による地震応答解析を実施した。異なるモデル化による解析結果の比較、及び 地震後に観察された損傷痕から推定した対象橋梁の損傷メカニズムと解析結果の比較 を行い、モデル化の差異の影響などについて考察を行った。その結果、断層変位の影 響を含む地震応答解析では、モデル化の差異によって危険側の範囲も含めて解析結果 は大きくばらつくことが確認された。橋の設計にあたって不測の事態として断層変位 の影響を考慮する場合、このような解析上の不確実性の存在も踏まえ、解析結果に基 づくだけでなく、多角的にリスク対応を考えることが重要と考えられる。

また、断層変位への対応の検討例として、不測の事態に対して望ましくない損傷シ ナリオを避けるよう設計をする、損傷シナリオデザイン設計法を適用する例を示した。

キーワード:断層変位,地盤変状,耐力階層化

まえがき

平成28年の熊本地震では、断層変位や斜面崩壊等による道路構造物の被害が発生した。これを 受けて平成29年7月に改定された道路橋示方書V編では、橋の耐震設計にあたり想定される地震 によって生じ得る斜面崩壊等及び断層変位に対して、これらの影響を受けないよう架橋位置又は 橋の形式選定を行うことが標準とされた。しかし、やむを得ずこれらの影響を受ける架橋位置又 は橋の形式となる場合には、少なくとも致命的な被害が生じにくくなるような構造とするなど、 断層変位等への対応が求められることとなった。

一方で、地震動による作用と断層変位等による地盤の強制変位が橋梁に対して如何に作用する か、またそれらが同時に作用した時の道路橋の応答特性は明らかになっていない。また、断層変 位等の影響の見込み方が一般化されていないため、橋梁の動的解析においては、変位の影響を含 む入力地震動の作成や変位の方向や大きさ等の様々な組み合わせを考慮することが必要となるな ど、簡易に解析を実施することが困難であることが課題である。

このような背景の中、本共同研究では熊本地震で被災した橋梁群を対象に、周辺地盤条件を考 慮した3次元有限要素モデルの構築を行い、対象橋梁群の被災モードを参照することで、地震動 による作用と断層変位等による強制変位の合成作用を同定するとともに、地震時応答特性の把握 を行う。また、得られた地震時応答特性等をもとに、簡易に構築した解析モデルに対する解析入 力方法の提案を行うものである。

令和5年6月

断層変位等の影響を考慮した道路橋の地震時応答に関する共同研究

研究代表者 国立研究開発法人土木研究所 構造物メンテナンス研究センター 上席研究員 大住 道生

共同研究参加者名簿

機関	氏名	所属	担当期間
	大住 道生	構造物メンテナンス研究センター	R2.2~R4.3
		上席研究員	
	二宮 智大*1	構造物メンテナンス研究センター	R2.2~R2.7
		研究員	
国立研究開発法人	橫澤 直人*2	構造物メンテナンス研究センター	R3.4~R4.3
土木研究所		研究員	
	中尾 尚史*3	構造物メンテナンス研究センター	R2.2~R4.2
		専門研究員	
	河原井 耕介	構造物メンテナンス研究センター	R3.4~R4.3
		交流研究員	
	庄司 学	システム情報系	R2.2~R4.3
		教授	
	山本 翔吾	理工情報生命学術院 システム情報工	R2.2~R4.3
国立大学法人		学研究群	
筑波大学	皆川 大雅	研究当時 理工情報生命学術院 シス	R2.2~R4.3
		テム情報工学研究群	
	北島 祐	研究当時 理工学群 工学システム学	R2.2~R4.3
		類	

※1 現 国土交通省中国地方整備局 広島国道事務所 計画課 事務所課長

※2 現 国立研究開発法人土木研究所 つくば中央研究所 研究員

※3 現 国立高等専門学校 舞鶴工業高等専門学校 建設システム工学科 講師

断層変位等の影響を考慮した道路橋の地震時応答に関する共同研究 目次

第1章 はじめに

1.1	研究の背景
1.2	研究の目的
第 2章	対象橋の損傷状況及び損傷痕から推定する損傷メカニズム
2.1	本章の概要
2.2	大切畑大橋の架橋位置及び構造形式
2.3	大切畑大橋の被害状況
2.4	損傷痕から推定する各部材の挙動40
第3章	地盤を含めた 3 次元 FE モデルを用いた断層変位
	及び強震動に対するピーク時応答の検討
3.1	本章の概要
3.2	橋梁-添架管路-地盤系を対象とする地震被害推定システム95
3.3	地震作用の推定
3.4	3 次元 FEM 解析に係る基礎理論
3.5	対象橋梁の3次元モデル
3.6	地表断層変位を入力作用とした対象橋梁に対する静的漸増解析
3.7	強振動のピーク外乱に対する動的時刻歴解析
3.8	地表断層変位並びに強振動のピーク時応答の比較
3.9	本章における結論と今後の課題133
第4章	地盤を含めた 3 次元 FE モデルを用いた主要動の作用による応答挙動の検討
4.1	本章の概要
4.2	本解析で用いるサイト波
4.3	対象橋梁の解析モデル
4.4	解析条件
4.5	橋台・橋脚-地盤の地震応答の特徴
4.6	支承-上部構造の地震応答の経時的状態変化151
4.7	本章の結論と今後の課題161
第5章	3 次元骨組みモデルを用いた断層変位の影響を考慮した応答解析方法の検討
5.1	本章の概要
5.2	解析方法
5.3	解析モデル・・・・・165
5.4	入力条件
5.5	解析結果
5.6	本章の結論と今後の課題

第6章	断層変位を考慮した地震応答解析におけるモデル化手法に関する検討
6	1 本章の概要
6	2 比較ケースの整理
6	3 解析結果の比較考察
6	4 総括
第 7章	損傷シナリオを考慮した断層変位対策に関する解析的検討
7	1 検討の背景
7	2 検討方法
7	3 解析モデル
7	4 入力条件
7	5 解析結果
7	6 本章の結論と今後の展望
第8章	まとめ
8	1 本研究で得られた知見
8	2 今後の課題と展望
謝辞·	
参考資	·料···································
才	*考資料1 大切畑大橋の設計資料
煮	考資料 2 第 3 章付録 FEM 解析における前処理並びに境界条件の影響 391

第1章 はじめに

1.1 研究の背景・目的・検討の観点

過去の地震被害において,地震動に加えて断層変位等が原因で道路橋が損傷する事例が確認さ れている。国外では,平成11年(1999年)に発生したコジャエリ地震(トルコ)や集集地震(台 湾)において,断層変位によって落橋するなど,道路橋は致命的な被害を受けた。国内では,平 成28年(2016年)熊本地震において,断層変位によって落橋には至らなかったものの,支承が損 傷したことで橋の機能が喪失する被害が発生した。ここで,断層変位とは,道路橋示方書・同解 説(以下「道示」という。)に準じて,地震の震源断層における相対変位が地表近くに到達して生 じる地盤の相対変位¹⁾と定義することとする。

道示では、平成24年(2012年)の改定で、地震の影響として地震動以外に津波、断層変位、地 すべりの影響を考慮する必要性が初めて明記された²⁾。さらに、平成29年(2017年)の改定では、 橋の耐震設計にあたり想定される地震によって生じ得る津波、斜面崩壊等及び断層変位に対して、 これらの影響を受けないよう架橋位置又は橋の形式選定を行うことを標準とし、やむを得ずこれ らの影響を受ける架橋位置又は橋の形式となる場合には、少なくとも致命的な被害が生じにくく なるような構造とするなど、断層変位への対応が求められることとなった³⁾。

一方,断層変位の影響を受ける橋の応答を定量的に評価する一般的な手法は確立されておらず, 断層変位に対する対応は,前述の様な架橋位置の選定などの計画的な側面や,やむを得ず断層変 位の影響を受ける位置に架橋する場合には,例えば上下部構造間に相対変位が生じたとしても上 部構造が直ちに落橋しにくい橋梁形式や相対変位に追随性の高い橋梁形式等を採用するなど³⁾, 定性的な配慮による対応となっている。そこで,本研究では,断層変位の影響を考慮した耐震設 計手法の提案を行うことを大局的な目標とし,複数のモデル化による橋の応答解析を行い,断層 変位を含む地震動に対する橋の応答性状について考察するとともに,モデル化の差異が応答解析 結果に与える影響について考察を行った。検討にあたっては,2016年熊本地震において,断層変 を含む地震動により被害を受けた大切畑大橋を対象とした。

一般に,設計法の確立にあたっては,橋に作用する外力の設定方法,橋のモデル化手法及びこれらの相違や不確実性が応答に与える影響を分析する必要がある。そこで,本研究では,断層変位を考慮した耐震設計法の確立に向けて,以下の3つの観点に着目して検討を行った。

(1) 断層変位の影響を受ける橋の応答に関する知見の拡充

耐震設計にあたっては、種々の不確定性を有する地震動や断層変位及びその組合せの作用に よって、橋の応答にどのような影響が生じるかを把握し、適切な構造的対応を行う必要がある。 これまでに地震工学の視点から断層変位を評価しようとする研究は実施されている⁴⁾が、設計 で要求される信頼性を確保できるような精度の断層変位の推定手法が提案されてはいない。ま た、個別の橋梁形式について、断層変位が作用する状況を想定した解析的な検討⁵⁾⁻⁹⁾がなされ ているが、橋の応答に大きく影響する要因の特定には至っておらず、この点に関する知見の拡 充が必要とされている。 本研究では、実際に地表断層変位の影響も受けて被災したと考えられる大切畑大橋を対象に、 被害状況の分析を行い、断層変位を含む地震動を受けた橋の損傷メカニズムについて考察を行 った(第2章)。また、Okada式¹⁰⁾による地表断層変位の推定、有限差分法¹¹⁾による断層変位を 含む地震動の推定を行い、橋の応答に対して、断層変位及び地震動が与える影響を考察した(第 3章、第4章)。一方、断層変位に対する対策を行った場合の断層変位に対する橋梁応答の検討 例として、耐力階層化鉄筋^{12,13)}を適用した橋梁の応答挙動について解析的検討を行った(第7 章)。

(2) 断層変位を考慮した地震応答解析におけるモデル化に関する知見の拡充

一般的な耐震設計において、全ての部材を詳細にモデル化することは現実的ではなく、応答 に対する影響の程度に応じて、部材ごとにモデル化の詳細さを変化させることが望ましい。こ れまでに、断層変位を考慮した橋の応答解析におけるモデル化の相違の影響は検討されておら ず、設計で要求される信頼性を満足するモデル化に関する知見の拡充が必要となる。

本研究では、3次元有限要素モデル及び骨組みモデルを用いた検討を行い、モデル化手法によ る応答解析への影響を考察した。また、断層変位及び地震動の推定方法と違いによる影響を確 認するため、Okada 式¹⁰により推定した地表断層変位と地震後に測量した下部構造移動量に対 する応答の比較、及び有限差分法¹¹により推定した地震動とサイト特性置換法¹⁴により推定し た地震動の比較検討を行った(**第3章~第6章**)。

断層変位を考慮した地震の影響の入力方法としては、単純化した複数の入力条件について比 較検討を行った(第5章,第6章)。また、この入力条件の検討結果を参考に、断層変位に対す る対策を行った場合の橋梁の応答解析の例を示した(第7章).

(3) 構造の有する不確実性の影響に関する知見の拡充

構造物は設計段階や施工段階,供用中の環境等によって様々な不確実性を有しており,想定 と異なる応答を示す可能性がある。そのため,設計段階においては,部材耐力のばらつき等, 構造の有する不確実性を考慮する必要がある。

本研究では、基礎のモデル化及び材料強度の設定方法に着目し、これらの設定方法の相違が 断層変位の影響を受ける橋の応答に与える影響を分析した(**第5章**)。

本報告書では、(1)~(3)の観点に立ち、橋に作用する断層変位の影響の推定や解析におけるモ デル化手法の検討、断層変位のばらつきとそれをふまえた対策方法について検討した結果を報告 する。

1.2 報告書の構成

報告書の構成を図-1.2.1 に示す。第2章では、熊本地震で被災した大切畑大橋を対象に、地震後の損傷状況の調査結果及び調査した各部材の損傷痕から対象橋梁の損傷メカニズムを推定した結果を述べる。

第3章では、対象橋梁-地盤系の3次元有限要素モデルを作成し、これを用いて推定した地表 断層変位に対する静的解析及び強振動に対する動的解析を行い、地表断層変位及び強震動が橋の 応答に与える影響をそれぞれ分析する。なお、第3章で用いた解析モデルは、想定地震に対する 地震被害推定や地震発生直後の即時被害推定を行うための「地震被害推定システム」に組み込む モデルとして検討していたものである。第3章では、参考として地震被害推定システムの概要に ついても併せて紹介した。

第4章では,第3章と同様の対象橋梁-地盤系の3次元有限要素モデルを用いて,地震による 主要動作用による応答挙動について,特に地震により破断が生じた支承部の応答履歴等に着目し て分析を行った。また,推定地震動の違いによる影響を確認するため,第3章と同じ有限差分法 により推定した地震動と第5章で用いたサイト特性置換手法で推定した地震動に対する応答につ いて比較考察を行った。

第5章では、対象橋梁を3次元骨組みモデルでモデル化し、一般的な耐震設計に適用できる断 層変位を考慮した解析手法を検討した。断層変位の入力方法として単純化した入力条件について 比較検討を行った。また、材料条件等の不確実性の影響についても併せ検討した。

第6章では,第2章で整理した大切畑大橋の損傷状態と,橋梁一地盤系の3次元有限要素モデル及び骨組みモデルを用いた解析結果(第3章~第5章)の比較を通して,断層変位を含む地震動に対する橋の応答解析においてモデル化や断層変位入力方法の差異が解析結果に与える影響について考察した。

第7章では、断層変位を考慮した具体的な検討の事例として、断層変位の影響に対する対策を 施した橋梁を対象に、断層変位を受ける場合の応答評価の例を示す。断層変位対策としては、超 過作用に対して橋の損傷や崩壊に至るシナリオをデザインする設計法(シナリオデザイン設計法) に基づき提案した耐力階層化鉄筋を用いた構造を取り上げ、解析的にその効果を確認した。

第8章では、本研究全体の成果及び今後の展望について述べる。

図-1.2.1 報告書の構成

参考文献

- 1) (公社) 日本道路協会:道路橋示方書·同解説 V 耐震設計編, p. 3, 2017.
- 2) (公社) 日本道路協会:道路橋示方書·同解説 V 耐震設計編, p. 6-7, 2012.
- 3) (公社) 日本道路協会:道路橋示方書·同解説 V 耐震設計編, p. 4-5, 2017.
- 4) 土木学会地震工学委員会 耐震基準小委員会 断層変位 WG:研究成果報告書, 2021.
- 5) 浦川洋介,大塚久哲,吉川卓,角本周:断層変位を受ける PC 連続ラーメン橋の耐震性能に及 ぼすねじり剛性の評価の影響,構造工学論文集, Vol. 53A, pp. 473-484, 2007.
- 6) 大塚久哲,古川愛子,中村壮:断層変位を受ける鋼斜張橋の動的解析,土木学会地震工学論文 集, Vol. 29, pp. 450-457, 2007.
- 7) 松永昭吾,大塚久哲:断層変位を受けるコンクリートアーチ橋の耐震特性,土木学会論文集 A1 (構造・地震工学), Vol. 65, No. 1 (地震工学論文集第 30 巻), pp. 417-425, 2009.
- 8) 辻野慶恵,山尾敏孝,村上慎一,柚木浩一:断層変位を受ける中路式鋼アーチ橋の地震時挙動 に関する研究,構造工学論文集, Vol. 55A, pp. 583-592, 2009.
- 9) 松田泰治,宮本睦希,西村孝,梶田幸秀,難波正幸,内藤伸幸:断層変位と桁端の接触を考慮した PC 合成桁橋の応答評価,土木学会論文集 A1 (構造・地震工学), Vol. 76, No. 4 (地震工学論文集 39 巻), pp. I_486-I_494, 2020.
- 10) Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, *Bulletin of the Seismological Society of America*, Vol.75, No.4, pp.1135-1154, 1985.
- 11) Aoi, S., and Fujiwara, H.: 3-D Finite Difference Method Using Discontinuous Grids, *Bulletin of the Seismological Society of America*, Vol.89, pp.918-930, 1999.
- 12) 大住道生,中尾尚史,石崎覚史,庄司学:破壊尤度の制御による道路橋の崩壊シナリオデザイン設計法の提案,土木学会論文集 A1 (構造・地震工学), Vol. 77, No.4, pp.I 360-I 372, 2021.
- 13) 横澤直人,河原井耕介,中尾尚史,石崎覚史,大住道生:崩壊シナリオデザイン設計法の実現に向けた耐力階層化鉄筋を用いたRC橋脚の載荷実験,土木学会論文集 A1(構造・地震工学), Vol.78, No.4(地震工学論文集第41巻), pp.I 206-I 218, 2022.
- 14) Y. Hata, A. Nozu, K. Ichii: A Practical Method to Estimate Strong Ground Motions after an Earthquake, Based on Site Amplification and Phase Characteristics, *Bulletin of the Seismological Society of America*, Vol.101, No.2, pp.688-700, 2011.

第2章 対象橋の損傷状況及び損傷痕から推定する

損傷メカニズム

2.1 本章の概要

道路橋の地震による全体挙動を把握する方法としては,i)実橋で試験をする,ii)模型による実験を 行う,iii)モデルによる解析を行うことが考えられる。しかし,特定の橋の大規模地震時の挙動をi)実 橋で試験をする方法により把握しようと考えたとしても,大規模地震がいつ発生するかを予測するこ とは困難であり,これまでに実橋で大規模地震の応答を観測できた事例はほとんどない。また,実橋 に大規模地震に相当する作用を加えることも非常に困難である。ii)実験により全体挙動を確認しよう とする場合,実大実験では,橋全体系に対して大規模地震と同等の作用を加えることのできる規模の 施設が現存せず,縮小模型では,基礎を含め多様な構造,複合的な材料・部材で構成される構造系の その損傷挙動まで再現できる供試体を製作することは非常に難しい。そこで,iii)の解析的なアプロ ーチ^{例えば1),2}が,地震等に対する橋の応答を把握する現実的な方法となる。

解析的アプローチでは、対象とする橋をモデル化し、これにモデル化した作用を入力して、応答解 析を行うこととなる。本アプローチでは、モデル化方法や解析方法に応じて、任意の構造物の応答を 詳細に確認することが可能となる。道路橋を対象とする場合、一般に地震応答が非線形領域に及ぶこ とから、直接積分法による時刻歴応答解析が行われるが、構造物・部材のモデルに応じて各部位の変 位、各部材の断面力、応力・ひずみ等の時刻歴応答、またモデル化によっては応力分布等を確認する ことができる。一方で、構造のモデル化、作用のモデル化や、応答解析手法は、それぞれ理想化、単 純化されており、現実との差異が生じることは不可避である。特に、大規模地震は、実際に構造物に 作用した影響を観測できることはまれであり、近傍で観測された記録等から推定を試みる例もあるが、 作用のモデル化には多くの仮定や推定誤差が含まれる。また、実際の構造物は、材料特性や施工品質 等の統計的ばらつきによる不確実性が含まれる。このような不確実性の影響を低減するために、実諸 元や材料特性の調査、また予備計測等との比較による解析結果の検証なども行われるが、これら多く の空間的なばらつきや計測誤差を完全に除去することは困難である。特に、今回対象とする断層変位 のように、実測のない入力作用のモデル化は、シミュレーションや仮定によらざるを得ず、その不確 実性の影響は無視しえないと考えられる。

一方で、地震等により損傷が生じるなど、痕跡が残るような応答が生じた場合には、損傷状態や損 傷痕の詳細な観察により、逆算的に応答を推定することも考えられる^{例えば3)、4)}。損傷状況及び損傷痕の 観察によるアプローチでは、地震等の後に、構造物の損傷状態や応答の痕跡を観察することで、実際 に生じたであろう挙動を推測することとなる。例えば、損傷状態から、生じた応答の向きや最大応答

-5-

の程度を推定することが可能である。また、部材同士の接触による擦過痕の軌跡から挙動を追うこと ができる。さらに、損傷痕から推定したミクロな挙動を積み重ねることで、構造系としての挙動を推 定できる可能性も考えられる。以上の様に個々の損傷状態や損傷痕から情報を得る他、推定した構造 系の挙動を全体的な損傷の状況との比較により検証することや、逆に、全体的な損傷状況から構造系 の挙動を推定できる可能性も考えられる。この様に推測した結果は、損傷痕などの事実から推定した ものであるという点で、解析的アプローチによる応答推定結果の持つ不確実性を除去することができ る。一方で、情報量が極めて限定されることから、一連の挙動の推定には情報量の不足に起因する不 確実性があり、また推定できる範囲が部分的なものに留まる可能性もある。

以上の2つのアプローチ(解析的アプローチ,損傷状況及び損傷痕の観察によるアプローチ)は、互 いに異なる種類の不確実性に対応しており、相互補完的に利用することで、より信頼性の高い挙動推 定が可能となると考えられる。本研究では、平成28年(2016年)熊本地震で被害を受けた大切畑大橋
うを 対象に、断層変位の影響を含む地震動作用時の応答の推定を行う。第3章~第5章において解析的アプ ローチによる検討を行うが、本章では、その比較対象として実際の損傷状況及び損傷痕の観察からの 損傷メカニズムの推定を試みた。

2.2 大切畑大橋の架橋位置及び構造形式

大切畑大橋は,熊本県の県道28号に位置する橋長265.4mの5径間連続非合成曲線鈑桁橋である(図 -2.2.1, 写真-2.2.1)。本橋は平成8年道路橋示方書を基に設計されており、2001年に竣工した。橋 梁一般図を図-2.2.2に示す。本橋の支承形式は水平力分散ゴム支承,下部構造形式は逆T式橋台及び 張出し式橋脚,基礎形式は A1,P2 及び P3 は場所打ち杭, P1,P4 及び A2 は深礎杭であり,橋台上の支 承にはサイドブロックが設置されており、桁と橋台をつなぐ落橋防止ケーブルが設置されていた(図-2.2.3)。なお、大切畑大橋の詳細な図面については、巻末資料に示した。

図−2.2.1 対象橋梁の位置関係

(a) 側面

(b) 橋面(A1橋台)
 (c) 橋台及び支承(A1橋台)
 ※橋梁現況調査票(阿蘇地域振興局,台帳更新年月日:2003年3月20日)より引用
 写真-2.2.1 被災前の大切畑大橋

2.3 大切畑大橋の被害状況

2. 3. 1 各支点における損傷

(1) A1 橋台及びその周辺の損傷

A1橋台は背面の舗装が盛り上がり,伸縮装置が破壊していた(写真-2.3.1)。橋台胸壁にはひび割れ 及びコンクリートの剥落,下フランジが衝突したと考えられる衝突痕(G1を除く)が見られた(写真-2.3.2)。

写真-2.3.1 A1橋台の舗装及び伸縮装置の損傷状況

(a) 橋台胸壁のひび割れ及び剥落(左:G1側,中央及び右:G5側)

(b) 橋台胸壁に生じた衝突痕 写真-2.3.2 A1 橋台胸壁の損傷状態(写真提供:九州地方整備局)

支承部は、地震及び地震に伴う地盤変状によりA1橋台上全てのゴム支承及びサイドブロックが損傷 し、桁は支承から脱落していた(写真-2.3.3)。また、落橋防止ケーブルも全て破断していた(写真-2.3.4)。主桁は、支承からの脱落により、ウェブに変形が見られた(写真-2.3.5)。

(a) G1の支承

(b) G2 の支承

(c) G3 の支承 写真-2.3.3 A1 橋台の支承の損傷状態(その1) (サイドブロック損傷写真の提供:九州地方整備局)

(d) G4 の支承

(e) G5 の支承 写真-2.3.3 A1 橋台支承の損傷状態(その2)(サイドブロック損傷写真の提供:九州地方整備局)

(a) G1の落橋防止ケーブル
 (b) G1及びG2の落橋防止ケーブル
 写真-2.3.4 A1橋台の落橋防止ケーブルの損傷状態(その1)

(c) G3 の落橋防止ケーブル

(d) G4 部の落橋防止ケーブル

f) 全体

写真-2.3.4 A1 橋台の落橋防止ケーブルの損傷状態(その 2)

(a) G1 主桁

(b) G2 主桁

(c) G3 主桁

(d) G4 主桁

写真-2.3.5 A1 橋台側における主桁の損傷状態(写真提供:九州地方整備局)

(2) P1 橋脚及び P1 橋脚上の支承の損傷

P1 橋脚上の支承は全て損傷し、桁は支承から脱落していた(写真-2.3.6 及び写真-2.3.7)。P1 橋脚 上の支承は他の位置と異なり、支承の損傷状態が G1~G5 で様々であった。G1 桁の支承は、上沓及び 下沓取付ボルトが抜け出し及び破断し、さらにゴム支承本体が上下反転した状態になっていた。G2 桁 の支承は、上沓取付ボルトが抜け出し及び破断したことで主桁が支承から脱落し、さらに横構がゴム 支承本体上に落下していた。G3 桁の支承は、上沓及び下沓取付ボルトで抜け出し及び破断していた。 G4 桁の支承は、上沓及び下沓取付ボルトとゴム支承本体で抜け出し及び破断していた。さらに、ゴム 支承本体は A1G1 側に移動し、その上に主桁が載っていた。G5 桁の支承は、上沓取付ボルトで抜け出 し及び破断し、主桁はゴム支承本体から脱落していた。また、G1 側側面の被覆ゴムが損傷していた。 支承の傍に主桁が落下していることから、主桁がゴム支承本体から脱落したときに、下フランジが被 覆ゴムを削ったと考えられる。

また,橋脚に 0.2mm 程度のひび割れが生じていた (図−2.3.1 及び写真−2.3.8)。さらに,基礎天端が 変位していた (写真−2.3.9)。

写真-2.3.6 P1 橋脚全景(4/17, A1 側から撮影)

(b) G2支承

(d) G4支承

下沓

主桁

_ 損傷した 被覆ゴム

(e) G5支承 写真-2.3.7 P1 橋脚の支承の損傷状態

図-2.3.1 P1 橋脚の損傷状態(提供:九州地方整備局)

写真-2.3.8 橋脚の損傷状態(起点側)

写真-2.3.9 基礎天端の変位

(3) P2 橋脚上の支承の損傷

P2 橋脚上の支承は、全てのゴム支承に残留変形及びき裂が生じていたが、桁がゴム支承から脱落するには至らなかった(写真-2.3.10)。一方、橋脚には多くのひび割れが生じており、最大で 4.5mm のひび割れが生じていた(図-2.3.2及び写真-2.3.11)。

(a) G1

(b) G2

(c) G3

(d) G4 写真-2.3.10 P2 橋脚の支承の損傷状態(その1)

(e) G5 **写真-2.3.10** P2 橋脚の支承の損傷状態(その 2)

図-2.3.2 P2 橋脚の損傷状態(提供:九州地方整備局)

写真-2.3.11 P2 橋脚の損傷状態

(4) P3 橋脚上の支承及び周辺の損傷

P3 橋脚上の支承は全て上沓及び下沓取付けボルトで抜け出し及び破断し,桁は支承から脱落していた(写真-2.3.12)。また,桁が支承から脱落したため,下フランジや補剛桁が変形した(写真-2.3.13)。 損傷状態を見ると,G1部の支承は上沓及び下沓取付ボルト,それ以外の支承は上沓取付ボルトで損傷 していた。また,G2及びG4部の支承は桁の移動に伴い斜材が支承の上に落下していた。

橋脚には多くのひび割れが生じており,最大で1.0mmのひび割れが生じていた(図-2.3.2及び写真-2.3.14)。

(a) G1

. .

写真-2.3.12 P3 橋脚の支承の損傷状態(その1)

(c) G3

(d) G4

(e) G5 写真-2.3.12 P3 橋脚の支承の損傷状態(その 2)

(b) G3

(c) G4

(d) G5

写真-2.3.13 桁の損傷状態(P3 橋脚部)

図-2.3.3 P3 橋脚の損傷状態(提供:九州地方整備局)

写真-2.3.14 橋脚の損傷状態

(5) P4 橋脚上の支承及び周辺の損傷

P4 橋脚上の支承は全ての上沓取付ボルトが抜け出し及び破断し,桁は支承から脱落していた(写真 -2.3.15)。 また,橋脚には多くのひび割れが生じており,最大で0.9mmのひび割れが生じていた(図 -2.3.4及び写真-2.3.16)。

(a) G1

(b) G2

(c) G3 写真-2.3.15 P4 橋脚の支承の損傷状態(その1)

(d) G4

(e) GS 写真-2.3.15 P4 橋脚の支承の損傷状態(その 2)

図-2.3.4 P4橋脚の損傷状態(提供:九州地方整備局)

写真-2.3.16 P4 橋脚の損傷状態

(6) A2 橋台の損傷状態

A2 橋台の支承は全てのゴム支承及びサイドブロックが損傷していた(写真-2.3.17)。G5 桁以外の 支承は、ゴム支承本体の下側で破断し、主桁と共に移動していた。一方、G5 桁の支承はゴム支承本体 の上側で破断し、桁はゴム支承本体から脱落していた。

落橋防止ケーブルは橋軸直角方向に変形していたが、A1 橋台と異なり破断まで至っていなかった (写真-2.3.18)。主桁を見ると、ウェブにある切り欠き部のフランジが変形していた(写真-2.3.19)。 また、落橋防止ケーブル取付部に衝突痕が見られた(写真-2.3.20)。

(a) G1

(b) G2 写真-2.3.17 A2 橋台の支承の損傷状態(その 1)

(c) G3

(d) G4

(e) G5 **写真-2.3.17** A2 橋台の支承の損傷状態(その 2)

(a) G1

(b) G2

(c) G3 写真-2.3.18 A2 橋台の落橋防止ケーブルの損傷状態(その1)

(d) G4

(e) G5 写真-2.3.18 A2 橋台の落橋防止ケーブルの損傷状態(その 2)

(a) G1

(b) G2

(c) G3

(d) G4

(e) G5 写真-2.3.19 上部構造(ウェブ切り欠き部)の損傷状態

(a) G1

(d) G4 写真-2.3.20 落橋防止ケーブル貫通穴の損傷状態(その1)

(e) G5 写真-2.3.20 落橋防止ケーブル貫通穴の損傷状態(その2)

2.3.3 地震後における上部構造及び下部構造の移動量

(1) 地盤の移動量

図-2.3.5は、地震後における大切畑周辺の地盤の移動量を示したものである。なお、ここでは3級 基準点から移動量を計測している。図より、大切畑大橋より西側では、地盤は北東方向に移動してい る。一方、大切畑大橋より東側では、地盤は南西方向に移動していた。

図-2.3.5 対象橋梁周辺地盤の移動量(電子基準点測量結果)及び地表面亀裂分布 (地理院地図に架橋位置及び凡例を加筆,

https://maps.gsi.go.jp/#13/32.854355/130.872574/&base=pale&ls=pale%7C20160414kumamoto_fvector%7C20160414kumamoto_ jiware&disp=111&lcd=20160414kumamoto_jiware&vs=c0g0j0h0k0l0u0t0z0r0s0m0f0&d=m) (2) 下部構造の移動量

1) 鉛直移動量

図-2.3.6は、地震後における下部構造天端の鉛直移動量を示したものである。図中には地震前の下部構造の位置も示している。図より、P3 橋脚、P4 橋脚及び A2 橋台は地震により下部構造が上向きに移動している。一方、A1 橋台及び P1 橋脚は下向きに移動している。P2 橋脚については、G1 側は下向き、G5 側は上向きに移動している。

(九州地方整備局から提供頂いた資料を基に作成)

図-2.3.7 下部構造の鉛直変位(その1)(九州地方整備局から提供頂いた資料を基に作成)

図-2.3.7 下部構造の鉛直変位(その2)(九州地方整備局から提供頂いた資料を基に作成)

2) 水平移動量

図-2.3.8 は、下部構造基部の水平移動量を示したものである。図より、全体的に A1 側に移動して いることがわかる。また、各下部構造間の相対移動量を示したのが図-2.3.9 である。ここでは、移動 量が最も小さくと想定される A1 橋台天端を基準として算出している。

図-2.3.8 下部構造基部の移動量(提供:九州地方整備局)

図-2.3.9 下部構造上部の移動量(提供:九州地方整備局)

(2) 支承部(上部構造)の移動量

図-2.3.10は、地震後の支承部の位置関係を示したものである。ここでは、上沓、下沓及びゴム支承 本体の位置を示した。なお、支承部の損傷状態から、全ての箇所で上沓と下フランジを取付けている ボルトが損傷していなかったため、上沓の位置に下フランジ(上部構造)が位置している。

全体的に、上沓はA2側及びG1側に移動している。そのため、地震により上部構造はA2G1側に移動 したことがわかる。

(九州地方整備局から提供頂いた資料を基に作成)

(九州地方整備局から提供頂いた資料を基に作成)

2. 4 損傷痕から推定する各部材の挙動

2. 4.1 支承部の挙動推定

- (1) P1 橋脚部
- 1) G1 支承の損傷痕から推定する支承部の挙動

撤去後の支承側面の損傷状態を写真-2.4.1に示す。写真より、A1G5及びA2G1隅角部の上沓が変形 している。これは、写真-2.3.7に示したように、主桁が沓座上に落下したために、下フランジと共に 変形したためである。 また、A2G5隅角部のゴム支承本体の損傷が著しいことがわかる。

補足:写真は上沓をゴム支承本体に載せて撮影している 写真-2.4.1 撤去した PlG1 支承の損傷状態(側面の損傷状態)

写真-2.4.2は、ゴム支承本体上面の損傷状態である。なお、以降の写真に示した損傷痕については、実際のせん断キーや損傷した取付ボルトを用いた検証等を行い、擦過痕の原因を特定できたものを示している。写真より、G1側のせん断キーを設置する穴(本論文では、せん断キー穴と呼称)に変形した跡が見られる。このような変形は、写真-2.4.2に示すように、せん断キーが傾かない限り生じない。そのため、G1側に傾いたせん断キーが、せん断キー穴に接触したことにより変形したと考えられる。また、G1側側面の下部に擦過痕が見られる(損傷痕a)。これは、取付ボルトがゴム支承本体に衝突したことにより生じたと考えられる。後述する抜け出した取付ボルトもねじ部で破断していた事実とも整合する。そのため、上部構造がG1側に移動したあとでG5側に移動、又は下部構造がG5 側に移動した後でG1側に移動したと考えられる。

写真-2.4.2 ゴム支承本体上面に生じた擦過痕とその原因(P1G1)

写真-2.4.3は、ゴム支承本体の上沓及び下沓取付ボルト部の損傷状態である、写真-2.4.3(a)に示し た上沓取付ボルトの損傷状態を見ると、a部からc部の取付ボルトが抜けており、それ以外の取付ボル トは破断していた。別途実施したゴム支承の載荷実験^のでは、図-2.4.1に示すような変形がゴム支承に 生じると、p部のボルトに引張力が作用し、かつせん断キー穴が変形することがわかっている。そのた め、これらの損傷状態から、上部構造がG1側に移動、又は下部構造がG5側に移動したと考えられる。 次に写真-2.4.3(b)に示した下沓取付ボルトの損傷状態を見ると、全てゴム支承本体面で破断してい る。ボルトの破断面を見ると、ボルト穴に隙間及び破断したボルトにバリが見られる。別途実施した 六角ボルトの載荷実験ⁿでは、図-2.4.2に示すように六角ボルトをせん断破断させた場合、隙間や破断 した六角ボルトにバリが生じることがわかっている。そのため、下沓取付ボルトは矢印の方向に変形 して破断したと考えられる。また、写真-2.4.4に示す下沓の損傷状態を見ると、下沓面はボルト穴付 近及びせん断キー穴にせん断キー穴を軸とした回転により生じたと思われる擦過痕が見られる。これ ら損傷痕から、上部構造が反時計回りの回転、又は下部構造が時計回りの回転をしたと考えられる。 また、下沓のせん断キー穴を見ると、G5側にも変形している。そのため、上部構造がG5側又は下部構 造がG1側に移動したと考えられる。

(a) ゴム支承本体上面の上沓取付ボルトの損傷状態

(b) ゴム支承本体下面の下沓取付ボルトの損傷状態 写真-2.4.3 ゴム支承本体の上沓及び下沓取付ボルトの損傷状態(P1G1)

図-2.4.1 ゴム支承のせん断載荷実験によるゴム支承の変形状態

図-2.4.2 六角ボルトのせん断載荷実験により生じた六角ボルトの破断面

写真-2.4.4 下沓の損傷状態(P1G1)

以上より、G1に設置されていたゴム支承は上部構造のG1側への移動と反時計回りの回転、又は下部 構造のG5側への移動と時計回りの回転が生じたことにより上沓及び下沓取付ボルトで損傷したと考 えられる。ここで、損傷した順番を検討する。もし、上沓取付ボルトが先に損傷した場合、上沓から ゴム支承を回転させる力はゴム支承本体より下の部品には伝達しない。この状態で支承を回転させる ためには、ゴム支承本体の側面に外力が作用しなければならない。しかし、ゴム支承本体の側面にゴ ム支承本体を回転させる力が作用したような痕跡は見られなかった。そのため、上沓取付ボルトが先 に損傷したと考えにくい。一方、下沓取付ボルトが上沓取付ボルトより先に損傷した場合、せん断キ ーが外れていなければ、上沓からの力は下沓にも伝達される。そのため、図-2.4.1に示したような変 形が生じる可能性がある。ここで、写真-2.4.4に示したせん断キー穴を見ると、G1及びG5側に変形し た痕跡が見られる。そのため、上部構造又は下部構造がこの方向に移動したことによりせん断キー穴 が変形したと考えられる。したがって、G1のゴム支承は、始めに平面上の回転がゴム支承に生じたこ とにより、下沓取付ボルトが損傷し、その後G1方向(又はG5方向)に支承が変形したことにより上沓取 付ボルトが損傷したと考えられる。

以上の考えから,G1のゴム支承は図-2.4.3に示すような挙動をしたと推定できる。但し,最終的に ゴム支承本体が写真-2.3.7(a)のような状態に至った原因は,損傷痕からは特定できなかった。

2) G2 支承の損傷痕から推定する支承部の挙動

写真-2.4.5は撤去後における支承側面の状態を示したものである。支承側面を見ると,A1G5隅角部の上沓が変形している。写真-2.3.7(b)に示すように,主桁がG1側に移動したことで,支承部から逸脱し,沓座上に落下したことが考えられる。また,G1側面部の被覆ゴムが損傷している。前述したように,主桁がG1側に落下したことで,下フランジ又は上沓が被覆ゴムを削ったと考えられる。

 補足:写真は上沓をゴム支承本体に載せて撮影している

 写真-2.4.5

 撤去した P1G2 支承の損傷状態(側面の損傷状態)

写真-2.4.6は、ゴム支承本体上面の損傷状態である。写真を見ると、円弧状の擦過痕が見られる (損傷痕a,b)。せん断キーの形状とほぼ一致したことから、せん断キーは少なくとも擦過痕a及びbの位 置まで移動していたと考えられる。A1側端部を見ると、削られた痕跡及び擦過痕が見られる(損傷痕 c,d)。これら擦過痕の間隔は上沓取付ボルトの取付位置の間隔とほぼ等しいことが調査した結果から 分かった。そのため、これら擦過痕は上沓取付ボルトによるものと考えられる。また、擦過痕dにおい て、内部鋼板のへこみ、ゴム支承本体側面に擦過痕を確認できる。これら損傷痕の大きさ及び後述す る抜け出した取付ボルトがねじ部で破断していた事実から、抜け出した取付ボルトがA1側に移動して、 再びA2側に移動したことによりゴム支承本体に衝突、ボルトがせん断破断した可能性が考えられる。 これらを基に、せん断キー及び上沓取付ボルトの動きを求めると、図-2.4.4に示すような動きになる。

これらから、上部構造がA1側に移動したあとA2側に移動、又は下部構造がA2側に移動したあとA1 側に移動したと考えられる。

写真-2.4.6 ゴム支承本体上面に生じた擦過痕とその原因(P1G2)

(図中の番号は、せん断キー及び上沓取付ボルトが動いた順番を示している) 図-2.4.4 考えられるせん断キー及び上沓取付ボルトの動き(P1G2)

写真-2.4.7はゴム支承本体上面の上沓取付ボルトの損傷状態を示したものである。上沓取付ボルトの損傷状態を見ると、A1側(写真のc部,e部,h部)の上沓取付ボルトは抜け、それ以外の上沓取付は破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取付ボルトの損傷状態を照合した結果、破断したボルトはせん断破断したと考えられる。また、せん断キー穴のA1側が変形していた。このことから、上部構造がA1側又は下部構造がA2側に移動したことで、上沓取付ボルトが損傷したと考えられる。なお、下沓取付ボルトには損傷は見られなかった。

以上の考えから、G2のゴム支承は図-2.4.5に示すような挙動をしたと推定できる。

写真-2.4.7 ゴム支承本体上面の上沓取付ボルトの損傷状態(P1G2)

図-2.4.5 推定される P1G2 支承の挙動メカニズム

3) G3支承の損傷痕から推定する支承部の挙動

撤去後のゴム支承側面の状態を写真-2.4.8に示す。G1側は被覆ゴムが損傷している。写真-2.3.7(c) に示したように,主桁がG1側に落下するときに,被覆ゴムを削りながら落下した可能性がある。また, A2G5隅角部の上沓が変形している。しかし,この原因は写真等から特定できていない。

補足:写真は上沓をゴム支承本体に載せて撮影している 写真-2.4.8 撤去した P1G3 ゴム支承の損傷状態(側面の損傷状態)

写真-2.4.9は、ゴム支承本体上面及び下面の損傷状態を示したものである。ゴム支承本体上面において、A2側のせん断キー穴に変形した跡が見られた。これは、せん断キーがA2側に傾いたことにより変形したと考えられる。なお、ゴム支承本体上面には幾つかの擦過痕は確認できたが、損傷した原因を特定できなかった。ゴム支承本体下面は、円弧状の擦過痕を確認できる。取付ボルトの設置位置から擦過痕が生じていることから、せん断破断した下沓取付ボルトにより生じたものと考えられる。また円弧状の擦過痕から、取付ボルト破断後に、ゴム支承本体が時計回り及び反時計回りの回転が生じたことが確認できるが、得られた損傷痕の情報では時計回り及び反時計回りの回転が生じたメカニズムを推定できなかった。

写真-2.4.10はゴム支承本体の上沓及び下沓取付ボルトの損傷状態を示したものである。写真-2.4.10(a)に示す上沓取付ボルトの損傷状態を見ると、A2側の取付ボルト(写真のa部,d部,f部)は抜け、 それ以外の取付ボルトは破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取 付ボルトの損傷状態を照合した結果、破断したボルトはせん断破断したと考えられる。また、せん断 キー穴のA2側が変形していた。これら損傷状態から、上部構造がA2側に移動、又は下部構造がA1側 に移動したと考えられる。

写真-2.4.10(b)に示す下沓取付ボルトの損傷状態を見ると、全ての取付ボルトが破断していた。これら損傷状態や写真-2.4.9(b)から、上部構造が反時計回りの回転又は下部構造が時計回りの回転をしたと考えられる。ここで、G1のゴム支承と同様の仮定が成り立てば、G3の支承も回転が先に生じたと推定できる。回転してから上部構造がA2側に移動し、その後A1側に移動、又は下部構造がA1側に移動し、その後A2側に移動したと考えられる。

以上の結果からG3のゴム支承は、図-2.4.6に示すような挙動をしたと推定できる。

(a) ゴム支承本体上面の損傷状態

(b) ゴム支承本体下面の損傷状態 写真-2.4.9 ゴム支承本体表面に生じた擦過痕とその原因(その2)(P1G3)

(b) ゴム支承本体下面の下沓取付ボルトの損傷状態 (1: 想定される下沓の動き 写真-2.4.10 ゴム支承本体の上沓及び下沓取付ボルトの損傷状態(P1G3)

4) G4支承の損傷痕から推定する支承部の挙動

撤去後のゴム支承側面の状態を**写真-2.4.11**に示す。G4のゴム支承はゴム支承本体の上方で破断しているのを確認した。また,A2側及びG5側にき裂も確認できた。

写真-2.4.12はゴム支承本体の損傷状態を示したものである。写真-2.4.12(a)のゴム支承本体上面の損傷状態を見ると、せん断キー穴付近に擦過痕が見られる(損傷痕a,b)。せん断キーの形状と一致したことから、せん断キーによる擦過痕と推定できた。そのため、せん断キーが写真-2.4.12(a)に示したように、A1側に移動したと考えられる。写真-2.4.12(b)のゴム支承本体下面の損傷状態を見ると、A2側のせん断キー穴に変形した跡が確認できる。そのため、上部構造がA2側に移動、又は下部構造がA1側に移動したと考えられる。

(a) 上面の損傷状態

(b) 下面の損傷状態 写真-2.4.12 ゴム支承本体の上下面に生じた擦過痕とその原因(P1G4)

写真-2.4.13はゴム支承本体の上沓及び下沓取付ボルトの損傷状態を示したものである。写真-2.4.13(a)に示す上沓取付ボルトの損傷状態を見ると,取付ボルトの穴に隙間と破断した取付ボルト にバリが確認できる。既往の実験⁷⁾を参考にすると,取付ボルトは矢印の方向に変形したと考えられ る。そのため,せん断キー穴を軸とした回転(上部構造が時計回りの回転,又は下部構造が反時計回り の回転)が生じていたと考えられる。写真-2.4.13(b)に示す下沓取付ボルトの損傷状態を見ると,A2 側の取付ボルト(写真のa部,d部,f部,g部)が抜け,それ以外の取付ボルトは破断していた。これらの損傷 状態から,上部構造がA1側に移動,又は下部構造がA2側に移動したと考えられる。

ここで、上沓取付ボルト及び下沓取付ボルトのどちらが先に損傷したのか考えると、G1支承の挙動 メカニズムと同様に、回転により上沓取付ボルトが損傷したあとで、下沓取付ボルトが損傷したと考 えられる。

以上の考えから, G4のゴム支承は図-2.4.7に示すような挙動をしたと推定できる。しかし, 写真-2.4.11に示したように, G4支承はゴム支承本体も損傷している。この損傷がどのタイミングで生じた ものかは, これら損傷痕からは特定できない。

写真-2.4.13 ゴム支承本体の上沓及び下沓取付ボルトの損傷状態(P1G4)

5) G5支承の損傷痕から推定する支承部の挙動

撤去後のゴム支承側面の状態を**写真-2.4.14**に示す。上沓のA1G5隅角部に変形した跡が見られる。 また,G1側の被覆ゴムが損傷した跡が見られる。**写真-2.3.7(e)**に示したゴム支承の損傷状態から, 主桁が支承から脱落した時に,下フランジ(又は上沓)が被覆ゴムを削りながら落下したと推定できる。

写真-2.4.15はゴム支承本体上面の損傷状態を示したものである。なお、ゴム支承本体下面には損傷は見られなかったため、ここでは示していない。

写真より,せん断キー穴のA1側に変形した痕跡が見られる。そのため,せん断キーはA1側に傾い たと推定できる。擦過痕aを見ると,円弧状及び斜めの擦過痕が見られる。せん断キーの形状と一致し たため,せん断キーによる擦過痕と確認できた。また,円弧状の擦過痕上に斜めの擦過痕(擦過痕c)が 存在していることが確認できる。そのため,せん断キーは円弧状の擦過痕を付けた後に,斜めの擦過 痕を付けたと考えられる。また,擦過痕bにも円弧状の擦過痕が存在している。詳しく見ると,内部鋼 板に変形した痕跡が見られた。このような損傷は,せん断キーが写真に示したように,A2側に傾かな い限り生じない。そのため,せん断キーはA1側に移動してゴム支承本体から逸脱したのち,再びA2側 に移動したと考えられる。この場合,擦過痕aの斜めの擦過痕や擦過痕cで示したせん断キーの擦過痕 が生じた理由とも整合する。

A1側端部のゴム支承本体上面及び側面を見ると,擦過痕(擦過痕d)が見られる。損傷痕の形状およ び大きさから,上沓取付ボルトがゴム支承本体側面に作用したことにより生じ,作用したことにより 取付ボルトが破断した可能性が考えられる。抜け出した上沓取付ボルトも破断していたこととも整合 が取れる。せん断キー孔から外れたせん断キーがどこに落下したのか,調査資料からは判定すること ができなかったが,仮にせん断キーがせん断キー孔から外れても,上沓に引っ掛かるなどの理由で落 下しなかったと仮定すると,せん断キー及び上沓取付ボルトの動きは,図-2.4.8のようになる。

これらから,上部構造がA1側に移動した後,A2側に移動(又は下部構造がA2側に移動した後,A1側 に移動)したと考えられる。

写真-2.4.15 ゴム支承本体上面に生じた擦過痕とその原因(P1G5)

⁽図中の番号は、せん断キー及び上沓取付ボルトが動いた順番を示している) 図-2.4.8 推定されるせん断キー及び取付ボルトの動き(P1G5)

写真-2.4.16にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると、A1側の 上沓取付ボルト(写真のc部,e部,h部)は抜け出し、それ以外の上沓取付ボルトは破断していた。図-2.4.2 で示した六角ボルトのせん断載荷実験⁷の結果と上沓取付ボルトの損傷状態を照合した結果、上沓取 付ボルトはせん断破断したと考えられる。また、破断した上沓取付ボルトをみると、A2側に隙間を確 認できる。そのため、これらの事実から、上部構造がA1側に移動、又は下部構造がA2側に移動したと 考えられる。

以上の考えからG5のゴム支承は、図-2.4.9に示すような挙動をしたと推定できる。

写真-2.4.16 ゴム支承本体上面の上沓取付ボルトの損傷状態(P1G5)

図-2.4.9 推定される PIG5 支承の挙動メカニズム

6) P1 橋脚上の支承の挙動メカニズム

図-2.3.7(b)で示したG5側の下部構造の鉛直変位を見ると、P2橋脚の鉛直変位量は小さい。上 部構造の主桁に座屈等の損傷がなかったため、主桁が弾性範囲内で変形したと仮定すると、G5側 の支承はG1側の支承よりも引張力が大きいと考えられる(図-2.4.10)。そのため、G5側支承の取 付ボルトはG1側支承の取付ボルトよりも大きな引張力が作用したことで、G1側支承よりも先に 抜け出し及びせん断破断した可能性がある。

但し、詳細なメカニズムを推定するためには、更なる損傷痕の分析が必要である.

図-2.4.10 挙動メカニズムの推定

また,各支承側面の損傷状況(写真-2.4.1, 2.4.5, 2.4.8, 2.4.11, 2.4.14)から,G2,G3及びG5はG1側 面が削り取られている.これは,桁がG1側に落下する時に上沓取付ボルトが既に破断しているた めに生じたと考えられる。一方,G1及びG4支承にはG1側面の削り取られた痕がなく,かつG5側 面に亀裂が確認できる。これは,桁がG1側に落下する際に上沓取付ボルトがまだ破断しておらず, 座屈変形をした際にG5側に大きなひずみが発生したと考えると説明できる。 1) G1 支承の損傷痕から推定する支承部の挙動

写真-2.4.17はゴム支承本体上面の損傷状態を示したものである。なお、G1支承は提供されていないため、ここでは現場の写真を示している。ゴム支承本体上面の損傷状態を見ると、せん断キー穴はA2G1側に変形した痕跡及び擦過痕が見られる(損傷痕a)。これは、せん断キーがA2G1側に傾き、せん断キーがせん断キー穴から外れた後、A2G1方向に移動したと考えられる。また、上沓取付ボルト位置付近で擦過痕が見られる(擦過痕b)。写真での確認ではあるが、擦過痕は上沓取付ボルト穴付近から発生している。そのため、抜け出した上沓取付ボルトによるものと考えられる。

写真-2.4.17 ゴム支承本体上面に生じた擦過痕とその原因(P3G1)

写真-2.4.18にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると、A2側の 取付ボルト(写真のa部,b部)は抜け、それ以外の取付ボルトは破断していた。図-2.4.2で示した六角ボ ルトのせん断載荷実験⁷⁾の結果と取付ボルトの損傷状態を照合した結果、取付ボルトはせん断破断し たと考えられる。これらの事実から、上部構造がA2G1方向に移動、又は下部構造がA1G5方向に移動 したと考えらえる。

以上の考えから G1 のゴム支承は、図-2.4.11 に示すような挙動をしたと推定できる。

写真-2.4.18 ゴム支承本体上面の上沓取付ボルトの損傷状態(P3G1)

2) G2支承の損傷痕から推定する支承部の挙動

撤去された後のゴム支承の側面の状態を**写真-2.4.19**に示す。ゴム支承本体のA1G1隅角部に若干の 変形した痕跡は見られるが、ゴム支承本体に大きな損傷は確認できなかった。

補足:写真は上沓をゴム支承本体に載せて撮影している 写真-2.4.19 撤去した P3G2 ゴム支承本体側面の損傷状態

写真-2.4.20はゴム支承本体上面の損傷状態を示したものである。損傷状態を見ると、せん断キー穴はA2G1側に変形した痕跡が見られる。前述したようにA2G1側にせん断キーが傾いたと考えられる。 また、上沓取付ボルト付近に擦過痕が見られる(損傷痕a~d)。これは、破断した取付ボルトが原因であると考えられる。

写真-2.4.20 ゴム支承本体上面に生じた擦過痕とその原因(P3G2)

写真-2.4.21にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると、取付ボルトが全て破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取付ボルトの損傷状態を照合した結果、取付ボルトはせん断破断したと考えられる。また、ボルト穴に隙間及び一部のボルト跡にバリを確認できた。これらの事実から、上部構造がA2G1方向に移動、又は下部構造がA1G5方向に移動したと推定できる。

以上の結果からG2のゴム支承は、図-2.4.12に示すような挙動をしたと推定できる。

写真-2.4.21 ゴム支承本体上面の上沓取付ボルトの損傷状態(P3G2)

図-2.4.12 推定される P3G2 支承の挙動メカニズム

3) G3支承の損傷痕から推定する支承部の挙動

撤去された後のゴム支承の側面の状態を写真-2.4.22に示す。ゴム支承本体のG5側にゴム支承本体の損傷が見られた。

補足:写真は上沓をゴム支承本体に載せて撮影している
 写真-2.4.22 撤去した P3G3 ゴム支承本体側面の損傷状態

写真-2.4.22はゴム支承本体上面の損傷状態を示したものである。損傷状態を見ると、せん断キー穴のA2G1側に変形した痕跡が見られる。写真に示したようにA2G1側にせん断キーが傾いたと推定できる。また、上沓取付ボルト付近に擦過痕が見られる(損傷痕a~d)。これら擦過痕は、上沓取付ボルトの設置位置から生じているため、破断した上沓取付ボルトがA2G1方向に移動したことにより生じたと考えられる。

写真-2.4.23 ゴム支承本体上面に生じた擦過痕とその原因(P3G3)

写真-2.4.24にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると,取付ボルト全て破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取付ボルトの損傷状態を照合した結果,取付ボルトはせん断破断したと考えられる。また,ボルト穴に隙間及び破断した上沓取付ボルトにバリを確認できた。これらの事実から,上部構造がA2G1方向に移動,又は下部構造がA1G5方向に移動したと考えられる。

以上の考えからG3のゴム支承は、図-2.4.13に示すような挙動をしたと推定できる。

写真-2.4.24 ゴム支承本体上面の上沓取付ボルトの損傷状態(P3G3)

図-2.4.13 推定される P3G3 支承の挙動メカニズム

4) G4 支承の損傷痕から推定する支承部の挙動

撤去された後のゴム支承の側面の状態を**写真-2.4.25**に示す。ゴム支承本体のG5側にゴム支承本体 に若干の変形は見られるが,顕著な損傷は見られなかった。

写真-2.4.25 撤去した P3G4 支承の損傷状態(側面の損傷状態)

写真-2.4.26はゴム支承本体上面の損傷状態を示したものである。損傷状態を見ると、上沓取付ボルト付近に擦過痕が見られる(損傷痕a,b)。これら擦過痕は、上沓取付ボルトの設置位置から生じているため、破断した上沓取付ボルトによるものと考えられる。

写真-2.4.26 ゴム支承本体上面に生じた擦過痕とその原因(P3G4)

写真-2.4.27にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると,取付ボルト全て破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と上沓取付ボルトの損傷状態を照合した結果,上沓取付ボルトはせん断破断したと考えられる。また,ボルト穴に隙間及び破断した上沓取付ボルトにバリを確認できた。これらの事実から,上部構造がA2G1方向に移動,又は下部構造がA1G5方向に移動したと考えられる。

以上の考えからG4のゴム支承は、図-2.4.14に示すような挙動をしたと推定できる。しかし、写真-2.4.26に示した擦過痕が生じた原因は特定できていない。

写真-2.4.27 ゴム支承本体上面の上沓取付ボルトの損傷状態(P3G4)

図-2.4.14 推定されるP3G4支承の挙動メカニズム

5) G5 支承の損傷痕から推定する支承部の挙動

写真-2.4.28はゴム支承本体上面の損傷状態を示したものである。なお、G5支承は提供されていないため、現場で撮影された写真を示している。ゴム支承本体上面の損傷状態を見ると、上沓取付ボルト位置付近で擦過痕が見られる(擦過痕a~c)。これら擦過痕は、上沓取付ボルトの設置位置から生じているため、破断した上沓取付ボルトがA2G1方向に移動したことにより生じたと考えられる。

図-2.4.28 ゴム支承本体上面に生じた擦過痕とその原因(P3G5)

写真-2.4.29にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると,取付ボルト全て破断していた。図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取付ボルトの損傷状態を照合した結果,取付ボルトはせん断破断したと考えられる。また,ボルト穴に隙間及びボルト跡にバリを確認できた。これらの事実から,上部構造がA2G1方向に移動,又は下部構造がA1G5方向に移動したと考えられる。

以上の考えからG4のゴム支承は、図-2.4.15に示すような挙動をしたと推定できる。

写真-2.4.29 ゴム支承本体上面の上沓取付ボルトの損傷状態(P3G5)

図-2.4.15 推定されるP3G5支承の挙動メカニズム

(3) P4 橋脚部

撤去された後のゴム支承の側面の状態を**写真-2.4.30~写真-2.4.34**に示す。ゴム支承本体上部に変形した痕跡を確認できた。

(d) G5 (d) 補足:写真は上沓をゴム支承本体に載せて撮影している 写真-2.4.30 撤去したゴム支承の損傷状態(P4G1)

写真-2.4.31 撤去したゴム支承側面の損傷状態 (P4G2)

5 side (c) A2 側 補足:写真は上沓をゴム支承本体に載せて撮影している 写真-2.4.32 撤去したゴム支承の側面の損傷状態(P4G3)

写真-2.4.35~写真-2.4.39はゴム支承本体上面の損傷状態を示したものである。損傷状態を見ると, せん断キー穴のA2G1側(赤枠で示した箇所)に変形した痕跡が見られる。そのため,せん断キーがA2G1 側に傾いたと推定できる。また,赤枠で示した箇所の擦過痕が見られる。上沓取付ボルト付近に擦過 痕が見られること,擦過痕の間隔と取付ボルト間隔がほぼ同じ点から,擦過痕は取付ボルトによるも のと推定できる。

写真-2.4.35 ゴム支承本体上面に生じた擦過痕とその原因(P4G1)

写真-2.4.36 ゴム支承本体上面に生じた擦過痕とその原因 (P4G2)

写真-2.4.37 ゴム支承本体上面に生じた擦過痕とその原因(P4G3)

写真-2.4.38 ゴム支承本体上面に生じた擦過痕とその原因(P4G4)

写真-2.4.39 ゴム支承本体上面に生じた擦過痕とその原因(P4G5)

写真-2.4.40~写真-2.4.44にゴム支承本体上面の上沓取付ボルトの損傷状態を示す。損傷状態を見ると、A2側の取付ボルト付近は抜け出し、それ以外の取付ボルト全て破断していた。破断した取付ボルトは、図-2.4.2で示した六角ボルトのせん断載荷実験⁷の結果と取付ボルトの損傷状態を照合した結果、せん断破断したと推定できる。また、ボルト穴に隙間及びボルト跡にバリを確認できた。これらの事実から、取付ボルトの抜け破断後、上部構造がA2G1方向に移動、又は下部構造がA1G5方向に移動したと推定できる。

以上の結果からG1のゴム支承は、図-2.4.16に示すような挙動をしたと推定できる。

写真-2.4.40 ゴム支承本体上面の上沓取付ボルトの損傷状態(P4G1)

写真-2.4.42 ゴム支承本体上面の上沓取付ボルトの損傷状態(P4G3)

写真-2.4.43 ゴム支承本体上面の上沓取付ボルトの損傷状態 (P4G4)

写真-2.4.44 ゴム支承本体上面の上沓取付ボルトの損傷状態 (P4G5)

図-2.4.16 推定される P4G1 支承の挙動メカニズム

(4) A1 橋台部

1) G1 支承の損傷痕から推定する支承部の挙動

撤去された後のゴム支承の側面の状態を**写真-2.4.45**に示す。写真より、ゴム支承本体が破断している。

写真-2.4.46はゴム支承本体の破断面の状態を示したものである。破断面を見ると、赤枠で示した箇 所に波状の損傷痕を確認できる。この損傷痕がどのような力による破断で生じたのか明らかにできれ ば、ゴム支承本体が破断に至るまでの挙動を推定できる。ここで、別途実施されたゴム支承本体の載 荷実験を基に検討する。写真-2.4.47は、ゴム支承本体のせん断載荷実験により破断させたゴム支承本 体の破断面を示したものである。写真を見ると、赤枠で示した箇所に波状の損傷痕を確認できる。こ れらの損傷痕は、載荷方向に対して直角方向に線状の模様が生じていることがわかる。このことから、 ゴム支承本体はA1又はA2側に変形したことにより破断したと推定できる。

 G5 side
 (c) A2 側
 G1 side
 A1 side
 (d) G5 側
 A2 side

 補足:ゴム支承本体は完全に破断しているが、写真はゴム支承本体の上に上沓を載せた状態で撮影している

 写真-2.4.45
 撤去したゴム支承側面の損傷状態(A1G1)

(a) 下沓側(b) 上沓側写真-2.4.46撤去したゴム支承本体破断面の状態(A1G1)

写真-2.4.47 支承載荷実験におけるゴム支承本体の破断面の状態 (写真提供:(株)ビービーエム)

2) G5 支承の損傷痕から推定する支承部の挙動

撤去された後のゴム支承の側面の状態を写真-2.4.48に示す。写真より、ゴム支承本体が破断している。写真-2.4.49はゴム支承本体の破断面の状態を示したものである。破断面を見ると、赤枠に箇所に 波状の損傷痕を確認できる。写真-2.4.47に示した結果と比較すると、ゴム支承本体はA1又はA2側に 変形したことにより破断したと推定できる。なお、A1G1支承ではA2側にも橋軸直角方向に波状の損 傷痕が確認できたが、A2側には確認できなかった。

 (c) A2 側
 A1 side
 (d) G5 側
 A2 side

 補足:ゴム支承本体は完全に破断しているが、写真はゴム支承本体の上に上沓を載せた状態で撮影している

 写真-2.4.48
 撤去したゴム支承側面の損傷状態(A1G5)

(a) 下沓側(b) 上沓側写真-2.4.49撤去したゴム支承本体破断面の状態(A1G5)

2. 4. 2 落橋防止ケーブルの挙動推定

(1) A1 橋台部

写真-2.4.50及び写真-2.4.51はA1橋台における落橋防止ケーブル取付部及び横桁の損傷状態を 示したものである。なお,落橋防止ケーブルの桁側部分は,切断・撤去されている。写真より, 落橋防止ケーブル取付部からG1側のコンクリートが剥離している。これは,図-2.4.17に示すよ うに上部構造がG1側に移動又は下部構造がG5側に移動することで落橋防止ケーブルが変形し, それにより落橋防止ケーブルの接触による支圧応力がコンクリートに作用したと考えられる。ま た,A1橋台の落橋防止ケーブルは全て破断していたことから,落橋防止ケーブルが破断するより も前に上部構造又は下部構造が橋軸直角方向に移動したと考えられる。

(a) G1部

(b) G2 部

(c) G3部

注:鋼桁と接続されていた落橋防止ケーブルは 切断・撤去され、写真には、切断後の パラペット側のケーブルが写っている。 ただし、地震直後に確認された落橋防止 ケーブルの破断位置は、この写真に写った 切断位置ではない。

写真-2.4.50 A1 橋台における落橋防止ケーブル取付部の損傷状態(写真:九州地方整備局)

(a) G1部

(b) G2部

(c) G3部

(d) G4 部

(e) G5 部 写真-2.4.51 A1 橋台における横桁の損傷状態(写真:九州地方整備局)

図-2.4.17 推定する落橋防止ケーブルの挙動(A1)

(2) A2 橋台部の落橋防止ケーブル

A2橋台部は写真-2.4.52に示すように,落橋防止ケーブル取付部に桁衝突による損傷痕が見られた。 ここで,主桁,落橋防止ケーブル及び橋台の位置関係を図-2.4.18に示す。なお,A2橋台は斜角を有し ていることから,橋台側の落橋防止ケーブル取付部は,図のようにパラペットから張り出し,取付面 がケーブルに直交する構造となっている。本稿では,図-2.4.19に示すように,G1側の落橋防止ケー ブル取付部を落防取付部(左),G5側の落橋防止ケーブル取付部を落防取付部(右)と呼称する。

落防取付部(左)の衝突痕はケーブル孔の上部にある垂直な損傷と、ケーブル孔のやや下に傾きを 持った水平方向の損傷が確認できる。落防取付部(右)の衝突痕はケーブル孔と同程度の高さに水平 な損傷が確認できる。図-2.4.18より,落防取付部における落橋防止ケーブル孔の高さと、ウェブ切欠 部の上フランジの高さはほぼ一致していることから、落防取付部(左)及び(右)の水平方向の衝突 痕は、ウェブ切欠部上フランジの衝突によるものと推測できる。また、落防取付部(左)の垂直方向 の衝突痕は、ウェブが衝突したものと考えれば桁端部の断面形状と整合した損傷痕となっており、落 防取付部(左)には桁端部が正面から衝突した可能性が考えられる。一方、落防取付部(右)の損傷 痕は、取付部の突起の側面についた衝突痕であり、突起の側面に桁端部が正面から衝突することは考 えられない。すなわち、落防取付部(右)にはウェブは衝突せず、切欠部上フランジの右側が衝突し たと考えると、水平方向の衝突痕はやや傾斜がついており、かつ直線ではなく折れ曲がった形状 にも見て取れる(特に写真-2.4.52 (c)が顕著)。この衝突痕の形状と、写真-2.4.52の右端に示したウ ェブ切欠部上フランジの変形の形状との間には類似性も確認でき、ウェブ切欠部上フランジに変形が 生じた後に落防取付部(左)に衝突したことが推測できる。ウェブ切欠部上フランジの変形が生じた 要因については後述する。なお、落防取付部の左右に衝突した順番は明らかにできなかった。

写真-2.4.52 橋台部における落橋防止ケーブル取付部とウェブ切欠部(上フランジ)の損傷状態 (その1)(写真:九州地方整備局)

写真-2.4.52 橋台部における落橋防止ケーブル取付部とウェブ切欠部(上フランジ)の損傷状態 (その2)(写真:九州地方整備局)

図-2.4.18 落橋防止ケーブルと主桁及び橋台部の位置関係図

図-2.4.19 落橋防止ケーブルと主桁及び橋台部の位置関係図(取付部付近)

ウェブ切欠部上フランジの変形については、前述のように落防取付部への衝突がその原因ではない と考えられる。桁端部周辺に残る損傷痕から考えられる変形の要因としては、写真-2.4.52(e)の状況 などから、落橋防止ケーブルと上フランジの衝突による変形が考えられる。この場合、落橋防止ケー ブルがウェブ切欠部の上フランジよりも予め下に変位していて、上向きに上フランジに接触しなけれ ばならない。そのため、上部構造がA2側に移動又は下部構造がA1側に移動することで、落橋防止ケー ブルがたわむ必要がある。ここで、図-2.4.20を基に落橋防止ケーブルがたわむために必要な変位量 を簡易的に次式で算出する。

$$L' = L \times \left\{ \left(1 + \frac{8}{3} n^2 \right) - \left(\frac{32}{5} n^4 \right) \right\}$$
(2.1)

$$n = \frac{f}{L} \tag{2.2}$$

$$L = L' - x \tag{2.3}$$

式中のfは桁移動により生じた落橋防止ケーブルのたわみ量,L'は落橋防止ケーブルの長さであり, ここでは上部構造側のブラケットと橋台部の落橋防止ケーブルの取付部間の距離である(本橋の場合 1400mmとなる)。Lは桁移動後の上部構造側のブラケットと橋台部の落橋防止ケーブルの取付部間の 距離,xは桁の移動量である。G3部を例として落橋防止ケーブルのたわみ量を求めてみる。図-2.4.21 は写真-2.4.52(c)から求めた上部構造(又は下部構造)の移動量である。図より,上部構造がA2側(又 は下部構造がA1側)に47mmに移動すると,ウェブ切欠部の上フランジは取付部(右)に衝突する。この 移動量47mmを式(2.1)に代入してたわみ量を求めると150mm程度になる。そのため,上部構造がA2側 に移動又は下部構造がA1側に移動したことにより,落橋防止ケーブルはウェブ切欠部の上フランジの 下に潜り込み,その後,上部構造がG1側に移動又は下部構造がG5側に移動することで,落橋防止ケー ブルのたわみが解消され、ウェブ切欠部の上フランジに作用したことで上フランジが変形したと考え られる。そして,A2橋台に衝突したと考えられる。挙動イメージを図-2.4.22に示す。フランジの片方 のみ(G1側のみ)変形していたこと,及び推定される上部構造の挙動と整合する。

図-2.4.21 G3 部の取付部(右)の擦過痕から推定する上部構造(下部構造)の移動量

図-2.4.22 推定される上部構造(A2端部)及び落橋防止ケーブルの挙動

2. 4. 3 大切畑大橋各位置における挙動

2.4.2及び2.4.3で推定した支承及び落橋防止ケーブルの挙動メカニズムをまとめたものが図-2.4.23 である。図中の赤字は、その挙動が生じたことにより生じた可能性のある損傷を示している。但し、 図は、推定できた範囲を示している。図-2.4.23に示すように、各位置の損傷状態を整理することによって、橋全体の挙動を推定できる可能性はある。本研究の範囲では、橋全体の挙動を矛盾なく推定することは出来なかったため、さらに損傷痕の分析を行い、橋全体の挙動を推定する予定である。

参考文献

- 1)藤原昌紀,須田郁慧,西山聡一郎,秋山充良:2016年熊本地震により被災した南阿蘇大橋・制振ダンパー取り付け部の3次元FEM解析,第21回性能に基づく橋梁等の耐震設計に関するシンポジウム 講演論文集,pp.371-374,2018.
- 2) 松田泰治, 玻座真翼, 崔準祜, 内藤伸幸: 平成28年熊本地震における俵山大橋の損傷メカニズムに 関する基礎的研究, 第38回地震工学研究発表会, A13-1338(CD-ROM), 7Page, 2018.
- 3) 大住道生, 星隈順一: 熊本地震により被害を受けた道路橋の損傷痕に基づく要因分析, 第20回性能 に基づく橋梁等の耐震設計に関するシンポジウム講演論文集, pp.121-128, 2017.
- 4) 江口康平,余野智哉,中尾尚史,大住道生:熊本地震後のゴム支承の損傷状態から推定する地震時 挙動,第22回橋梁等の耐震設計シンポジウム講演論文集,pp.5-12,2019.
- 5) 平成28年(2016年)熊本地震土木施設被害調査報告,国土技術政策総合研究所資料No.967/土木研究 所資料No.4359,2017.
- 6) 二宮智大,余野智哉,中尾尚史,大住道生:地震の被害を受けた支承の損傷原因に関する実験的検討,第22回橋梁等の耐震設計シンポジウム講演論文集,pp.13-20, 2019.
- 7) 中尾尚史, 余野智哉, 大住道生: 支承に用いる六角ボルトを複数設置した場合の耐力に関する検討, 第22回橋梁等の耐震設計シンポジウム講演論文集, pp.461-468, 2019.

第3章 断層変位と強震動の異なる外乱に対する大切畑大橋の

ピーク時応答の比較

3.1 本章の概要

インフラ・ライフラインに対する地震作用の推定や、フラジリティ関数、及び、3次元 FEM 解 析に基づくインフラ・ライフラインの地震被害推定は、それぞれにおいて知見が豊富に積み重ね られ、高精度な推定が可能な段階に至っている。例えば、地震応答解析に基づき、構造物の被害 シナリオの推定に取り組んだ事例として、大住ら¹⁾は道路橋に対して、その耐震性能を担保しつ つ、超過地震動に対しても可能な限り、機能を損なわない、あるいは仮に損なわれても速やかに 機能回復できることに重点を置き、橋の崩壊までを考慮する崩壊シナリオデザイン設計法を提案 している。この設計手法においては、超過地震動に対する橋の被害シナリオを、耐力、変位、変 形および遊間などを破壊尤度の制御によりデザインすることで、地震動強度に上限のない極大地 震動に対する構造的な対応を体系的に行う設計体系を実現するものとしている。Hori *et al.*²⁾は、 ハイパフォーマンスコンピューティングを活用した統合地震シミュレーション(IES)と都市部の構 造物における解析モデルの自動構築システムを活用し、1万km四方の東京都モデルに対して地震 動解析ならびに市街地地震応答解析を行うことで、ある地震シナリオに対する地震ハザードと被 災リスクの推定を行っている。

また,熊本地震においては強震動や液状化,地盤変状に加え,断層変位などが複合的に作用することで,熊本県道28号に架かる大切畑大橋などのインフラ・ライフライン構造物に甚大な被害が発生した。将来発生し得る様々な地震作用に対するインフラ・ライフラインの被害推定を高精度に行い,将来の減災対策に貢献するためには,強震動や液状化,断層変位などの複合作用を考慮した被害推定の枠組みが求められる。

本章では、想定地震に対するインフラ・ライフライン構造物の地震被害推定や発災直後の即時 的な地震被害の推定を行い、これらの推定被害情報をテキストベースのメール配信や構造物の可 視化図によって出力するような一連の地震被害推定システムの枠組みを提案する。本システムは それぞれの推定過程で得られた知見を柔軟に取り入れるために、地震作用入力システム、被害推 定システムおよび推定データ出力システムの3つのサブシステムで構成する。被害推定において は、スクリーニングとシナリオデザインによる2段階の推定を行うものであり、これらの推定に より得られる被害情報はインフラ・ライフライン構造物の管理者等のユーザーに資するように出 力する。その上で、上記のシステムの枠組みに基づき、熊本地震で顕著であった強震動および地 表断層変位を入力作用として、大切畑大橋に対して3次元 FEM 解析による地震応答解析を行うこ とで、大切畑大橋を構成する構造要素の応答状態をシミュレートし、被害モードならびに被害シ ナリオを推定する。具体的には、強震動と地表断層変位のそれぞれによって励起された構造要素 の応答諸量のピーク値や推定される被害モードを比較・考察することで、得られた知見を将来発 生し得る想定地震に対する道路橋の減災対策へ還元する。

3.2 橋梁-添架管路-地盤系を対象とする地震被害推定システム

本節においては、地震被害推定システムの枠組みを示すとともに、本システムを構成する3つのサブシステムについても述べる。

3. 2.1 地震被害推定システムの枠組み

図-3.2.1 にはシステムの全体構成を示す。このシステムは地震作用入力システム,被害推定シ ステム,推定データ出力システムの3つのサブシステムで構成される。

図-3.2.1 システムの全体図

3. 2. 2 地震作用入力システム

地震作用入力システムでは、被害推定を行う際に推定対象構造物へ入力する地震動、液状化な どの地盤変状や斜面崩壊、地表断層変位、津波などの地震起因の作用を以下の2つの考え方に基 づき取得するものである。また、これらの作用データは時系列のデータもあれば、最大値ベース の情報の両者を含む。第1の手法としては発信直後に更新される地震情報提供サイトやリアルタ イムに得られるセンサー情報から地震起因の作用データを取得するものである。第2の手法とし ては対象地域に被害をおよぼし得る想定地震に基づく数値シミュレーションにより、その空間的 作用を取得し、サイバー内のモデルへ入力するものである。

なお,地震作用入力システムが取得する地震作用の事例として,熊本地震における地表面最大 速度 PGV の事例を図-3.2.2 に示す。また,後述する 3.3.1 項ならびに 3.3.2 項における地震 波および地表断層変位の推定は地震作用入力システムの枠組みに基づき,行われるものである。

図-3.2.2 熊本地震において推定された PGV の空間分布

3. 2. 3 被害推定システム

被害推定システムはスクリーニングとシナリオデザインによる2段階の推定を行っており,推定においては対象とするインフラ・ライフラインを構成する構造物とその位置に対応する地震作用を照らし合わせることにより,構造物の被害状況を推定するものである。手順としては,地震作用に対するフラジリティモデル(被害関数)などを用いた1次元的な被害推定を行い,広域なインフラ・ライフラインネットワークから被災リスクが高いサイトを抽出する。この過程をスクリーニングと定義する。その後,スクリーニングにより抽出されたサイトにおける3次元解析モデルをサイバー空間内に構築し,3次元構造解析を実施することで,そのサイトにおける構造要素の詳細な被害モードを推定し,その推定結果から被害シナリオを提示する。この過程をシナリオデザインと定義する。

スクリーニングでは、設計図面などのフィジカルな情報に基づき、図-3.2.3のようにサイバー 空間内にインフラ・ライフラインネットワークモデルを構築した上で、そのモデルの脆弱性を被 害関数で設定し、地震作用を入力することでネットワークモデル全体から各サイトにおける被災 リスクを推定するものである。スクリーニングで用いる被害関数は、地震作用と構造物被害の関 系を示す被害推定式、構造物が持つ固有属性よって異なる被害程度を考慮するための補正係数お よび造成地盤・液状化地盤などの地盤応答の影響を考慮するための補正係数を想定している。

なお,スクリーニングの段階においては,皆川ら³⁾により被害関数を用いた上・下水道埋設管路 に対するリアルタイム地震被害推定システムの開発が進められており,プロトタイプのシステム がすでに構築されている。

シナリオデザインでは、フィジカルな情報である詳細図面により、サイバー空間内に3次元 CAD や3次元 FEM などの詳細モデルを予め構築し、スクリーニングにより高い被災リスクが推定され

たサイトに対して3次元構造解析を行い,その構造要素における被害モードを推定することで被 害シナリオを提示するものである。構築するモデルにおいては,図-3.2.4に示すように,例えば, 橋脚や地盤,支承をソリッド要素,橋桁,添架管路をシェル要素でモデル化し,構造物の構造要 素とその周辺地盤などを一体としたものとする。

図-3.2.3 スクリーニングにおいて推定対象とするインフラ・ライフラインネットワークモデルの事例

図-3.2.4 シナリオデザインにおいて推定対象とする3次元 FE モデル

3. 2. 4 推定データ出力システム

推定データ出力システムは,推定被害情報をテキストベースのメール配信や構造物の可視化図 によって出力することでインフラ・ライフライン構造物の管理者などのユーザーに資するシステ ムとする。被害推定システムにおけるスクリーニングおよびシナリオデザインに基づき,配信形 式を3つに分ける。第1の形式は,スクリーニングにより推定した被災リスクをメールなどのテ キストベースで即時的に配信する形式である。第2の形式は被災リスクの高さに基づき,対象領 域全体のコンターを WebGIS 上に作成し,被災リスクの空間的な分布を可視化し,空間情報とし て出力する形式である。スクリーニングにより,被災リスクを高いサイトを抽出した可視化図を 図-3.2.5 に示す。第3の形式は,シナリオデザインにより3次元モデルの応答をコンター図によ り可視化し,求められる応答諸量を出力する形式である。例えば,モデルのどの構造要素で応答 が大きくなり,構造要素の中で被害モードが顕在化する可能性があるかなどの被害シナリオを図 -3.2.6 のように提示するものである。

図-3.2.5 スクリーニングによる被災リスク抽出結果

図-3.2.6 シナリオデザイン提示のための可視化図

図-3.3.1 モデルとする断層(文献 6) Fig.1.に加筆)

3.3 地震作用の推定

3.3.1 地震作用入力システムにおける地表断層変位の算定方法

本節においては,食違い弾性理論に基づく Okada⁴⁾の計算手法を用いて地表変位の空間分布を推定する。この手法は震源断層モデルから得られるパラメータを用いて,地表地盤の静的変位量を 算出するものである。熊本地震の震源断層モデルは複数提案されており,その中から畠山ら ⁵⁾を 参考に,国土地理院モデル⁶⁾を選定した事例を示す。

震源を点震源としてモデル化し、地盤全体を無限等方弾性体と仮定した時、地盤中に断層すべりが生じた場合の変位 $u_i(x_1, x_2, x_3)$ は Stekette⁷⁾によって提案された次式により計算できる。なお、 図-3.3.1に示す座標系および断層、パラメータを設定し、図-3.3.1において、x、yは計算する地 表変位の座標、dは点震源の深さ、 δ が断層面の傾斜角、 U_1 、 U_2 および U_3 は断層走行方向、断層傾 斜角方向およびそれらに垂直な方向のすべり成分である。

$$u_{i} = \frac{1}{F} \iint_{\Sigma} \Delta u_{j} \left[\lambda \delta_{jk} \frac{\partial u_{i}^{n}}{\partial \xi_{n}} + \mu \left(\frac{\partial u_{i}^{j}}{\partial \xi_{k}} + \frac{\partial u_{i}^{k}}{\partial \xi_{j}} \right) \right] \nu_{k} d\Sigma$$
(3.3.1)

ここに、 δ_{jk} : クロネッカーのデルタ

λ, *μ*: ラメ定数

Σ:断層面

- v_k : 断層面上における方向余弦で $v_k = (0, -\sin\delta, \cos\delta)$
- u_i^j : 断層面上の点 (ξ_1,ξ_2,ξ_3) における大きさ Fの力のj成分によって点 (x_1,x_2,x_3) に生じる 変位のi成分

次に、断層すべりによる半無限弾性体の応答を考慮するとき、Press⁸によりu_ijとFの関係が次

式のように求められている。

$$\begin{cases} u_{1}^{1} = \frac{F}{4\pi\mu} \left\{ \frac{1}{R} + \frac{(x_{1} - \xi_{1})^{2}}{R^{3}} + \frac{\mu}{\lambda + \mu} \left[\frac{1}{R - \xi_{3}} - \frac{(x_{1} - \xi_{1})^{2}}{R(R - \xi_{3})^{2}} \right] \right\} \\ u_{2}^{1} = \frac{F}{4\pi\mu} (x_{1} - \xi_{1})(x_{2} - \xi_{2}) \left\{ \frac{1}{R^{3}} - \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})^{2}} \right\} \\ u_{3}^{1} = \frac{F}{4\pi\mu} (x_{1} - \xi_{1}) \left\{ -\frac{\xi_{3}}{R^{3}} - \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})^{2}} \right\} \\ \left\{ u_{2}^{2} = \frac{F}{4\pi\mu} \left\{ \frac{1}{R} + \frac{(x_{2} - \xi_{2})^{2}}{R^{3}} + \frac{\mu}{\lambda + \mu} \left[\frac{1}{R - \xi_{3}} - \frac{(x_{2} - \xi_{2})^{2}}{R(R - \xi_{3})^{2}} \right] \right\} \\ u_{3}^{2} = \frac{F}{4\pi\mu} \left\{ \frac{1}{R} + \frac{(x_{2} - \xi_{2})^{2}}{R^{3}} + \frac{\mu}{\lambda + \mu} \left[\frac{1}{R - \xi_{3}} - \frac{(x_{2} - \xi_{2})^{2}}{R(R - \xi_{3})^{2}} \right] \right\} \\ \left\{ u_{2}^{3} = \frac{F}{4\pi\mu} (x_{1} - \xi_{1}) \left\{ -\frac{\xi_{3}}{R^{3}} + \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})} \right\} \\ \left\{ u_{3}^{2} = \frac{F}{4\pi\mu} (x_{1} - \xi_{1}) \left\{ -\frac{\xi_{3}}{R^{3}} + \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})} \right\} \\ u_{3}^{2} = \frac{F}{4\pi\mu} (x_{2} - \xi_{2}) \left\{ -\frac{\xi_{3}}{R^{3}} + \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})} \right\} \\ u_{3}^{3} = \frac{F}{4\pi\mu} \left\{ \frac{1}{R^{3}} + \frac{\xi_{3}}{R^{3}} + \frac{\mu}{\lambda + \mu} \frac{1}{R(R - \xi_{3})} \right\} \end{cases}$$

 $\sub{\it L}, \ R^2 = (x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + {\xi_3}^2 \ \ensuremath{\textcircled{o}} \ \ensuremath{\e} \ \ensuremath{\e} \ \ensuremath\ensuremath{\e} \ \$

次に、横ずれ断層ならびに縦ずれ断層のそれぞれの場合におけるすべり成分について述べる。 式(3.3.2)において、横ずれ断層(Strike-Slip)の場合、図-3.3.1 で示したすべり成分が $U_2 = 0, U_3 = 0$ であるので、 $\Delta u_j = (U_1, 0, 0)$ となる。同様に、縦ずれ断層(Dip-Slip)の場合 $\Delta u_j = (0, U_2 \cos \delta, U_2 \sin \delta)$ となる。これらを式(3.3.1)に代入することにより、以下のように変形できる。 横ずれ断層の場合

$$u_{i} = \frac{1}{F} \mu U_{1} \Delta \Sigma \left[-\left(\frac{\partial u_{i}^{1}}{\partial \xi_{2}} + \frac{\partial u_{i}^{2}}{\partial \xi_{1}} \right) \sin \delta + \left(\frac{\partial u_{i}^{1}}{\partial \xi_{3}} + \frac{\partial u_{i}^{3}}{\partial \xi_{1}} \right) \cos \delta \right]$$
(3.3.3)

縦ずれ断層の場合

$$u_{i} = \frac{1}{F} \mu U_{2} \Delta \Sigma \left[\left(\frac{\partial u_{i}^{2}}{\partial \xi_{3}} + \frac{\partial u_{i}^{3}}{\partial \xi_{2}} \right) \cos 2\delta + \left(\frac{\partial u_{i}^{3}}{\partial \xi_{3}} - \frac{\partial u_{i}^{2}}{\partial \xi_{2}} \right) \sin 2\delta \right]$$
(3.3.4)

点震源は(0,0,-*d*)に位置しているため、式(3.3.2)~(3.3.4)において(ξ_1,ξ_2,ξ_3) = (0,0,-*d*)とすると地 表面の変位は以下のように求められる。なお、次式においては座標系を(x_1,x_2,x_3)から(x,y,z)に置 き換えている。
横ずれ断層の場合

$$\begin{cases} u_x^0 = -\frac{U_1}{2\pi} \left[\frac{3x^2 q}{R^5} + I_1^0 \sin \delta \right] \Delta \Sigma \\ u_y^0 = -\frac{U_1}{2\pi} \left[\frac{3xyq}{R^5} + I_2^0 \sin \delta \right] \Delta \Sigma \\ u_z^0 = -\frac{U_1}{2\pi} \left[\frac{3xdq}{R^5} + I_4^0 \sin \delta \right] \Delta \Sigma \end{cases}$$
(3.3.5)

縦ずれ断層の場合

$$\begin{cases} u_x^0 = -\frac{U_2}{2\pi} \left[\frac{3xpq}{R^5} - I_3^0 \sin \delta \cos \delta \right] \Delta \Sigma \\ u_y^0 = -\frac{U_2}{2\pi} \left[\frac{3ypq}{R^5} - I_1^0 \sin \delta \cos \delta \right] \Delta \Sigma \\ u_z^0 = -\frac{U_2}{2\pi} \left[\frac{3dpq}{R^5} - I_5^0 \sin \delta \cos \delta \right] \Delta \Sigma \end{cases}$$
(3.3.6)

ここで上記の式における各変数は以下の通りである。

$$I_{1}^{0} = \frac{\mu}{\lambda + \mu} y \left[\frac{1}{R(R+d)^{2}} - x^{2} \frac{3R+d}{R^{3}(R+d)^{3}} \right]$$

$$I_{2}^{0} = \frac{\mu}{\lambda + \mu} x \left[\frac{1}{R(R+d)^{2}} - y^{2} \frac{3R+d}{R^{3}(R+d)^{3}} \right]$$

$$I_{3}^{0} = \frac{\mu}{\lambda + \mu} y \left[\frac{x}{R^{3}} \right] - I_{2}^{0}$$

$$I_{4}^{0} = \frac{\mu}{\lambda + \mu} y \left[-xy \frac{2R+d}{R^{3}(R+d)^{2}} \right]$$

$$I_{5}^{0} = \frac{\mu}{\lambda + \mu} y \left[\frac{1}{R(R+d)} - x^{2} \frac{2R+d}{R^{3}(R+d)^{2}} \right]$$

$$p = y \cos \delta + d \sin \delta$$

$$q = y \sin \delta - d \cos \delta$$

$$(3.3.8)$$

$$R^{2} = x^{2} + y^{2} + d^{2} = x^{2} + p^{2} + q^{2}$$

以上より、断層震源モデルに国土地理院モデル^のを採用し、式(3.3.5)および式(3.3.6)に基づき地 表変位を計算する。このモデルは、図-3.3.2 に示すように西から B, A1, A2 の 3 つの矩形断層 モデルで構成されており、それぞれの断層に対して表-3.3.1 のようなパラメータが設定されてい る。表-3.3.1 において、上端深さまでは文献 6)を、それ以外の項目は文献 5)を参考とした。この モデルは GEONET および干渉 SAR 解析手法によって観測された地表変位に基づき構築されたモ デルである。計算に必要となる P 波および S 波速度に関して、地震調査研究推進本部の地下構造 モデル⁹を参考に、気象庁が公表している熊本地震の震源位置における P 波および S 波速度を適用した。計算を行う領域としては、Shirahama *et al.*¹⁰によって調査された地表断層変位線および震源モデルがすべて含まれるような東西 52km、南北 40km の領域とし、50m のメッシュに分割して計算を行った。以上のような計算条件に基づき、地表地盤の南北方向変位 U_n m、東西方向変位 U_e m および鉛直方向変位 U_z m の 3 方向の変位を算出し、図-3.3.3 に示す。これらはそれぞれ北側、東側および鉛直上向きを正としている。

図-3.3.2 国土地理院モデルと計算領域

		A1	A2	В
断層の幅,長さ[km]		12.5×20.0	6.6×5.1	13.0×10.2
	走向	235	56	205
断層パラメータ[°]	傾斜	60	62	72
	すべり角	209	178	176
すべり量[m]		4.1	3.8	2.7
上端深さ[km]		0.6	0.2	0.8
P波,S波速度[km/s]	P波	5.8		
	S波	3.4		
計算格子数		1040×800		
メッシュサイズ[m]		50		

表-3.3.1 地表変位計算のパラメータ

(c) U_z図-3.3.3 地表変位の計算結果の事例

3.3.2 波動伝播シミュレーションによる入力地震波の推定

地震作用入力システムの枠組みに基づき,熊本地震において,インフラ・ライフライン構造物 のサイトに作用し得た地震波を,震源モデルを用いた波動伝播シミュレーションにより推定した。 その推定手法は、2秒以上の長い周期帯を計算できる空間4次,時間2次精度の有限差分法¹¹⁾で あり,計算条件ならびに震源モデルは文献12)に基づき工学的基盤に入射した地震波を算出する。

(1) 震源モデル

熊本地震における震源モデルは複数提案されているが、本研究で採用する震源モデルは文献 12) を参考に図-3.3.4 に示す Asano and Iwata¹³⁾のモデルを適用する。本モデルは南西側の日奈久断層 と北東側の布田川断層の2つの断層で構成されており、走行角はそれぞれ 205 度および 235 度、 傾斜角はそれぞれ 72 度および 65 度である。それぞれの断層において、サブフォールトを 2.0km×2.0km で分割し、各サブフォールトは smoothed ramp function を窓関数として1秒幅のタイ ムウィンドウを 0.5 秒おきに 9 つ設定し震源時間関数を求めている。

$$f(t) = 2f_c \left\{ 1 - \tan^2 4f_c \left(t - \frac{1}{f_c} \right) \right\}$$
(3.3.9)

ここに, f_c : smoothed ramp function の幅の逆数である。

(2) 計算領域および計算条件

計算領域は図-3.3.5 に示す南北 89.4km, 東西 79.2km, 鉛直方向 40km とした。文献 10)での提案に基づき,文献 12)を参考に深さ 22km を境界として,境界よりも浅い領域を Region I とし,深い領域を Region II と設定した。計算条件としては, Region I の格子サイズを 100m 間隔の格子, Region II の格子サイズは 300m 間隔の格子とし,時間刻みは 0.005 秒,計算時間は 50 秒とした。

(3) 地下構造

地下構造の物性値および境界面の震度データは**表**-3.3.2に示す地震調査研究推進本部の地下構造データ⁹のものを用いた。

(4) 計算結果

以上より、大切畑大橋近辺の工学的基盤に入射した地震波を推定した。図-3.3.6 には、それらの東西方向、南北方向、鉛直方向の時刻歴加速度、応答加速度スペクトル、応答変位スペクトル をそれぞれ示す。本章における解析では、時刻 11.8 秒付近の最大加速度を含む 2.5 秒間を抽出した加速度を後述する 3 次元 FE モデルに作用させ、ピーク時応答の特徴を分析する。なお、次章においては、図-3.3.6(a)に示す継続時間 0 秒から 18 秒までの 18 秒間の主要動を抽出した加速度を 解析に用いている。

図-3.3.4 計算領域, 点震源および強震観測点の位置(文献 12)の図 4.3.1 より引用)

図-3.3.5 計算領域と格子サイズ(文献 12)の図 4.3.5 より引用)

層番号	$V_p[m/s]$	$V_s[m/s]$	ρ [kg/m ³]	<i>Q</i> 值
D1	1700	350	1800	70
D2	1800	500	1950	100
D3	2000	600	2000	120
D4	2100	700	2050	140
D5	2200	800	2070	160
D6	2300	900	2100	180
D7	2400	1000	2150	200
D8	2700	1300	2200	260
D9	3000	1500	2250	300
D10	3200	1700	2300	340
D11	3500	2000	2350	400
D12	4200	2400	2450	400
D13	5000	2900	2600	400
D14	5500	3200	2650	400
D15	5800	3400	2700	400
D16	6400	3800	2800	400
D17	7500	4500	3200	500
D18	5000	2900	2400	200
D19	6800	4000	2900	300
D20	8000	4700	3200	500
D21	5400	2800	2600	200
D22	6500	3500	2800	300
D23	8100	4600	3400	500

表-3.3.2 地下構造の物性値

図-3.3.6 対象橋梁近辺の工学的基盤に入射した地震波

3.4 3 次元 FEM 解析に係る基礎理論

本節においては文献¹⁴⁾に基づき,3次元 FEM 解析の解析手法として,有限要素法理論の定式化ならびに静的・動的解析手法について述べる。さらに,各解析手法における求解に用いる共役勾配法に関して,そのアルゴリズムについて述べる。

3. 4.1 微小変形領域における線形静的解析手法

(1) 基礎方程式

物体が平衡状態にあるとき、以下の平衡方程式ならびに境界条件式が満たされる。ただし、慣 性力が無視できるような準静的な物体の運動を仮定しており、物体表面Sの各点において単位面積 当たり<u>t</u>の表面力または変位<u>u</u>が与えられると共に、物体内Vにおいて単位質量当たりgの物体力が 与えられているものとする。

$\nabla \cdot \sigma + \rho g = 0 \text{in } V$	(3.4.1)
$\sigma \cdot n = \underline{t}$ on S_t	(3.4.2)

$$u = \underline{u} \text{ on } S_u \tag{3.4.3}$$

ここに、 σ :応力テンソル

u:変位

ρ:密度

St: 物体表面のおける力学的境界条件

S_u:物体表面における幾何学的境界条件

微小変形領域における変位・歪関係式ならびに応力・歪関係式は次式のようにできる。

$$\varepsilon = \nabla u \tag{3.4.4}$$

$$\sigma = \mathcal{C}:\varepsilon \tag{3.4.5}$$

ここに, **ɛ**: 歪テンソル

C:4階の弾性テンソル

(2) 仮想仕事の原理

文献¹⁴より,微小変形領域における線形弾性問題の場合には,仮想仕事の原理は次式のように 表される。

$$\int_{V} \sigma : \delta \varepsilon dV = \int_{S_{t}} \underline{t} \cdot \delta u dS + \int_{V} \rho g \cdot \delta u dV$$
(3.4.6)

$$\delta u = 0 \quad \text{on} \quad S_u \tag{3.4.7}$$

式(3.4.6)に式(3.4.5)を代入すると、

$$\int_{V} (C:\varepsilon) : \delta\varepsilon dV = \int_{S_{t}} \underline{t} \cdot \delta u dS + \int_{V} \rho g \cdot \delta u dV$$
(3.4.8)

また、応力テンソル σ とひずみテンソル ϵ をそれぞれ応力ベクトル $\overline{\sigma}$ とひずみベクトル $\overline{\epsilon}$ に変換すると、式(3.4.5)は次式のようにできる。

$$\overline{\sigma} = D\overline{\varepsilon} \tag{3.4.9}$$

ここに, D:弾性マトリクス 上式を用いて式(3.4.8)をベクトルに変換すると,

$$\int_{V} \overline{\varepsilon}^{T} D\delta \overline{\varepsilon} dV = \int_{S_{t}} \delta u^{T} \underline{t} \, dS + \int_{V} \delta u^{T} \rho g \, dV$$
(3.4.10)

とできる。式(3.4.7)および式(3.4.10)がシナリオデザインにおける 3 次元 FEM 解析で用いる離散化 された仮想仕事の原理である。

(3) 定式化

式(3.4.10)を要素eごとに離散化することで次式を得る。

$$\sum_{e} \int_{V^{e}} \overline{\varepsilon}^{T} D \delta \overline{\varepsilon} dV = \sum_{e} \int_{S_{t}^{e}} \delta u^{T} \underline{t} \, dS + \sum_{e} \int_{V^{e}} \delta u^{T} \rho g \, dV \tag{3.4.11}$$

変位場は、要素内の任意点における節点変位からの内挿により、以下に定義される。

$$u = \sum_{i=1}^{m} N_i U_i = NU$$
(3.4.12)

ここに, N_i:形状関数,

 $i = 1 \sim m$

m:要素を構成する節点の数

このとき、ひずみは式(3.4.4)を参照して、変位マトリックスBを用いることで以下のようにできる。

$$\overline{\varepsilon} = BU \tag{3.4.13}$$

次に、式(3.4.9)と式(3.4.10)を式(3.4.11)に代入すると、

$$\sum_{e} \delta U^{T} \left(\int_{V^{e}} B^{T} D B dV \right) U = \sum_{e} \delta U^{T} \int_{S_{t}^{e}} N^{T} \underline{t} \, dS + \sum_{e} \delta U^{T} \int_{V^{e}} N^{T} \rho g \, dV$$
(3.4.14)

上式を整理すると,

$$\delta U^T K U = \delta U^T F \tag{3.4.15}$$

ここで,次式で定義されるマトリックスとベクトルにより,要素eごとに計算し,重ね合わせる。

$$K = \sum_{e} \int_{V^e} B^T DBdV \tag{3.4.16}$$

$$F = \sum_{e} \int_{S_t^e} N^T \underline{t} \, dS + \sum_{e} \int_{V^e} N^T \rho g \, dV \tag{3.4.17}$$

式(3.4.15)より、任意の仮想変位について成立することで

$$KU = F \tag{3.4.18}$$

とでき、変位境界条件(3.4.3)は次式のように変換される。

$$U = \underline{U} \tag{3.4.19}$$

式(3.4.18)を拘束条件式(3.4.19)に基づき解くことにより、節点変位を決定する。

3. 4. 2 非線形静的解析手法

文献¹⁴⁾より,時刻tにおける非線形方程式は離散化された後,最終的に次式のようになる。

$$Q(t) = F(t) \tag{3.4.20}$$

ここに、Q:離散化された内力ベクトル

F:外力ベクトル

仮にシステムが線形である場合には、剛性マトリックスKを用いて

$$Q(t) = KU(t) \tag{3.4.21}$$

とでき,式(3.4.20),式(3.4.21)より,

$$U(t) = K^{-1}F(t)$$

とすることで解を求める。しかし、システムが非線形である場合には、解を求める際に反復手法 を用いる必要がある。本研究においては、Newton-Raphson 法に基づく反復法にて解を決定する。 ここで、ある有限な微小時間のおける増分を取り扱うと、時刻における平衡解が得られている時 に、次の時刻の外力に対する変位が以下のように近似できる。

$$U(t') = U(t) + U$$
(3.4.23)

$$U \approx K^{-1}(t)F \tag{3.4.24}$$

ここで,式(3.4.24)により得られるUを反復1回目の変位修正ベクトルU⁽¹⁾として変位を更新し, 平衡方程式に代入すれば,

$$U(t') = U(t) + U^{(1)}$$
(3.4.25)
$$R^{(1)}(t') = F(t') - Q^{(1)}(U(t'))$$
(3.4.26)

ここに, R(t'): 残差荷重ベクトル

となる。R(t') = 0を満たすものが平衡解となる。

次に,式(3.4.26)をUに関して線形化し,残差が減少するように変位を修正する。第i回目の反復 における変位修正ベクトルは,

$$U^{(i)} = K^{(i-1)-1}(t')R^{(i-1)}(t')$$

$$R^{(i-1)}(t') = F(t') - Q^{(i-1)}(U^{(i-1)}(t'))$$
(3.4.27)
(3.4.28)

$$U^{(i)}(t') = U^{(i-1)}(t') + U^{(i)}$$
(3.4.29)

でき、ここで、第0回目の反復時における値を時刻tにおける収束解のように定義する。Newton-Raphson 法では残差がなくなるまで式(3.4.27)~式(3.4.29)の手順を反復し、収束解を得る。

3. 4. 3 非線形動的解析手法

文献¹⁴⁾より,時刻t+Δtにおける離散化された運動方程式は以下の式で示される。

$$M\ddot{U}(t+\Delta t) + C\dot{U}(t+\Delta t) + Q(t+\Delta t) = F(t+\Delta t)$$
(3.4.30)

ここに, M:質量マトリックス

C:減衰マトリックス

- Q:内力ベクトル
- F:外力ベクトル

内力ベクトルは線形問題においては,式(3.4.21)と同様に与えられる。静的問題の時と同様に,内 カベクトルについて線形化を行った次式に基づく,Newton-Raphson 法の反復計算(*i* = 1,2,3,…)を 行う。

$$\begin{aligned} M\ddot{U}^{(i)}(t+\Delta t) + C\dot{U}^{(i)}(t+\Delta t) + K^{(i-1)}(t+\Delta t)\Delta U^{(i)} \\ &= F(t+\Delta t) - Q^{(i-1)}(t+\Delta t) \end{aligned}$$
(3.4.31)

本研究においては、時間増分 Δt での変位、速度の関係は Newmark- β 法を用いて以下のように近似する。

$$U(t + \Delta t) = U(t) + \Delta t \cdot \dot{U}(t) + \Delta t^2 \left\{ \left(\frac{1}{2} - \beta\right) \cdot \ddot{U}(t) + \beta \cdot \ddot{U}(t + \Delta t) \right\}$$
(3.4.32)

$$\dot{U}(t+\Delta t) = \dot{U}(t) + \Delta t \left[\gamma \cdot \ddot{U}(t+\Delta t) + (1-\gamma) \cdot \ddot{U}(t) \right]$$
(3.4.33)

加速度と速度について整理すると,

$$\dot{U}(t+\Delta t) = \frac{\gamma}{\beta \Delta t} \cdot \left(U(t+\Delta t) - U(t) \right) + \left(1 - \frac{\gamma}{\beta} \right) \cdot \dot{U}(t) + \Delta t \cdot \left(1 - \frac{\gamma}{2\beta} \right) \cdot \ddot{U}(t)$$
(3.4.34)

$$\ddot{U}(t+\Delta t) = \frac{1}{\beta \Delta t^2} \cdot \left(U(t+\Delta t) - U(t) \right) - \frac{1}{\beta \Delta t} \cdot \dot{U}(t) - \left(\frac{1}{2\beta} - 1\right) \cdot \ddot{U}(t)$$
(3.4.35)

となり、最終的に解くべき運動方程式は、式(3.4.31)を参照して、

$$\begin{split} \left(\frac{1}{\beta\Delta t^2}M + \frac{\gamma}{\beta\Delta t}C + K^{(i-1)}(t+\Delta t)\right)\Delta U^{(i)} \\ &= F(t+\Delta t) - Q(t+\Delta t) \\ &+ M\left[\frac{1}{\beta\Delta t^2}U^{(i)}(t) + \frac{1}{\beta\Delta t}\dot{U}^{(i)}(t) + \frac{1-2\beta}{2\beta}\ddot{U}^{(i)}(t)\right] \\ &+ C\left[\frac{\gamma}{\beta\Delta t}U^{(i)}(t) + \frac{\gamma-\beta}{\beta}\dot{U}^{(i)}(t) + \Delta t\frac{\gamma-2\beta}{\beta}\ddot{U}^{(i)}(t)\right] \end{split}$$
(3.4.36)

となり,最終的に

$$\widehat{K}\Delta U^{(i)} = \widehat{F} \tag{3.4.37}$$

$$\begin{array}{l} \Xi \subseteq \zeta, \ \widehat{K} = \left(\frac{1}{\beta\Delta t^2}M + \frac{\gamma}{\beta\Delta t}C + K^{(i-1)}(t+\Delta t)\right) \\ \\ \widehat{F} = F(t+\Delta t) - Q(t+\Delta t) + M\left[\frac{1}{\beta\Delta t^2}U^{(i)}(t) + \frac{1}{\beta\Delta t}\dot{U}^{(i)}(t) + \frac{1-2\beta}{2\beta}\ddot{U}^{(i)}(t)\right] \\ \\ + C\left[\frac{\gamma}{\beta\Delta t}U^{(i)}(t) + \frac{\gamma-\beta}{\beta}\dot{U}^{(i)}(t) + \Delta t\frac{\gamma-2\beta}{\beta}\ddot{U}^{(i)}(t)\right] \end{array}$$

であり、式(3.4.37)に基づき応答を算出する。また、質量マトリックスは集中質量マトリックス、 減衰マトリックスは以下に示す Rayleigh 減衰における質量マトリックスと剛性マトリックスの1 次結合として仮定する。

 $C = R_m M + R_K K \tag{3.4.38}$

3.4.4 連立1次方程式に対する数値解法

次節に示す3次元FEM解析においては、3.4.2項と3.4.3項で述べた静的ならびび動的解析手法 に基づき,対象とする系の地震応答を推定するものである。各手法における求解においては,静 的解析手法では式(3.4.20),動的解析手法では式(3.4.37)の連立1次方程式に対して共役勾配法(CG 法)に基づき,数値解を求めるものとする。CG法に基づく解法を文献15)を参考にして,以下に述 べる。

ある連立1次方程式

$$\widehat{K}u = \widehat{f} \tag{3.4.39}$$

において,式(3.4.39)の係数行列が正定値行列であるとき,方程式は唯一の解を持ち,式(3.4.40)のf(u)の最小点を求めるものと同値である。

$$f(u) = \frac{1}{2} \left(u, \hat{K}u \right) - \left(u, \hat{f} \right)$$
(3.4.40)

ここに, (u, *R*u): ベクトルの内積

$$(u, \hat{K}u) = \sum_{i,j=1}^{n} k_{ij} u_i u_j$$

(u, \hat{f}) = $\sum_{i=1}^{n} u_i \hat{f}_i$ (3.4.41)

上式のように変形できる。式(3.4.40)の両辺をuiで偏微分し、0とおくと、

$$\frac{\partial f(u)}{\partial u_i} = \sum_{j=1}^n k_{ij} u_j - \hat{f}_i = 0$$
(3.4.42)

となり,式(3.4.40)の最小点は上式の解となる。式(3.4.42)を満たす近似解を反復法に基づき算定する。本解析においては反復法の中から共役勾配法(CG法)を選択して,求解を行うものである。

次に、CG 法のアルゴリズムについて述べる。反復 0 回目における初期値として、初期解ベクト ルを u_0 、初期残差ベクトルを $r_0 = \hat{f} - \hat{K}u_0$ 、初期方向ベクトルを $p_0 = r_0$ とおき、以下の式 (3.4.43)~(3.4.47)の過程を、収束条件を満たすまで繰り返す。

反復ステップmにおける修正係数amを求めると

$$\alpha_m = \frac{(p_m, r_m)}{(p_m, \hat{K} p_m)} \tag{3.4.43}$$

であり、この修正係数 α_m を基に、反復ステップm+1における近似解ベクトル u_{m+1} を算出すると、

$$u_{m+1} = u_m + \alpha_m p_m \tag{3.4.44}$$

となる。この近似解ベクトル u_{m+1} における残差ベクトル r_{m+1} を求めると

$$r_{m+1} = \hat{f} - \hat{K} u_{m+1} \tag{3.4.45}$$

となり、この残差ベクトル r_{m+1} に基づき、後述の収束判定が行われる。もし、収束条件を満たさない場合には、残差ベクトル r_{m+1} を用いて方向ベクトルの修正係数 β_m を以下のように計算する。

$$\beta_m = -\frac{(r_{m+1}, \hat{K}p_m)}{(p_m, \hat{K}p_m)}$$
(3.4.46)

この修正係数 β_m と残差ベクトル r_{m+1} を用いて、反復ステップm+1における方向ベクトル p_{m+1} を 算出する。

$$p_{m+1} = r_{m+1} + \beta_m p_m \tag{3.4.47}$$

この方向ベクトル p_{m+1} を式(3.4.43)に代入することで、反復ステップm+1における修正係数 α_{m+1} が算出され、収束条件を満たすまで、この過程が繰り返される。残差ベクトル r_m を用いた収束判定は以下の式に基づき行われるものである。

$$\frac{\|r_m\|}{\|f\|} \le \varepsilon \tag{3.4.48}$$

ここに, ε: 収束判定閾値である。

本章における 3 次元 FEM 解析においては,式(3.4.39)に対して前処理を施すことで,大規模モ デルに対する求解に要する計算コストを軽減する。想定する前処理としては,式(3.4.39)における \hat{K} が対称な場合の逐次過緩和前処理(SSOR)や \hat{K} の対角成分を両辺にかける対角スケーリング (DIAG),一般に広く用いられる不完全 LU 分解などが存在するが,本章の解析においては最も計 算コストの低減が図れた代数的マルチグリッド法(AMG 法)を用いた前処理を行うものとする。

3.5 対象橋梁の3次元モデル

3. 5.1 対象橋梁の構造諸元

対象橋梁は熊本県道 28 号線に位置している橋長 265.4m, 幅員 12.5m の鋼 5 径間連続非合成鈑 桁橋である。図-3.5.1 に橋梁一般図および設計図書を基に作成した大切畑大橋の橋梁-添架管路 - 地盤系の 3 次元 CAD モデルを示す。以下,対象橋梁の各構造要素について詳述する。

(1) 上部構造

大切畑大橋の上部構造を構成する 5 つの主桁は桁高が 2600mm, ウェブ厚が 11mm である。フ ランジの幅および厚さは位置によって異なり, 幅は 330mm~760mm, 厚さは 16mm~36mm であ る。これらの桁の上に, 厚さ 220mm の RC 床版が設置されている。これら上部構造は P1 橋脚か

図-3.5.1 対象橋梁の CAD モデルの全体図

図-3.5.2 積層ゴム支承の CAD モデル

ら A2 橋台に渡って湾曲した構造になっている。また, 添架管路は A1 から A2 にかけて G1 と G2 の間に添架されており, 電気設備線をカバーしている。

(2) 支承

大切畑大橋の支承には積層ゴム支承が用いられており,各橋台,橋脚上に5 主桁に対応してそ れぞれ設置されている。図-3.5.2にA1橋台,P2橋脚およびP3橋脚上の積層ゴム支承のCADモ デルを示す。A1橋台上の積層ゴム支承は受圧部の寸法が450mm×450mmで,厚さ12mmの天然 ゴム 10層と内部鋼板9層である。A2橋台上の積層ゴム支承は受圧部の寸法が500mm×500mm で,厚さ15mmの天然ゴム8層と内部鋼板7層である。P1橋脚上の積層ゴム支承は受圧部の寸法 が650mm×650mmで,厚さ15mmの天然ゴム10層と内部鋼板9層である。P2橋脚およびP3橋 脚上の積層ゴム支承は受圧部の寸法が650mmで,厚さ17mmの天然ゴム5層と内部鋼 板4層である。P4橋脚上の積層ゴム支承は受圧部の寸法が650mm×650mmで,厚さ14mmの天 然ゴム 10層と内部鋼板9層である。なお,内部鋼板の厚さは全て3mm,上部鋼板および下部鋼 板の厚さは全て25mmである。以上から,P2およびP3橋脚上の積層ゴム支承は,他の積層ゴム 支承と比較して薄くなっている。

(3) 落橋防止システム

落橋防止ケーブルが A1 橋台および A2 橋台に設置されており,各主桁に 2 本ずつ取り付けられ ている。ケーブルは,高密度ポリエチレン樹脂被膜の PC 鋼より線 (φ 8.1mm×7 本より,直径 24.3mm,被膜径 35.6mm)が用いられている。

図-3.5.3 橋台・橋脚および基礎の CAD モデル

(4) 橋台・橋脚および基礎

図-3.5.3 に橋台,橋脚および基礎の CAD モデルを示す。A1 橋台は逆 T 式橋台であり,直径 1200 mm,長さ 17m の場所打ち杭を 8 本有している。A2 橋台も逆 T 式橋台であり,直径 2000mm,長さ 11m および 7m の深礎杭を 2 本有している。P1 橋脚ならびに P4 橋脚は躯体部の高さがそれ ぞれ 10m, 16m で,張出式円形 RC 橋脚であり,P4 橋脚は中空断面である。これらの基礎は直径 がそれぞれ 4500mm,6000mm,長さがそれぞれ 15m,30m の深礎杭基礎である。P2 橋脚ならびに P3 橋脚は躯体部の高さがそれぞれ 27.5m,33m で,張出式矩形 RC 橋脚(中空断面)である。こ れらの基礎は直径 1500mm の杭をそれぞれ 10 本,12 本有している場所打ち杭基礎である。

(5) 周辺地盤

図-3.5.1 には大切畑大橋の周辺地盤の地層構造についても示しており,9 種類の地層で構成さ れている。A1 橋台の表層地盤から深さ 50m 付近は,工学的基盤面に相当する。具体的には,A1 橋台から P1 橋脚の周辺地盤は表層から盛土,降下軽石層,自破砕安山岩溶岩,安山岩溶岩で積層 されている。P2 橋脚から P3 橋脚の周辺地盤では盛土の層がやや厚くなっており,盛土,凝灰角 礫岩,中~強溶結凝灰岩で構成されている。P4 橋脚から A2 橋台の周辺地盤は表層から盛土,非 溶結凝灰岩,弱溶結凝灰岩,中~強溶結凝灰岩,弱溶結凝灰岩,中~強溶結凝灰岩で積層されて いる。なお,降下軽石層,自破砕安山岩溶岩,安山岩溶岩,凝灰角礫岩は大峯火山噴出物で,A1 橋台周辺に堆積している。非溶結凝灰岩,弱溶結凝灰岩,中~強溶結凝灰岩は阿蘇火砕流堆積物 で,A2 橋台周辺に堆積している。

3. 5. 2 モデル化条件及び3次元 FE モデル概要

大切畑大橋および周辺地盤連成系における橋梁-添架管路-地盤系モデルを図-3.5.4 に示す。 本モデルにおける橋梁は,橋台および橋脚などの下部構造と支承部,橋桁で構成された構造シス テムである。

大切畑大橋における 3 次元 FE モデルについて,各構成要素の要素タイプを以下に述べる。下部 構造ならびに地盤においてはメッシュサイズ 1.5m の 4 面体 1 次のソリッド要素としてモデル化 した。図-3.5.5 に示す通り,橋桁は厚さを一律なものと仮定し,メッシュサイズ 0.1m の 3 角形 1 次および 4 角形 1 次のシェル要素でモデル化した。積層ゴム支承は天然ゴム 1 層と鋼板 1 層をそ れぞれ 1 つの 6 面体 1 次のソリッド要素としてモデル化した。図-3.5.6 に示す通り,添架管路に 対する留め具は横桁,対傾構と主桁の接合点付近と添架管路を結ぶ厚さ 10mm の 4 角形 1 次のシ ェル要素としてモデル化しており,添架管路も同様のシェル要素でモデル化した。ソリッド要素 でモデル化した積層ゴム支承における最上面の鋼板とシェル要素でモデル化した下フランジの接 続に際しては,鋼材の 4 面体 1 次ソリッド要素を用いて剛に接続した。

本モデルにおける節点数は 1,697,202 個,要素数は 2,975,316 個である。これらのメッシュサイ ズや要素タイプは構成材料の構成則を考慮して設定すべきであるが,現在は計算コストやメッシ ュ化に要するコストの低減のため,最低限のモデル化としている。上記で述べた 3 次元 FE モデル に対して,表-3.5.1 に示すそれぞれ異なる密度や縦弾性係数,ポアソン比を設定した。表-3.5.1 より,橋台・橋脚・杭基礎における RC の物性値は文献 16)と文献 17)を参考に定め,天然ゴムな らびに鋼板の物性値は文献18)を参考に定めた。地盤の物性値は大切畑大橋の設計資料より設定した。主桁,横桁,対傾構ならびに添架管路の物性値は道路橋示方書17)を参照し,設定した。

なお、本モデルにおいて、床版、落橋防止ケーブルならびにエキスパンションジョイントはモ デル化されていない。構造物を含む地盤には不連続となる箇所が存在し、地盤と構造物の間は接 触・剥離およびすべり現象を表現するインターフェース要素でモデル化する必要があるが、現在 は考慮できていない。境界面について、地盤の領域境界で反射波が生じない工夫が必要であり、 半無限に続く地盤のモデル化が求められるが、地盤領域を非常に大きくすると計算負荷が増大す る。そのため、領域地盤で散逸波を吸収できる粘性境界を用いることで仮想的に反射を生じさせ ないなどの工夫が必要となるが、現在は考慮できていない。地盤の境界条件の相違による3次元 FE 解析の感度については、参考資料2であらためて考察する。

図-3.5.4 橋梁-添架管路-地盤系の3次元FEモデル

図-3.5.5 大切畑大橋における上部構造

図-3.5.6 添架管路と留め具の3次元FEモデル

	橋梁	密度[kg/m ³]	ヤング率[N/m ²]	ポアソン比
橋脚	即,橋台,杭基礎(RC)	2336	2.4×10 ¹⁰	0.20
主桁,	横桁,対傾構,留め具	7850	2.0×10 ¹¹	0.32
	鋼板	7850	2.1×10 ¹¹	0.30
	天然ゴム	910	3.0×10 ⁶	0.49
	添架管路	1000	3.2×10 ⁹	0.30
層	地盤	密度[kg/m ³]	ヤング率[N/m ²]	ポアソン比
1	盛土	1735	8.4×10 ⁶	0.40
2	降下軽石層	1530	1.1×10 ⁶	0.40
3-1	凝灰角礫石	2142	3.9×10 ⁷	0.40
3-2	凝灰角礫石	2142	5.2×10 ⁷	0.40
4	自破砕安山岩溶岩	1428	2.8×10 ⁷	0.40
5	安山岩溶岩	2142	1.1×10 ⁸	0.40
6	非溶結凝灰岩	2142	1.4×10 ⁷	0.40
7	弱溶結凝灰岩	2142	4.7×10 ⁷	0.40
8	中強溶結凝灰岩	23.36	1.8×10 ⁸	0.40

表-3.5.1 3 次元 FEM 解析に係る物性値

3.6 地表断層変位を入力作用とした対象橋梁に対する静的漸増解析

3.3.1 項において、地震作用入力システムの枠組みに基づき推定した地表断層変位を入力作用 として、被害推定システムにおけるシナリオデザインを実施し、3 次元 FE モデルを用いた静的解 析事例を提示する。

3. 6. 1 解析条件

表-3.6.1に本項で実施する解析の諸条件を示す。本解析においては、オープンソースの解析コード FrontISTR²⁰⁾を用いて、3.4.2 項で述べた線形領域における連立 1 次方程式(3.4.21)に基づき、 求解を行うものである。この連立 1 次方程式の解法としては 3.4.4 項に示す CG 法、前処理として は代数的マルチグリッド AMG 法を用いており、式(3.4.48)に示す収束閾値は 1.0×10⁻⁸ と設定した。 境界条件は羽場ら²¹⁾を参考として地盤側面の法線方向の変位を拘束し、それ以外は自由境界とす る。その上で地盤底面へ 50m メッシュ間隔に地表断層変位量を強制変位として漸増に入力した。

解析コード	FrontISTR	
解析種類	線形静的解析	
ソルバー	共役勾配法(CG 法)	
前処理	マルチグリッド前処理パッケージ ML による AMG	
収束判定閾値	1.0×10 ⁻⁸	
境界条件	地盤側面の法線方向変位を固定	
入力条件	地盤底面を 50m メッシュ間隔に強制変位	

表-3.6.1 橋梁-添架管路-地盤系に対する線形静的解析における解析条件

図-3.6.1 静的漸増解析の応答結果可視化図

図-3.6.2 A1 橋台に対する各橋台・橋脚位置における上フランジの静的応答変位量

図-3.6.3 P3 橋脚における構造要素の変形図

3. 6. 2 地表断層変位により励起される構造要素の応答諸量

推定データ出力システムにより,図-3.6.1のように橋梁-添架管路-地盤系モデルの応答変位 量を可視化し,提示する。なお,本章における応答変位量の南北方向変位量,東西方向変位量, 鉛直方向変位量をそれぞれD_n,D_e,D_zと定義して用いている。図-3.6.1より,モデル全体の変位 のトレンドとしては,鉛直下方向の沈下成分が支配的であり,全体的に1m程度沈下している。橋 台・橋脚の応答変位量における水平方向の最大値は,P3橋脚天端における北東方向への76cmで あり,大切畑大橋の地盤構成では地盤底面に入射した地表断層変位により,P3橋脚における応答 が増大しやすい特徴があると推察される。また,各橋脚の天端における相対変位量を算出すると, P3・P4橋脚間が最も大きく,南北方向に0.44m,東西方向に0.20m,鉛直方向に0.010mの相対変 位が推定された。次いで,P2・P3橋脚間において南北方向に0.43m,東西方向に0.080m,鉛直方 向に0.04mの相対変位量が推定された。また,橋梁と同様に,地盤も沈下方向ならびに東方向に 応答することで,橋梁全体が地盤の変位により大きく移動したり,傾斜が発生したりする可能性 も考えられる。

図-3.6.2 に A1 から見た各橋台・橋脚 G3 位置における上フランジの相対変位量とその方向を 示す。図-3.6.2 より, A1 橋台に対して, 上フランジは P1 橋脚位置では南方向に 4cm, P2 橋脚位 置では北東方向に 28cm, P3 橋脚位置では北東方向に 65cm, P4 橋脚位置では北西方向に 22cm, A2 橋台位置では西方向に 19cm の相対変位を示した。また, P2 橋脚天端における A1 橋台に対す る相対変位量は 28cm を示した。この相対変位により, 橋桁の座屈や添架管路の変形を誘発する可 能性がある。

次に,橋脚におけるひび割れなどの被害モードが発生し得るか評価するため,次式で示すドリ フトを定義し,その値に基づき被害シナリオを推定する。

$$\gamma = \frac{u}{L}$$

ここに, γ:ドリフト

u:橋脚基部に対する橋脚天端の相対変位[m]

L: 橋脚の躯体部の長さ[m]

ドリフト算出するために、各橋脚における u を求めると、P1 から P4 までがそれぞれ、0.13m、0.22m、0.10m、0.15m であった。ドリフト算出すると、P1 で 1.3%、P2 で 0.81%、P3 で 0.31%、P4 で 0.94%と算出され、RC 橋脚が弾性域から塑性域に遷移する際のドリフトである 0.50%付近より も大きい値が P3 橋脚以外で推定された。すべての積層ゴム支承は各橋台・橋脚の応答の相対変位 量により、図-3.6.3 のようにせん断方向に変位しており、積層ゴム支承の変形がより助長された 可能性がある。

3. 6. 3 地表断層変位により推定される被害モード・被害シナリオ

橋梁-添架管路-地盤系モデルに対する地表断層変位を入力作用とした静的漸増解析では、地 盤を含むモデル全体の沈下や北東方向の変位により、P2・P3 橋脚間ならびに P3・P4 橋脚間の応 答値において非常に大きな相対変位が推定された。この相対変位によって、P1 から P3 橋脚間で の橋桁の変形や床版のずれの発生、G1・G2 間に添架された添架管路内の電力線の断線や下フラン ジと橋脚を繋ぐ支承部のせん断破壊といった被害モードが発生する可能性が高い。また、地盤も 同様に沈下方向ならびに東方向に変位することによって、橋脚に傾斜が発生する可能性も考えら れる。以上より、P1 から P3 橋脚にかけて発生する橋桁や床版、支承、橋脚、電力線の破断の被害 モードによって、交通障害や設備停電が発生する被害シナリオが推定される。支承が破断した場 合、橋桁・床版の大移動や傾斜などによる長期間の復旧作業も被害シナリオとして想定されるが、 落橋防止ケーブルを導入することで、2次的な被害を低減できる可能性が推察される。

3.7 強震動のピーク外乱に対する動的時刻歴解析

3.6節では大切畑大橋とその周辺地盤における地表断層変位による被害シナリオを推定した。本 節においては、強震動のピーク外乱の作用のみ推定される被害シナリオについて検討する。3.3.2 項において地震作用入力システムの枠組みに基づき推定した工学的基盤面における時刻歴加速度 を入力作用として、被害推定システムにおけるシナリオデザインを実施し、3次元 FE モデルに対 する時刻歴解析事例を提示する。この時刻歴加速度は2.5秒から50秒の周期帯域を再現した震源 由来の波形であり、かつ、前節の地表断層変位とは異なる残留変位の成分も含んでいる。

3.7.1 時刻歴解析で使用する強震動

本節ならびに 4.4 節において使用する入力波を図-3.7.1 に示す。図-3.7.1(a)は図-3.3.6(a)に 示した 50 秒の加速度から継続時間 0 秒から 18 秒までの 18 秒間の主要動を抽出したものであり, 図-3.7.1(b)は継続時間 11.8 秒付近の最大加速度を含む 2.5 秒間を抽出したものである。図-3.7.1(a)と図-3.7.1(b)はそれぞれ, 4.4 節と本節の時刻歴解析において,異なるモデルに対して 作用させる。

(b) 最大加速度に着目した入力波

図-3.7.1 橋梁-添架管路-地盤系モデルへ入力する時刻歴加速度

解析コード	FrontISTR
解析種類	線形動的解析
運動方程式	陰解法
ソルバー	共役勾配法(CG 法)
前処理	マルチグリッド前処理パッケージ ML による AMG
収束判定閾値	1.0×10 ⁻⁶
境界条件	地盤境界面完全固定
入力条件	慣性力入力(EW, NS, UD 方向)
入力作用継続時間[s]	2.5
時間刻み[s]	0.001
計算ステップ	2500
時間積分	Newmark- β 法($\beta = 0.25$, $\gamma = 0.5$)
減衰モデル	Rayleigh 減衰($R_m = 0.07, R_k = 0.012$)

表-3.7.1 橋梁-添架管路-地盤系に対する線形動的解析の解析条件

図-3.7.2 Rayleigh 減衰におけるパラメータの設定

3. 7. 2 解析条件

表-3.7.1に本項で実施する解析の諸条件を示す。

表-3.7.1 より,解析コードは FrontISTR,動的解析における運動方程式の解法は陰解法を用いている。3.4.3 項で示したように,運動方程式における時間積分においては,Newmark- β 法を用いており,時間刻みによらず無条件安定となるパラメータ $\beta = 0.25$, $\gamma = 0.5$ を採用した。運動方程式における減衰マトリックスのモデル化においては,Rayleigh減衰により質量マトリックスと剛性マトリックスの線形和としている。それぞれのマトリックスの重みを表す係数は,葛西ら²²⁾によって行われた大切畑大橋の橋梁部における固有値解析結果を参考に,図-3.7.2 に示すように1次モードと10 次モードの固有周期に対してそれぞれ 5%および 3%の減衰定数になるように算定した。図-3.7.2 より,Rayleigh減衰のパラメータ設定においては,本解析では入力加速度のピーク時付近のパルスを入力することから,低振動数領域の入力の減衰を試みるものである。

連立1次方程式の解法はCG法,前処理としては代数的マルチグリッドAMG法を用いており,式(3.4.48)に示す収束閾値は1.0×10⁻⁶と設定した。

本解析における入力加速度は、図-3.7.1(b)に示す継続時間 2.5 秒の時刻歴加速度である。本解 析においては、この入力加速度を NS 方向、EW 方向、UD 方向に慣性力としてモデルに入力して いる。境界条件としては地盤底面ならびに側面節点の並進方向の変位と座標軸周りの回転を固定 している。本解析における動的解析の時間刻みΔtは計算コストと入力地震作用を考慮して 0.001s とし、解析ステップ数は 2500 としている。

3.7.3 強震動のピーク外乱により励起される構造要素の応答諸量

推定データ出力システムにより,図-3.7.3と図-3.7.5のように 1.1 秒付近における橋梁-添架 管路-地盤系モデルの応答変位量ならびに応答ミーゼス応力のコンター図を示す。この時刻にお いては,入力加速度が EW 方向に-5.06m/s²,NS 方向に 7.23m/s²,UD 方向 0.49m/s² であり,NS 方 向で最大加速度相当の値を示している。

図-3.7.3 入力加速度ピーク時における応答変位コンター図

図-3.7.4 入力加速度ピーク時における P4 橋脚支承部の変形図

(a) 橋桁に着目したミーゼス応力のコンター図

⁽b) 地盤に着目したミーゼス応力のコンター図

図-3.7.5 入力加速度ピーク時における応答ミーゼス応力

図-3.7.3より, P4橋脚天端やP2橋脚天端,P2,P3,P4橋脚位置での橋桁において,応答変位が 0.50m を超えており,他の構造要素と比較して応答が増大している。図-3.7.4のように,P4橋脚天端に焦点を当てて可視化すると,橋脚天端における 0.70m 程度の応答が積層ゴム支承のせん断方向の変形による応答の長周期化により,下フランジの応答が 0.40m 程度に減少している様子がわかる。図-3.7.5(a)より,橋台・橋脚間における橋桁での応力が増大しており,特に,P2・P3橋脚間における橋桁では,G1,G4,G5の長い区間で応力が増大している様子が示された。また,図-3.7.5(b)より,各橋脚フーチング周辺で 1MPa を超えるミーゼス応力が推定されており,塑性化に至った可能性が高い。

図-3.7.6 各構造要素の時刻歴絶対変位

図-3.7.7 時刻歴応答ミーゼス応力

図-3.7.6 に各橋台・橋脚天端ならびに図-3.7.3 に示す Ground-1, Ground-2, Ground-3 における時刻歴の絶対変位量を示す。図-3.7.6 (a) より, EW 方向においては P3 橋脚が継続時間 1.98 秒で 0.73m の最大変位量を示し, NS 方向においては P4 橋脚が継続時間 1.5 秒で 1.18m の最大変位量 を示した。 UD 方向においては, A2 橋台が継続時間 1.6 秒で-0.19m の最大振幅値を示した。図-3.7.6 (b) より, 橋台・橋脚位置における上フランジの応答変位量は, EW 方向においては P4 橋脚 以外の A1, A2 橋台ならびに P1, P2, P3 橋脚が継続時間 1.5 秒と 1.86 秒で 0.72m 程度の最大振幅 値を示し, NS 方向においては P4 橋脚が継続時間 1.5 秒で 1.18m の最大変位量を示した。 UD 方向においては P4 橋脚が継続時間 1.5 秒で 1.18m の最大変位量を示した。 UD 方向においては P4 橋脚が継続時間 1.5 秒で 1.18m の最大変位量を示した。 UD 方向においては P4 橋脚が継続時間 1.5 秒で 1.18m の最大変位量を示した。

P3, P4 橋脚以外, NS 方向においては P1, P4 橋脚以外の全橋台・橋脚位置の上フランジにおける 変位量が天端のものと比較して全体的に大きくなっており, 応答の増幅が示された。しかし, UD 方向においては天端と上フランジで大きな変化は見られなかった。図-3.7.6(c)より, 地盤の応答 変位量は, Ground-1 で東方向に 0.175m, 北方向に 0.29m, 沈下方向に 0.29m, Ground-2 で東方向 に 0.23m, 南方向に 0.37m, 沈下方向に 0.12m, Ground-3 で東方向に 0.26m, 南方向に 0.49m, 隆 起方向に 0.20m の最大応答変位量を示した。

図-3.7.7に橋脚基部ならびに Ground-1, Ground-2, Ground-3の時刻歴のミーゼス応力をそれぞ れ示す。図-3.7.7(a)より,橋脚基部の応答ミーゼス応力の最大値は,P1橋脚において継続時間 1.51秒で9.1MPa,P2橋脚において継続時間1.51秒で9.0MPa,P3橋脚において継続時間1.56秒 で14.8MPa,P4橋脚において継続時間1.51秒で30.5MPaであった。図-3.7.7(b)より,各橋台・ 橋脚位置における下フランジの応答ミーゼス応力の最大値は,A1橋台において継続時間1.81秒 で760.0MPa,P1橋脚において継続時間1.58秒で702.5MPa,P2橋脚において継続時間1.57秒で 952.5MPa,P3橋脚において継続時間2.29秒で1262.6MPa,P4橋脚において継続時間1.38秒で 663.3MPa,A2橋台においては継続時間1.84秒で674.4MPaであった。以上より,橋脚基部におい てはP4橋脚,下フランジおいてはP3橋脚位置で応力が増大する傾向が示された。図-3.7.7(c)よ り,地盤の応答ミーゼス応力の最大値は,Ground-1において継続時間2.07秒で0.22MPa,Ground-2において継続時間2.10秒で0.11MPa,Ground-3において継続時間1.80秒で0.28MPaであった。

図-3.7.8 A1 橋台に対する各橋台・橋脚位置の上フランジにおける時刻歴相対変位量

図-3.7.9 橋台・橋脚基部に対する橋台・橋脚天端の相対変位量

図-3.7.8にA1橋台位置における時刻歴の応答変位を基準とした各橋台・橋脚の位置における 上フランジの時刻歴の相対応答変位を示す。図-3.7.8より,EW・NS方向ともにP4橋脚におけ る応答が最も大きく,EW方向においては継続時間1.6秒で0.49mの最大変位量を示し,NS方向 においては継続時間1.5秒で-1.17mの最大変位量を示した。特に,EW方向においては継続時間 1.6秒における他の橋台・橋脚の相対変位が数 cm程度であるが,P3橋脚位置の応答は0.49mと 他の橋台・橋脚よりも卓越して10倍程度大きく推定された。UD方向においては、A2橋台が継続 時間1.9秒で0.21mの最大振幅値を示し、他の橋台・橋脚と比較して著しく大きな応答を示した。

図-3.7.9に各橋台・橋脚基部における時刻歴の応答変位を基準とした各橋台・橋脚天端の時刻 歴の相対変位量を示す。図-3.7.9より, EW 方向においては P3 橋脚が継続時間 2.0 秒で 0.47m の 最大変位量を示し,NS 方向においては P4 橋脚が継続時間 1.5 秒で 0.55m の最大変位量を示した。 UD 方向においては,A2 橋台が継続時間 2.25 秒で-0.093m の最大振幅値を示し,他の橋台・橋脚 と比較して著しく大きな応答を示した。また,EW・NS 方向においては,1.5 秒以降において各橋 台・橋脚の応答変位の位相にずれが生じ,これらの橋台・橋脚間を接続する橋桁や支承において 変形量が増加した可能性が考えられる。

各橋台・橋脚基部における時刻歴の応答変位を基準とした各橋台・橋脚天端の時刻歴の相対変 位量の最大値を求め、ドリフトを式(3.6.1)に基づき算出すると、P1 で 1.93%、P2 で 1.81%、P3 で 1.47%、P4 で 3.02%であった。また、これらの値により、P1 から P4 橋脚の全橋脚においてひび割 れを越えた塑性変形が懸念されるドリフトが生じた可能性が高いことが示される。

図-3.7.10にA1橋台を基準とした各橋台・橋脚における水平方向の応答軌跡を示す。図-3.7.10 より、P1・P2橋脚においては南北方向、つまり、橋軸直角方向に特に大きく応答しており、相対 的には EW 方向にほとんど応答していないことが示された。P3・P4橋脚ならびにA2橋台におい てはA1橋台から見て EW・NS 方向の両方向に強く振動しており、特に、A2橋台においては南方 向に 0.86m、西方向に 0.57m の最大相対変位量を示した。

図-3.7.10 A1 橋台に対する各橋台・橋脚位置の上フランジにおける応答軌跡

3. 7. 4 強震動のピーク外乱により推定される被害モード・被害シナリオ

橋台・橋脚天端における時刻歴の応答諸量から, EW 方向においては P3 橋脚ならびに A2 橋台 で応答が増大しやすく, NS 方向においては, 特に P4 橋脚で応答が増大しやすい傾向が示された。 また, 図-3.7.3 と図-3.7.5 に示すように, 動的解析においては橋台・橋脚間の橋桁中腹において 変位量や応力が増大しやすい傾向が示され, 橋桁や架設される添架管路に大きな変形や塑性化が 生じる可能性が示唆される。A1 橋台位置の上フランジに対する各橋脚支点上の上フランジの相対 変位は, 橋軸直角方向の成分が支配的であり, P1 から P3 橋脚位置にかけて 0.40m から 0.60m 程 度の相対変位が推定されており, 特に, P4 橋脚位置では橋軸直角方向に 1m を超える相対変位が 生じた可能性が高いと推定された。算出したドリフト値から, 全橋脚において塑性変形が懸念さ れる値が推定されており, 特に, P4 橋脚においては 3%を超える大きなドリフトが推定された。 また, P4 橋脚においては, フーチングの周辺地盤においては, 1MPa を超える応力が推定されて おり, 地盤の塑性化による橋脚の傾斜が発生する可能性が高い。以上の応答値より推定される被 害モードとしては, 各橋台・橋脚位置における相対変位による床版や橋桁の水平方向のずれや全 橋台・橋脚における支承の破断, P4 橋脚における塑性変形や傾斜が考えられる。以上の被害モー ドにより, 橋桁のずれや橋脚の傾斜による通行障害の発生や橋脚の塑性変形による復旧作業の長 期化などの被害シナリオが推定される。

3.8 地表断層変位並びに強震動のピーク時応答の比較

3.6 節において実施した橋梁-添架管路-地盤系モデルに対する地表断層変位を入力作用とした静的漸増解析と 3.7 節において実施した橋梁-添架管路-地盤系モデルに対する強震動を入力 作用とした時刻歴解析に基づき,最終的に大切畑大橋において推定される地表断層変位と強震動 による被害シナリオを考察する。

3.6 節における地表断層変位を入力作用とした場合,地盤を含むモデル全体の沈下や北東方向の 変位が応答として支配的であった。特に, P2 から P4 橋脚間においては応答変位量の差が大きく, P3・P4 橋脚間においては南北方向に 0.44m,東西方向に 0.20m,鉛直方向に 0.010m の大きな相対 変位が推定され,P2・P3 橋脚間においては南北方向に 0.43m,東西方向に 0.080m,鉛直方向に 0.04m の相対変位が推定された。この相対変位によって,P2 から P4 橋脚間での橋桁の変形や床版 のずれの発生,G1・G2 間に添架された添架管路内の電力線の断線や下フランジと橋脚を繋ぐ支承 部のせん断破壊といった被害モードが発生する可能性が高い。また,地盤も同様に沈下方向なら びに東方向に変位することによって,橋脚に傾斜が発生する可能性も考えられる。以上より,P2 から P3 橋脚にかけて発生する橋桁や床版,支承,橋脚,電力線の破断の被害モードによって,交 通障害や大切畑大橋の設備における停電が発生する被害シナリオが推定される。

次に,3.7節における時刻歴加速度を慣性力として入力作用とした場合,橋台・橋脚天端における時刻歴の応答諸量から,EW 方向においては P4 橋脚以外の A1,A2 橋台ならびに P1,P2,P3 橋脚で応答が増大しやすく,NS 方向においては,特に P4 橋脚で応答が増大しやすい傾向が示さ れた。時刻歴解析においては橋台・橋脚間の橋桁中腹において応答が増大しやすい傾向が示され, 橋桁や架設される橋桁や添架管路に大きな変形や塑性化が生じる可能性が示唆される。A1 橋台位 置の各橋脚支点上の上フランジに対する上フランジの相対変位は、橋軸直角方向の成分が支配的 であり、P1から P3 橋脚位置にかけて 0.40m から 0.60m 程度の相対変位が推定されており、特に、 P4 橋脚位置では橋軸直角方向に 1m を超える相対変位が生じた可能性が高いと推定された。算出 したドリフト値から、全橋脚において塑性変形が懸念される値が推定されており、特に、P4 橋脚 においては 3%を超える大きなドリフトが推定された。また、P4 橋脚においては、フーチングの 周辺地盤においては、1MPa を超える応力が推定されており、地盤の塑性化による橋脚の傾斜が発 生する可能性が高い。以上の応答値より推定される被害モードとしては、各橋台・橋脚位置にお ける相対変位による床版や橋桁の水平方向のずれや全橋台・橋脚における支承の破断、P4 橋脚に おける塑性変形や傾斜が考えられる。以上の被害モードにより、橋桁のずれや橋脚の傾斜による 通行障害の発生や橋脚の塑性変形による復旧作業の長期化、添架管路内の電力線の断線による停 電の被害シナリオが推定される。

地表断層変位と強震動の異なる外乱を入力作用とした場合,橋台・橋脚天端の最大応答変位量 を比較すると,地表断層変位を入力作用とした解析では P3 橋脚天端において東西方向に 0.77m, 沈下方向に 1.00m の絶対変位量が推定され,強震動を入力作用とした解析では P4 橋脚天端にお いて継続時間 1.5 秒で北西方向に 1.21m,沈下方向に 0.07m の絶対変位量が推定された。次に,A1 橋台位置の上フランジに対する各橋台・橋脚位置の上フランジの相対変位量の最大値を比較する と,地表断層変位を入力作用とした解析では,P3 橋脚位置において北東方向に 0.65m の相対変位 量が推定され,強震動を入力作用とした解析では,P4 橋脚天端において南西方向に 1.23m の相対 変位量が推定された。以上のように,地表断層変位と強震動の異なる外乱を入力作用とした場合, それぞれの外乱によって応答が卓越する橋台・橋脚が異なることが示されると共に,その卓越し た応答の絶対変位量や相対変位量は強震動を入力とした場合のほうが比較的増大しやすいことも 示された。

3.9 本章における結論と今後の課題

本章における3次元 FEM 解析により得られた知見を以下に示す。

- (1) 3.6 節における地表断層変位を入力作用とした場合,地盤を含むモデル全体の沈下や北東方向の変位が応答として支配的であった。特に,P2からP4橋脚間においては応答変位量の差が大きく,P2からP4橋脚間での橋桁の変形や床版のずれの発生,G1・G2間に添架された添架管路内の電力線の断線や下フランジと橋脚を繋ぐ支承部のせん断破壊といった被害モードが発生する可能性が高い。また,地盤も同様に沈下方向ならびに東方向に変位することによって,橋脚に傾斜が発生する可能性も考えられる。以上より,P2からP4橋脚にかけて発生する橋桁や床版,支承,橋脚,電力線の破断の被害モードによって,交通障害や大切畑大橋の設備における停電が発生する被害シナリオが推定される。
- (2) 3.7 節における時刻歴加速度を慣性力として入力作用とした場合,橋台・橋脚天端における時 刻歴の応答諸量から, EW 方向においては P4 橋脚以外の A1, A2 橋台ならびに P1, P2, P3 橋脚で応答が増大しやすく, NS 方向においては,特に P4 橋脚で応答が増大しやすい傾向が 示された。時刻歴解析においては橋台・橋脚間の橋桁中腹において応答が増大しやすい傾向 が示され,橋桁や架設される橋桁や添架管路に大きな変形や塑性化が生じる可能性が示唆さ

れる。推定される被害モードとしては、各橋台・橋脚位置における相対変位による床版や橋 桁の水平方向のずれや全橋台・橋脚における支承の破断、P4橋脚における塑性変形や傾斜が 考えられる。以上の被害モードにより、橋桁のずれや橋脚の傾斜による通行障害の発生や橋 脚の塑性変形による復旧作業の長期化、添架管路内の電力線の断線による停電の被害シナリ オが推定される。

以上の結果を考慮し,解析精度を向上させるための今後の課題としては,未だモデル化を行え ていない対象橋梁における床版やエキスパンションジョイント,落橋防止ケーブル等の3次元FE モデル化や領域地盤で散逸波を吸収できる粘性境界の実装などが考えられる。

参考文献

- 大住道生、中尾尚史、石崎覚史、庄司学:破壊尤度の制御による道路橋の崩壊シナリオデザイン設計法の提案、土木学会論文集 A1(構造・地震工学)、Vol.77, No.4, pp.I_360-I_372, 2021.
- 2) Hori, M., Ichimura, T., Wijerathne, L., Ohtani, H. Chen, J., Fujita, K., and Motoyama, H.: Application of High Performance Computing to Earthquake Hazard and Disaster Estimation in Urban Area, Front. Built Environ. 4:1. DOI: 10.3389/fbuil.2018.00001, 2018.
- 3) 皆川大雅, 庄司学, 永田茂, 北原格: 地震直後における上下水道管路被害リアルタイム推計シ ステムの開発, 土木学会第75回年次学術講演会概要集(DVD-ROM), 2020,9.
- Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, Vol.75, No.4, pp.1135-1154, 1985.
- 5) 畠山大治, 庄司学, 永田茂, 吉見雅行: 2016 年熊本地震における下水道埋設管路の地表断層変 位による被災メカニズムの考察, 土木学会論文集 A1(構造・地震工学), Vol。76, No.4, pp.I_441-I_453, 2020.
- 6) Kobayashi, T., Yarai, H., Kawamoto, S., Morishita, Y., Fujiwara, S., and Hiyama, Y.: Crustal deformation and fault models of the 2016 Kumamoto earthquake sequence: foreshocks and main shocks, In: Freymueller J., Sanchez L. (eds), International Symposium on Advancing Geodesy in a Changing World, International Association of Geodesy Symposia, Vol.149. Springer, Cham, DOI 10.1007/1345_2018_37, 2018.
- Stekette, J. A.: On Volterra's dislocation in a semi-infinite elastic medium, Canadian Journal of Physics, 36, pp. 192-205, 1958.
- 8) Press, F.: Displacements, strains and tilts at tele-seismic distances, Journal of Geophysical Research, 70, pp. 2395-2412, 1965.

- 9) 地震調査研究推進本部: 全国 1 次地下構造モデル(暫定版), https://www.jishin.go.jp/evaluation/seismic hazard map/lpshm/12 choshuki dat/.
- 10)Shirahama, Y., Yoshimi, M., Awata, Y., Maruyama, T., Azuma, T., Miyashita, Y., Mori, H., Imanishi, K., Takeda, N., Ochi, T., Otsubo, M., Asahina, D., and Miyakawa, A.: Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan, Earth, Planets and Space, 68:191, DOI10.1186/s40623-016-0559-1, 2016.
- 11)Aoi, S., and Fujiwara, H.: 3-D Finite Difference Method Using Discontinuous Grids, Bulletin of the Seismological Society of America, Vol.89, pp.918-930, 1999.
- 12)原昌弘:下水道埋設管路の地震被害と入力地震動の関係,筑波大学大学院システム情報工学研 究科修士論文,2018.
- 13)Asano, K., and Iwata, T.: Source Rupture Processes of the Foreshock and Mainshock in the 2016 Kumamoto Earthquake Sequence Estimated from the Kinematic Waveform Inversion of Strong Motion Data, Earth, Planets and Space, 68:147, 2016.

14) 久田俊明,野口裕久:非線形有限要素法の基礎と応用,丸善株式会社, 1995.

- 15)Hestenes, M. R., and Stiefel, E.: Methods of conjugate gradients for solving linear systems (Vol. 49, No.1). Washington, DC: NBS, 1952.
- 16)日本建築学会:鉄筋コンクリート構造設計規準,2010.
- 17)日本道路協会:道路橋示方書・同解説V共通編,2012.
- 18)花房海斗,高橋良和:2016年熊本地震による大切畑大橋の現地測定に基づく被害メカニズムの 推定,土木学会論文集 A1 (構造・地震工学), Vol. 74, No. 4, pp. I_179- I_187, 2018.
- 19)大住道生,中尾尚史,石井洋輔,二宮智大:橋全体系の地震時応答解析における地盤変位の入力方法に関する実証研究,第 23 回橋梁等の耐震設計シンポジウム講演論文集,pp.191-198, 2021.
- 20)FrontISTR: https://www.frontistr.com/(2021年11月28日閲覧)
- 21)羽場一基,園部秀明,澤田昌孝,堀宗朗:断層変位評価への高性能数値解析手法の適用に関す る検討,土木学会論文集 A2(応用力学), Vol.73, No.2(応用力学論文集 Vol.20), pp.I_821-I_830, 2017.
- 22)葛西昭, 吉塚卓史, 牛塚悠太: 2016 年熊本地震における大切畑大橋の被害分析と FE モデルの 構築, 第 20 回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論文集, pp.449-456, 2017.

第4章 主要動の作用による大切畑大橋の経時的状態変化

4.1 本章の概要

3章では、周辺地盤を含む大切畑大橋の3次元FEモデルに、推定したサイト波のピーク時を作 用させた線形動的解析により、サイト波のピーク時における橋梁の応答について考察を行ってい る。だが、ピーク時前後のパルスも橋梁の応答に大きく影響すると考えられる。そのため、橋梁 の応答を検証していく上では、経時的な状態変化を吟味する必要がある。

そこで、本章では、前章と同様に大切畑大橋の橋梁-地盤系の3次元FEモデルに推定したサイト波を作用させ、過渡的な応答を考慮した上で、長周期パルスによる大切畑大橋の経時的な状態変化について検証を行った。また、サイト波の違いによる橋梁の応答の比較検討を行った。

4.2 本解析で用いるサイト波

本章では、3章で有限差分法により推定された大切畑大橋 A1 橋台付近のサイト波(以降,有限 差分法によるサイト波),および文献 1)で大切畑大橋のサイト増幅特性を用いたサイト特性置換法 により推定された A1 橋台付近のサイト波(以降,サイト特性置換法によるサイト波)を以降の分 析に用いる。なお,文献 1)でサイト特性置換法による推定で用いた地震動の位相特性は、西原村 役場で観測された本震時の地震動である。有限差分法によるサイト波の特徴は、震源由来のパル スであり、残留変位成分が含まれていることである。それに対し、サイト特性置換法によるサイ ト波の特徴は、表層付近の地盤によって増幅したパルスであり、残留変位成分が含まれていない ことである。

図-4.2.1 に、有限差分法によるサイト波(3 方向)の速度波形と加速度波形を示す。また同図に、サイト特性置換法によるサイト波(2 方向)の加速度波形を示す。図-4.2.1 より、有限差分法によるサイト波においては、3 章で述べたように最大加速度が EW 方向で約 5.1m/s², NS 方向で約 7.2m/s²生じており、サイト特性置換法によるサイト波においては、最大加速度が EW 方向で約 9.3m/s², NS 方向で約 12.2m/s²生じている。このことより、工学的基盤面から表層地盤にかけて地震波が増幅していることがわかる。

図-4.2.2 に、それぞれのサイト波の加速度波形のフーリエスペクトルを示す。図-4.2.2 より、 どちらのサイト波においても 1.0Hz 以上の高振動数の帯域でフーリエ振幅が卓越しているが、 0.3Hz から 1.0Hz の低振動数の帯域のパルスも含まれていることがわかる。これより、大切畑大橋 に、1s から 3s の長周期パルスが作用したと推察される。

図-4.2.3 にそれぞれのサイト波の加速度応答スペクトルおよび変位応答スペクトルを示す。減 衰定数は5%とした。また、同図にタイプII地震動の標準加速度応答スペクトル(II種地盤)²⁾、 および文献3)の固有値解析により得られた大切畑大橋の1次の固有周期(1.20s)を示す。図-4.2.3 より、どちらのサイト波においても周期0.6s付近で加速度応答が卓越しており、標準加速度応答 スペクトルを上回っている。大切畑大橋の1次の固有周期である1.2sでは、有限差分法によるサ
イト波においては EW:8.7m/s², NS:10.7m/s², サイト特性置換法によるサイト波においては EW: 7.0m/s², NS:5.4m/s²であり,有限差分法によるサイト波の方がやや大きいが,どちらのサイト波 においても応答加速度はそこまで大きくない。しかし,有限差分法によるサイト波においては 1.2s でほぼピーク時の応答変位(EW:0.32m, NS:0.39m)を示すことから,震源由来のパルスが大切 畑大橋の応答変位に大きく寄与したと推測される。

図-4.2.1 大切畑大橋 A1 橋台付近における推定されたサイト波

図-4.2.2 サイト波(加速度波形)のフーリエスペクトル

4.3 対象橋梁の解析モデル

4. 3.1 橋梁-地盤系の3次元 FE モデル

上部構造,橋台,橋脚,基礎,周辺地盤は四面体1次要素でモデル化した。上部構造は3章で 述べたように床版と橋桁で構成されているが,本章では基本的に橋梁の経時的な状態変化につい て検証を行っていくことから,次項の方法に基づいて等価なソリッド要素でモデル化した。橋台, 橋脚,基礎,周辺地盤は3章と同様である。積層ゴム支承は,3章と同様に天然ゴム1層と鋼板1 つをそれぞれ1つの六面体1次要素でモデル化した。なお,3章と同様に全構造要素を次項で設 定するように等方弾性体と仮定している。基礎と地盤との間の互いの要素の節点はリンクするよ うにモデル化した。周辺地盤の境界条件は,3章と同様に4つの側面ならびに底面を完全固定と した。上部構造端部の境界条件は自由とした。

また,3章と同様に、本解析ではエキスパンションジョイントおよび落橋防止ケーブルがモデル 化されていない。また、基礎と地盤の摩擦やすべりを表現するインターフェース要素はモデル化 されていない。

以上,大切畑大橋の橋梁-地盤系の3次元FEモデルを図-4.3.1のように構築した。節点数は 441,196個,要素数は2,437,126個である。

図-4.3.1 橋梁-地盤系のFEモデル

4.3.2 各構造要素のモデル化,材料構成則および材料物性値

(1) 上部構造

上部構造は、床版のモデルに橋桁の剛性を割り増し、ソリッド要素としてモデル化した。その ヤング率の具体的な算出方法は図-4.3.2 に示す通りで、まず(A)のように上部構造を簡易的に床 版と5 主桁により構成されるものとする。つまり、横桁、横構および対傾構は考慮していない。 床版の断面積と各主桁の平均断面積を設計図書より算出する。床版の断面積は 3.065m²、各主桁 の平均断面積は、G1:0.0499m²、G2:0.0510m²、G3:0.0486m²、G4:0.0489m²、G5:0.0492m² である。次に(B)のように各主桁の平均断面積を総和し、主桁を長方形断面(断面積:0.248m²)の 要素としてモデル化する。床版と主桁の橋軸方向における合成ヤング率を式(4.3.1)より算出す る。

$$E' = V_R E_R + V_S E_S \tag{4.3.1}$$

- ここに, *E*' : 合成ヤング率 [N/m²]
 - *V_R*:床版の体積比
 - E_R : RC のヤング率 [N/m²]
 - *Vs* : 主桁の体積比
 - *Es* : 鋼のヤング率 [N/m²]

最後に(C)のように、次式に基づき床版のモデルに主桁の剛性を割り増す。

$$E'' = E' \cdot \frac{A_R + A_S}{A_R}$$
(4.3.2)

ここに, E["] : 上部構造のヤング率 [N/m²]

A_R:床版の断面積 [m²]

As : 主桁の総断面積 [m²]

以上より算出した上部構造のヤング率が表-4.3.1に示したもので、このヤング率を等方と仮定し、上部構造を線形弾性体とした。

表−4.3.1に示す上部構造の密度に関しては,設計図書を基に1.505×10⁴kg/mと算出し,これに 床版の断面積を除することで求めた。

図-4.3.2 上部構造のヤング率の算出方法

(2) 支承

ゴム材料は柔軟性に優れており,弾性変形を有した物質である。この特性を利用し,振動を分 散する目的で支承部にゴム材料が用いられている。ゴム材料の応力-ひずみ関係は非線形的な挙 動を示すことから,ゴム材料の構成則に関して数々提案されており,実用上よく利用されている 構成則として Neo-Hookean 則や Mooney-Rivlin 則などがある⁴⁾。また,吉田ら⁵⁾は高減衰ゴムを対 象として,超弾性体と弾塑性体を並列に組み合わせたモデルを考案しており,前者で応力の進展 方向,後者でエネルギー吸収性能を再現している。

今回はゴム材料が天然ゴムであるため、線形弾性体とした。天然ゴムの材料物性値は、設計図からせん断弾性係数 G₀=0.98N/m²と算出し、ポアソン比 0.49 として、ヤング率を表-4.3.1 のよう に算出した。また、天然ゴムの比重は一般的に 0.91 から 0.93 であることから、密度は表-4.3.1 のようにした。鋼材は SM490A が用いられており、その材料物性値については表-4.3.1 のようにした の。

(3) 橋台・橋脚および基礎

橋台,橋脚,基礎には RC が用いられている。RC の構成則には、大きく分けて分散ひび割れモ デルと離散ひび割れモデルがあり、分散ひび割れモデルはひび割れの影響が要素内に分散してい るという仮定の下、要素の平均的なひずみでひび割れの開口変位を表現するモデルである。それ に対し、離散ひび割れモデルはひび割れを要素間の節点の分離により表現し、要素間の相対変位 をひび割れの開口変位とするモデルである。岡村・前川^のは分散ひび割れモデルの一つとして、非 直交多方向固定ひび割れモデルを提案している。RC 構成則は巨視的なひび割れを持つコンクリー トと鉄筋の弾塑性によって支配されているが、ひび割れの分散性にはほとんど依存せず、このこ とが分散ひび割れモデルの基盤となっている⁸⁾。だが、文献 8)によれば、RC 橋脚のように、全体 変形に対する本体とフーチング間の局所変形の占める割合が、配筋の仕方や構造寸法によって変 化する構造物では離散ひび割れモデルの構成則が重要になるという。これは、コンクリートと鉄 筋をそれぞれ詳細にモデル化することで、材料としての繰り返し劣化を付与しなくても、RC シス テムとしての靭性の低下を表現することができるからである。このことを考慮すると、RC で構成 される橋台、橋脚、基礎の構成則を離散ひび割れモデルでモデル化することの意義は大きいと言 える。

以上の理論的な背景を踏まえつつ,上記の構成則を要素に適用できなかったため,今回は橋台, 橋脚,基礎を線形弾性体と仮定してモデル化し,RCの材料物性値(密度・ヤング率・ポアソン比) は表-4.3.1に示すようにした^{の,の}。

(4) 周辺地盤

地盤は、地盤内に生じるせん断ひずみの大きさによって、せん断弾性係数や減衰定数が変化する特性を有している。また、せん断力の作用により地盤が破壊されるときに体積が変化するダイレタンシーという地盤特有の性質がある¹⁰。地盤の応答は構造物の基礎の応答に大きく寄与することから、構造物の応答特性を知るには地盤を詳細にモデル化することが要求される。こういったことから、地盤の非線形的な挙動を表現する構成則が数々提案されている。一般的には、Ramberg-OsgoodモデルやHardin-Drnevichモデルなどの骨格曲線と履歴曲線が用いられている¹⁰。また、檜尾ら¹¹は、密度の異なる砂の強度や変形特性の違い、ひずみ軟化挙動といった地盤の複雑な非線形特性を表現したモデルを提案している。

このような理論的な背景を踏まえつつ、上記の構成則を要素に適用できなかったため、今回は 周辺地盤を線形弾性体と仮定し、それぞれの地層の材料物性値(密度・ヤング率・ポアソン比) を3章と同様に表-4.3.1のようにした。

波動場におけるせん断波および疎密波の波長や波速を考慮して,周辺地盤は3章と同様に,図-3.5.1に示すように,EW方向285m,NS方向145m,UD方向50mを対象とした。

	密度[kg/m³]	ヤング率[N/m ²]	ポアソン比
上部構造	4910	4.1×10 ¹⁰	0.2
橋台・橋脚・基礎	2400	2.4×10 ¹⁰	0.2
天然ゴム	910	2.92×10 ⁶	0.49
鋼板	7850	2.05×10 ¹¹	0.3
盛土(b)	1735	8.4×10 ⁶	0.4
降下軽石(Nv)	1530	1.1×10 ⁶	0.4
凝灰角礫岩(Gr)	2142	3.9×10 ⁷	0.4
凝灰角礫岩(Tb)	2142	5.2×10 ⁷	0.4
自破砕安山岩溶岩(0-D)	1428	2.8×10 ⁷	0.4
安山岩溶岩(0-CL)	2142	1.1×10 ⁸	0.4
非溶結凝灰岩(A2-DL)	2142	1.4×10^{7}	0.4
弱溶結凝灰岩(A2-DH)	2142	4.7×10 ⁷	0.4
中~強溶結凝灰岩(A2-CL)	2346	1.8×10 ⁸	0.4

表-4.3.1 各構造要素の材料物性値

4. 4 解析条件

解析条件は表-4.4.1 に示した通りである。解析コードは3章と同様に、オープンソース大規模 並列 FEM 非線形構造解析プログラム FrontISTR¹²⁾を用いた。図-4.3.1の3次元 FE モデルの全節 点に対して、入力波(加速度波形)を等価な慣性力として作用させ、線形動的解析を実施した。

入力波には、図-4.2.1 に示した有限差分法によるサイト波およびサイト特性置換法によるサイト波の加速度波形を用いており、有限差分法によるサイト波は0秒から18秒の18秒間,サイト特性置換法によるサイト波は8秒から18秒の10秒間の主要動を抽出して作用させた。なお、有限差分法によるサイト波はEW,NS,UDの3方向、サイト特性置換法によるサイト波はEW,NSの2方向を作用させた。

3 章と同様に、運動方程式の解法は陰解法、時間積分法として Newmark- β 法(β =0.25、 γ =0.5) を用いた。なお、3 章では積分時間間隔を 0.001 秒としているが、本章の解析は計算時間が長いた め、数値計算の精度を担保した上で積分時間間隔は 0.005 秒とし、計算ステップは有限差分法に よるサイト波においては 3600、サイト特性置換法によるサイト波においては 2000 とした。運動 方程式の減衰マトリックスのモデル化については、3 章では Rayleigh 減衰の質量比例の係数を R_m =0.07 としているが、本章の解析は計算時間が長いため、数値計算の安定性を考慮して R_m =0, R_k =0.01 とし、事実上、剛性比例のマトリックスとした。線形ソルバーは3章と同様に共役勾配 法(CG法)を適用し、前処理は対称逐次過緩和前処理(SSOR前処理)を用いた。収束判定の閾 値は 1.0×10^6 と設定した。

解析コード	オープンソース FrontISTR
解析種類	線形動解析
運動方程式	陰解法
ソルバー	共役勾配法(CG法)
前処理	対称逐次過緩和前処理 (SSOR 前処理)
収束判定閾値	1.0×10 ⁻⁶
境界条件	地盤底面側面完全固定
入力条件	慣性力入力
入力作用継続時間[s]	有限差分法によるサイト波:18 サイト特性置換法によるサイト波:10
時間刻み[s]	0.005
計算ステップ	有限差分法によるサイト波:3600 サイト特性置換法によるサイト波:2000
時間積分	Newmark- β 法 (β =0.25, γ =0.5)
減衰モデル	Rayleigh 減衰 (R_m =0, R_k =0.01)

表-4.4.1 本解析条件

4.5 橋台・橋脚-地盤の地震応答の特徴

本節では、橋梁-地盤系の連成応答の中でも、橋台、橋脚、地盤の応答に着目して考察を行う。 また、有限差分法によるサイト波においては0秒から18秒の18秒間を作用させたが、サイト波 の違いによる比較を行う点から、それぞれのサイト波の8秒から18秒の10秒間の作用による応 答を追う。

図-4.5.1 に各橋台および橋脚上部の絶対変位の時刻歴応答波形を示す。図-4.5.2 に, P1 から P4 橋脚上部の各橋脚躯体基部に対する相対変位の時刻歴応答波形,図-4.5.3 に EW-NS 平面に おける各橋脚上部の各橋脚躯体基部に対する相対変位のリサージュ(応答軌跡)を示す。また, 図-4.5.4 に P1 から P4 橋脚上部および A2 橋台の A1 橋台に対する相対変位の時刻歴応答波形, 図-4.5.5 に EW-NS 平面における各橋脚上部および A2 橋台の A1 橋台に対する相対変位のリサ ージュ(応答軌跡)を示す。図-4.5.6 に,P3 橋脚のドリフトが最大になる時刻付近(5.0s)にお ける橋梁-地盤系のコンター図を示す。なお,P3 橋脚のドリフトが最大になる時刻付近,有限差分 法によるサイト波では 4.92s,サイト特性置換法によるサイト波では 5.07s である。以下,それぞ れのサイト波による橋台,橋脚および地盤の応答について詳述する。

図-4.5.1 各橋台および橋脚上部の絶対変位

図-4.5.2 P1から P4橋脚上部の各橋脚躯体基部に対する相対変位

図-4.5.3 各橋脚上部の各橋脚躯体基部に対する相対変位のリサージュ

図-4.5.4 P1から P4橋脚上部および A2橋台の A1橋台に対する相対変位

図-4.5.5 各橋脚上部および A2 橋台の A1 橋台に対する相対変位のリサージュ

有限差分法によるサイト波

図-4.5.6 P3 橋脚最大ドリフト時付近のコンター図

4.5.1 有限差分法によるサイト波に基づく地震応答の特徴

図-4.5.1 より, EW 方向においては P2 橋脚が 7.99s で 0.846m の最大変位量を示し, NS 方向においては P4 橋脚が 7.10s で 1.32m の最大変位量を示した。UD 方向においては, A2 橋台が 6.01s で 0.468m の最大変位量を示した。

図-4.5.2, 図-4.5.3 より, EW-NS 平面における各橋脚上部の躯体基部に対する最大相対変位 量, 方向および時刻は, P1:0.174m, E, 5.01s, P2:0.458m, WNW, 4.22s, P3:0.493m, ESE, 4.92s, P4:0.549m, NNW, 7.11s を示した(なお, 図-4.5.3 にこれらのベクトルを示す)。また, 各橋脚上部の躯体基部に対する最大相対変位量におけるドリフトを式(3.6.1)より求めると, P1: 1.74%, P2:1.87%, P3:1.64%, P4:3.43%である。

RC 橋脚が弾性域から塑性域へ遷移する際のドリフトが 0.5%近傍であることを踏まえると¹³, 全橋脚において橋脚基部周辺にひび割れ以上の損傷が生じた可能性が高い。

図-4.5.4, 図-4.5.5 より, EW-NS 平面における各橋脚上部および A2 橋台の A1 橋台に対す る最大相対変位量, 方向および時刻は, P1:0.560m, WNW, 6.41s, P2:0.721m, ESE, 4.50s, P3:

0.704m, S, 9.29s, P4:1.05m, S, 9.33s, A2:1.18m, E, 7.09s を示した(なお, 図-4.5.5 にこれ らのベクトルを示す)。これより, A2 橋台は EW 方向に大きく変位する傾向があり, 橋脚に関し ては全て, 橋軸方向である EW 方向から NW-SE 方向に大きく変位する傾向があったと推察され る。さらに, P4 橋脚および A2 橋台は他の橋脚と比較して相対変位量が大きくなっている。図-4.5.7 は実際の観測により得られた A1 橋台に対する下部構造上部の移動量を示しており, この観 測結果でも支承が破断していない P2 橋脚以外の橋台, 橋脚において変位方向は概ね橋軸方向であ る EW 方向から NW-SE 方向であり, また P4 橋脚および A2 橋台が他の橋脚よりも相対変位量 が大きくなっている。このことから, 本解析による地震応答は, 観測結果の特徴を定性的に捉え られたものと考えている。

図-4.5.6 のコンター図から地盤の応答を見ると、A1 橋台と P1 橋脚間の地盤、A2 橋台付近の 地盤で特に応答が大きくなっており、P3 橋脚周辺の地盤もやや応答が大きくなっている。

図-4.5.7 実観測による A1 橋台に対する下部構造上部の移動量(文献 1)の図-8 に加筆)

4.5.2 サイト特性置換法によるサイト波に基づく地震応答の特徴

図-4.5.1 より, EW 方向においては P2 橋脚が 5.26s で 1.09m の最大変位量を示し, NS 方向においては P4 橋脚が 4.13s で 1.26m の最大変位量を示した。UD 方向においては, A2 橋台が 4.73s で 0.304m の最大変位量を示した。

図-4.5.2, 図-4.5.3 より, EW-NS 平面における各橋脚上部の躯体基部に対する最大相対変位 量, 方向および時刻は, P1:0.370m, E, 5.13s, P2:0.674m, E, 5.24s, P3:0.754m, E, 5.07s, P4:0.578m, SSW, 4.15s を示した(なお, 図-4.5.3 にこれらのベクトルを示す)。また, 各橋脚 上部の躯体基部に対する最大相対変位量におけるドリフトを式(3.6.1)より求めると, P1:3.70%, P2:2.75%, P3:2.51%, P4:3.61%である。サイト特性置換法によるサイト波においても, 全橋脚 で橋脚基部周辺にひび割れ以上の損傷が生じた可能性があったと言える。

図-4.5.4, 図-4.5.5 より, EW-NS 平面における各橋脚上部および A2 橋台の A1 橋台に対す る最大相対変位量,方向および時刻は,P1:0.801m,W,4.84s,P2:1.20m,WNW,6.41s,P3: 0.708m,W,5.33s,P4:1.24m,NE,4.45s,A2:0.707m,W,5.07s を示した(なお,図-4.5.5 にこれらのベクトルを示す)。また,応答の方向の傾向としては,P1 および P2 橋脚は橋軸方向で ある EW 方向に変位している。P3 橋脚は時計回りで円を描くように全方向に変位している。一方, P4 橋脚は橋軸直角方向である NE-SW 方向に変位しており, A2 橋台は P1 および P2 橋脚と同様 に EW 方向である。さらに, P2 および P4 橋脚が他と比較して相対変位量が大きくなる傾向にあ る。

図-4.5.6のコンター図から地盤の応答を見ると、A1 橋台と P1 橋脚間の地盤、P3 橋脚周辺の地盤、A2 橋台周辺の地盤で特に応答が大きくなっている。

4.5.3 サイト波の違いによる応答の比較

橋脚上部の躯体基部に対する最大相対変位量においては、全橋脚においてサイト特性置換法に よるサイト波の方が大きくなる傾向があり、それに伴いドリフトも大きくなっている。特に P1 橋 脚のドリフトにおいては 2%ほどの差がある。時系列による特徴の違いについては、サイト特性 置換法によるサイト波の場合、最大応答に達する最初の橋脚(P4 橋脚)と最後の橋脚(P2 橋脚) の時間差が 1.1s であるものの、全橋脚がほぼ同期的に最大応答に達している。一方、有限差分法 によるサイト波の方は、最初の橋脚(P2 橋脚)と最後の橋脚(P4 橋脚)の時間差が 2.9s もあり、 非同期的に最大応答に達している。

A1 橋台に対する最大相対変位量においては, P1, P2 および P4 橋脚はサイト特性置換法による サイト波の方が大きく, P3 橋脚は変わらず, A2 橋台は有限差分法によるサイト波の方が大きい という結果になった。また, リサージュに関しては, P1, P2, P3, A2 は全体的な傾向としてはど ちらのサイト波でもほとんど変わりはないが, P4 橋脚においては大きな差異がある。有限差分法 によるサイト波では橋軸方向に応答しているのに対して, サイト特性置換法によるサイト波では 橋軸直角方向に応答している。

以上より,橋台および橋脚の応答の観点からでは,全体的な傾向としてサイト特性置換法によるサイト波の方が応答は大きくなるが,観測結果と比較すると,有限差分法によるサイト波の方 が応答特徴の整合性が良いため,こちらの解析の方が妥当なのではないかと考えられる。

地盤の応答については、2つのサイト波で特徴が類似しており、応答が大きくなっているところの地盤を見ると、 P2 橋脚と P3 橋脚間は盛土の層が概ね 10m と厚くなっている。また、A1 橋台付近では降下軽石層、A2 橋台付近では非溶結凝灰岩が表層にある。これより、応答が大きい地盤の表層は隣接する地盤の表層に対して、A1 橋台付近では 0.05、A2 橋台付近では 0.3 程度ヤング率が小さい地層で表層が構成されていることがわかる。

4.6 支承-上部構造の地震応答の経時的状態変化

前節を踏まえ、本節では、橋台・橋脚-地盤に支持された支承-上部構造の応答に着目して考 察を行う。

図-4.6.1 に, EW-NS 平面における各橋台および橋脚上のゴム支承(G3)の水平変位のリサージ ュを示す。なお,水平変位は、ゴム支承上部の下部に対する相対変位を示している。図-4.6.2 に、 各橋台および橋脚上のゴム支承(G3)が許容せん断ひずみ 250%¹⁴⁾を超える際の時刻とサイト波の 関係を示す。また、図-4.6.3 は図-4.6.1 の有限差分法によるサイト波における各時刻までのリサ ージュを示しており,(A)は P1 橋脚上のゴム支承が許容せん断ひずみ 250%を超える際の時刻(2.8s) まで,(B)はサイト波がピークとなる手前の時刻(3.5s)まで,(C)はサイト波がピークを過ぎる時刻 (4.2s)までをそれぞれ示している。図-4.6.4 は図-4.6.1 のサイト特性置換法によるサイト波にお ける各時刻までのリサージュを示しており,(A)はA2橋台上のゴム支承が許容せん断ひずみ250% を超える際の時刻(1.7s)まで,(B)はサイト波がピークとなる前の時刻(2.7s)までを示している。以 下,それぞれのサイト波による支承および上部構造の応答について詳述する。以降,各橋台,橋 脚上のゴム支承を,例えばA1橋台においてはA1Bのように表す。

図-4.6.1 各橋台および橋脚上のゴム支承(G3)の水平変位のリサージュ

図-4.6.2 許容せん断ひずみに達する時刻とサイト波の関係

図-4.6.3 各時刻までのゴム支承(G3)の水平変位のリサージュ(有限差分法)

図-4.6.4 各時刻までのゴム支承(G3)の水平変位のリサージュ(サイト特性置換法)

4.6.1 有限差分法によるサイト波に基づく経時的状態変化

図-4.6.1 より,各橋台および橋脚上のゴム支承(G3)の EW-NS 平面における最大相対変位量と その方向は,A1B:0.893m,S,P1B:1.08m,ESE,P2B:1.07m,NW,P3B:1.09m,SSE,P4B: 1.97m,S,A2B:1.58m,Nを示した。また,各橋台および橋脚上のゴム支承において許容せん断 ひずみ 250%に相当する変位量は,A1B:0.30m,P1B:0.38m,P2B:0.21m,P3B:0.21m,P4B: 0.35m,A2B:0.30m であり,全橋台,橋脚上で許容せん断ひずみを超えていることから,破断す る領域に達していたと推察される。

図-4.6.2 より、ゴム支承は P3B→P2B→P4B→A2B→P1B→A1B の順で許容せん断ひずみ 250% を超えており、高橋脚上のゴム支承から許容せん断ひずみに達する傾向にある。P2B, P3B, P4B, A2B は、EW、NS それぞれ加速度 2m/s²のパルスを受けて、時刻 2.3s~2.5s の初期の段階でほぼ同期的に許容せん断ひずみを超えている。それに対して、P1B および A1B は非同期的であり、P3B が許容せん断ひずみを超えてからそれぞれ 0.5s、1.9s の時間差がある。また、A1B においては、サイト波のピーク時(時刻 3.9s)のパルスを受けて許容せん断ひずみに至っている。

図-4.6.3の(A)より、P1B が許容せん断ひずみを超える際の時刻 2.8s までは、どの橋台、橋脚上 においても、反時計回りで北西→南東→北西→南東と、ほとんど同じ軌道で応答している。この ことから, 最初の段階では, 支承の応答は一様的な地盤の応答に連動していたと言える。 図-4.6.3 の(B)に示しているサイト波ピーク時手前の時刻 3.5s までのリサージュを見ると、(A)の後、各橋 台,橋脚上で応答がやや異なっており,A1B:北→西,P1B:北西→西,P2B:北→南西,P3B:北 →西, P4B: 北→南, A2B: 北東→北西といった軌道になっている。また, 図-4.6.5 は図-4.5.3 の 有限差分法によるサイト波における各時刻までの橋脚自身のリサージュを示しており、この橋脚 自身のリサージュと照合すると、サイト波ピーク時手前の時刻 3.5s 付近では、橋脚自身の応答に 対して全橋脚上のゴム支承は逆位相的に応答している。これより、この段階から、支承の応答は 橋脚自身の応答や、各橋台、橋脚周辺特有の地盤の応答に連動してきたと考えられる。図-4.6.3 の(C)に示すように、サイト波ピーク時(時刻 3.9s)を過ぎると、各橋台、橋脚上の支承の応答特 徴がより顕著になっていくが, A1B, P2B, P4B, および P1B, P3B の応答の特徴が類似してくる。 A1B, P2B, P4B は北西に応答した後, 直線的に南東に応答しているのに対して, P1B, P3B は北 西に応答した後、やや弧を描きながら南西に応答している。このあたりでゴム支承はすでに破断 していると考えられるので、この後については追わないが、図-4.6.1の最終的なリサージュを見 ると、各橋台、橋脚上の応答の傾向はA1B:北-南、P1B:西-東、P2B:北西-南東、P3B:北 西-南東, P4B:北-南, A2B:北-南である。以上より, 初期の段階でのゴム支承の応答軌跡は 各橋台,橋脚上でさほど変わりはないが,サイト波のピーク付近からは,橋脚自身の応答や各橋 台,橋脚周辺特有の地盤の応答の影響により,ゴム支承の応答軌跡が異なってくると推察される。

サイト波がピークを迎える時(時刻 3.9s)には支承が破断し,桁が脱落していたと考えられる ので,ピーク時手前までの上部構造の応答について推察をした。有限差分法によるサイト波の解 析で得られた支承の応答から推察した,各橋台,橋脚上の上部構造および上部構造全体の挙動が 図-4.6.7である。上部構造全体の挙動については,まず1.86s~2.49sで北西に変位し,その後2.49s ~2.82sでA1橋台側を軸としてやや時計回りに回転しながら南東方向に行き,最後に2.82s~3.24s でやや反時計回りに回転しながら北に変位したと推察している。

4.6.2 サイト特性置換法によるサイト波に基づく経時的状態変化

図-4.6.1より,各橋台および橋脚上のゴム支承(G3)の EW-NS 平面における最大相対変位量と その方向は,A1B:1.02m,NNW,P1B:1.28m,WSW,P2B:1.57m,W,P3B:1.24m,SW,P4B: 2.07m,SW,A2B:1.36m,Sを示した。サイト特性置換法によるサイト波においても、全橋台、 橋脚上で破断する領域に至っていたと推察される。

図-4.6.2 より, ゴム支承は P3B→P2B→P4B→A2B→P1B→A1B の順で許容せん断ひずみ 250% を超えている。 P2B, P3B, P4B は, 加速度 1.4m/s²(EW), 3.0m/s²(NS)のパルスを受けて, 時刻 1.2s から 1.3s の初期の段階でほぼ同期的に許容せん断ひずみを超えている。P1B, A1B および A2B は 非同期的である。P3B が許容せん断ひずみを超えてから A2B は 0.5s, P1B は 2.7s, A1B は 3.3s の時間差がある。また, A1B および A2B においては, サイト波のピーク時(時刻 3.8s)のパルスを受けて許容せん断ひずみに至っている。

図-4.6.4の(A)を見ると、A2B が許容せん断ひずみを超える際の時刻 1.7sの時点で、各橋台、 橋脚上でリサージュの傾向が異なっている。最初反時計回りで応答して、途中から時計回りにな る点ではどの橋台、橋脚上でも共通しているが、大きく応答している方向の傾向はそれぞれで異 なっており、A1B:北西-南東、P1B:西-東、P2B:北西-南東、P3B:北-南、P4B:北東-南 西、A2B:北-南である。図-4.6.4の(B)に示しているサイト波ピーク時手前の時刻 2.7s までのリ サージュを見ると、この時点で複雑なリサージュになっており、各橋台、橋脚上の支承でリサー ジュの特徴が顕著になっている。これより、この段階から、支承の応答は橋脚自身の応答や、各 橋台、橋脚周辺特有の地盤の応答に連動していたと考えられ、図-4.5.2 を参照すると、橋脚自身 の応答が初期の段階で大きくなっていることがわかる。また、図-4.6.6 は図-4.5.3 のサイト特性 置換法によるサイト波における各時刻までの橋脚自身のリサージュを示しており、この橋脚自身 のリサージュと照合すると、サイト波ピーク時手前の時刻 2.7s 付近では、橋脚自身の応答に対し て、全橋脚上のゴム支承は逆位相的に応答している。最終的なリサージュは図-4.6.1 のようにな り、応答の傾向は、A1B:北-南、P1B:西-東、P2B:西-東、P3B:北東-南西、P4B:北東-南西、A2B:北-南である。

サイト特性置換法によるサイト波においても同様に、サイト波がピークを迎える時(時刻 3.8s) には支承が破断し、桁が脱落していたと考えられるので、ピークを迎える前までの上部構造の応 答について推察をした。サイト特性置換法によるサイト波の解析で得られた支承の応答から推察 した、各橋台、橋脚上の上部構造および上部構造全体の挙動が図-4.6.7である。上部構造全体の 挙動については、まず 1.08s~1.29s で北に変位し、その後 1.29s~1.69s で A1 橋台側を軸として時 計回りに回転しながら南方向に行き、最後に 1.69s~2.04s で反時計回りに回転しながら北に変位 したと推察している。

図-4.6.5 各時刻までの橋脚上部の躯体基部に対するリサージュ(有限差分法)

図-4.6.6 各時刻までの橋脚上部の躯体基部に対するリサージュ(サイト特性置換法)

有限差分法によるサイト波

図-4.6.7 推定される上部構造の挙動

4.6.3 サイト波の違いによる経時的状態変化の違い

どちらのサイト波においても全橋台,橋脚上のゴム支承は破断する領域に至っていたと推察される。しかし、実際には P2 橋脚上の支承は部分的な破損が生じているものの破断には至っておらず、今回の結果からはその被害メカニズムは解明できていない。

許容せん断ひずみに至る順番はどちらのサイト波においても変わらず、最初の段階で許容せん

断ひずみを超えた P2B, P3B, P4B, A2B は同程度の加速度パルスで許容せん断ひずみに至っている。異なる点は, P1B が許容せん断ひずみに達する時刻であり,有限差分法によるサイト波では ピークに達する前であるのに対して,サイト特性置換法によるサイト波ではピーク後である。

リサージュにおいては、有限差分法によるサイト波では初期の段階(A1B が許容せん断ひずみ に達する時刻まで)では全橋台、橋脚上で同じような軌道で応答しており、それぞれの橋台、橋 脚の応答はほとんど寄与していない。一方で、サイト特性置換法によるサイト波では初期の段階 で各橋台、橋脚上で軌道に相違があり、それぞれの各橋台、橋脚周辺特有の地盤の応答や橋脚自 身の応答が寄与していると考えられる。また、最終的なリサージュで顕著な違いが P3B および P4B で見られ、有限差分法によるサイト波では北西-南東に応答する傾向があるのに対して、サイト 特性置換法によるサイト波では北東-南西に応答する傾向がある。どちらのサイト波においても、 サイト波ピーク手前では橋脚自身の応答に対して、支承は逆位相的に応答する傾向がある。

以上より,有限差分法によるサイト波においても,初期の段階でゴム支承が許容せん断ひずみ を超過し応答が大きくなっていることから,震源由来のパルスが支配的であったことが推測され, 1 次の固有モードを大きく励起したと言える。サイト特性置換法によるサイト波の方が,支承の 応答のリサージュが複雑になる理由としては,図-4.2.3 に示す応答スペクトルの違いから判断で きると考える。サイト特性置換法によるサイト波では,EW:0.76s,NS:0.66s といった短周期帯 で応答変位が卓越している。文献 3)による固有値解析結果を参照すると,周期 0.63s で 5 次モー ドであり,固有振動モード形は上部構造鉛直曲げ対称 1 次である。以上踏まえると,サイト特性 置換法によるサイト波では,大切畑大橋の高次の固有モードが励起され,結果として複雑な応答 に至ったのではないかと考えている。

上部構造の応答については、支承の応答の特徴が2つのサイト波で相違があることを踏まえる と、より詳細に見た上部構造の応答には差異があると考えられるが、大まかな挙動で見ると、2つ のサイト波で類似している。

4.7 本章の結論と今後の課題

以上得られた主要の知見は以下の3点である。

- (1) どちらのサイト波においても、大切畑大橋の1次の固有周期付近では、応答加速度は標準加速度応答スペクトルより大きくはない。しかし、有限差分法によるサイト波においては、応答変位はピークに近い値を示している。有限差分法によるサイト波は震源由来のパルスであることから、大切畑大橋の応答変位に震源由来のパルスが大きく寄与したと言える。
- (2) 主要動ピーク前の1s~3sの間の上部構造の応答について、有限差分法によるサイト波においては、まず北西に変位し、その後 A1 橋台側を軸としてやや時計回りに回転しながら南東方向に行き、最後にやや反時計回りに回転しながら北に変位したと推定される。サイト特性置換法によるサイト波においては、まず北に変位し、その後 A1 橋台側を軸として時計回りに回転しながら南方向に行き、最後に反時計回りに回転しながら北に変位したと推察される。
- (3) 上部構造を支持する各構造要素についても、それぞれで応答の特徴が見られた。支承の応答 については、全橋台、橋脚上のゴム支承において、許容せん断ひずみ 250%を超過しており、

破断領域に至っていたと推測される。また,各橋台,橋脚上のゴム支承において,同期的に 許容せん断ひずみを超過するものもあれば,P1橋脚およびA1橋台上のゴム支承のように非 同期的に許容せん断ひずみを超過するものもあったと推察される。橋脚の応答については, 全橋脚において1%以上のドリフトを示していることから,全橋脚でひび割れ以上の損傷が生 じた可能性が高い。地盤の応答については,A1橋台とP1橋脚間の地盤,P3橋脚周辺の地盤, A2橋台周辺の地盤で特に応答が大きくなる傾向がある。

以上の結果を踏まえ、より再現性を高めていくために、上部構造を詳細にモデル化することに 加え、3.8 節と同様にエキスパンションジョイントおよび落橋防止システムといったモデルの改 良、各構造要素の非線形性の考慮や、地盤の側面底面に粘性境界や自由地盤の導入を行い、大切 畑大橋の詳細な被害メカニズムの解明を行っていくことを今後の課題とする。

参考文献

- 大住道生、中尾尚史、石井洋輔、二宮智大:橋全体系の地震時応答解析における地盤変位の 入力方法に関する実証研究、第23回橋梁等の耐震設計シンポジウム講演論文集, pp. 191-198, 2021.
- 2) 日本道路協会:道路橋示方書·同解説 V 耐震設計編, 2017.
- 3) 葛西昭,吉塚卓史,牛塚悠太:2016年熊本地震における大切畑大橋の被害分析とFEモデルの構築,第20回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論文集,pp.449-456,2017.
- 4) 飯塚博,山下義裕:ゴム材料の力学特性同定と FEM 解析への利用,日本ゴム協会誌, Vol. 77, No. 9, pp. 306-311, 2004.
- 5) 吉田純司,阿部雅人,藤野陽三:高減衰ゴム材料の構成則,土木学会論文集,No.710/I-60, pp. 209-224, 2002.
- 6) 日本道路協会:道路橋示方書・同解説 I共通編 IIIコンクリート橋編, 2012.
- 7) 岡村甫,前川宏一:鉄筋コンクリートの非線形解析と構成則,技報堂出版, 1991.
- 8) 前川宏一,長谷川俊昭:コンクリート構成則の研究動向と課題,コンクリート工学, Vol. 32, No. 5, pp. 13-22, 1994.
- 9) 日本建築学会:鉄筋コンクリート構造計算規準・同解説, 2010.
- 10) 吉田望: 地盤の地震応答解析, 鹿島出版会, 2010.
- 11) 檜尾正也,中井照夫,星川拓哉,吉田英生:3次元応力経路下において単調および繰返し載荷 を受ける砂の応力・ひずみ挙動とそのモデル化,地盤工学会論文報告集, Vol. 41, No. 3, pp.125-

140, 2001.

- 12) FrontISTR: https://www.frontistr.com/ (2021.8.10 閲覧)
- 13) 西田秀明, 運上茂樹:道路橋示方書に基づく RC 橋脚の許容塑性率の工学的位置づけに関す る考察, 第10回地震時保有耐力法に基づく橋梁等構造の耐震設計に関するシンポジウム講演 論文集, pp. 249-254, 2007.
- 14) 日本道路協会:道路橋支承便覧, 2004.

第5章 断層変位の影響を考慮した解析方法の検討

5.1 本章の概要

第3章及び第4章では、断層変位及び長周期パルスを含む地震動に対する橋の応答についての 考察を目的に、周辺地盤を含む橋全体系の詳細な3次元有限要素モデルを用いた検討結果を示し た。一方、橋の設計においては、現在の動的解析に基づく耐震設計で用いられるような骨組みモ デル等のより簡易なモデルを用いて断層変位に対する橋の応答を評価する必要がある。

そこで、本章では、橋の耐震設計において比較的簡便に実施できる断層変位の影響評価手法を 検討することを目的として、骨組みモデルを用いて地震動及び断層変位をそれぞれ作用させる解 析を行う。断層変位を想定した強制変位及び地震動の入力方法を変化させた複数のケースで検討 を行い、対象橋梁における実際の損傷状態と比較することで、断層変位の影響を考慮した解析に おける入力方法を検討する。また、材料特性の不確実性の影響を確認する目的で、材料強度等を 変化させた解析モデルによる検討も行った。

5.2 検討方法

5.2.1 検討フロー

本章の検討フローを図-5.2.1に示す。本章では、これまでの章と同様に大切畑大橋を対象として、設計資料(本報告書に巻末資料として掲載)を基に、解析モデルを作成した。また、モデルで使用する材料強度及び基礎の塑性化が損傷の再現性に与える影響を検討するため、これらの設定方法を変化させたモデルを作成した(5.3節)。次に、本章で検討対象とする地震動及び断層変位の入力条件について整理した。本章では、地震動及び断層変位を単独で作用させるケースや地震動及び断層変位を同時に作用させるケース等、合計6ケースを対象とした(5.4節)。最後に、各検討ケースについて解析結果及び実際の損傷状態を比較することによって、損傷の再現性という観点から、断層変位の影響評価を行うためのモデル化や入力方法について考察した(5.5節)。

図-5.2.1 検討フロー

5. 2. 2 解析方法

本章では、地震動及び断層変位を入力条件とする3次元骨組みモデルを用いた時刻歴応答解析 を行う。解析で用いる地震動は、5.4.1に示すサイト特性置換手法によって推定し、架橋位置の サイト増幅特性は、地震後に実施された余震観測記録を基に評価した。地震動の位相特性は、熊 本地震時に西原村役場で観測された地震動を用いた。また、断層変位については、同地震後の調 査結果から得られた下部構造の変位を使用することとし、入力するタイミングを変化させた複数 のケースで検討を行った。

解析には TDAPIII を使用し、次章に示す、大切畑大橋の 3 次元骨組みモデルを用いて非線形静 的解析及び非線形動的解析を行った。計算手法は Newmark β 法 (β =1/4)、積分時間間隔は 0.01 秒 とし、反復計算は行わずに不釣り合い力は次の積分ステップに持ち越すようにした。

5.3 解析モデル

5.3.1 モデル化方針

解析モデルは, 第2章で記述した被災状況をふまえて,地震時挙動及び損傷状況を再現できる ように,床版はファイバー要素,主桁及び横桁ははり要素(線形),橋台及び橋脚ははり要素(橋 台,梁部材は線形,橋脚の柱部材は非線形,梁と柱の結合部及びフーチング部は剛要素),支承及 び落橋防止ケーブルはばね要素(非線形),下部構造の基礎はばね要素(線形)とした。表-5.3.1 及び表-5.3.2において,それぞれ損傷状況をふまえた各部材のモデル化の方針と,各部材のモデ ル化の方法を示す。なお,表-5.3.2における減衰定数は,道示V編¹⁾に規定される標準値を使用 した。

図-5.3.1 解析モデル全体図

r								
部位		損傷状態	損傷要因	モデル化の方針				
	支承	取付ボルト又は	地震動応答による回転	支承を1基ずつモデル化				
	(A1, P1, P3,	ゴム文承本体の	及びせん断変形による	し、ひすみ硬化と破断挙動				
	P4, A2)	破断	支承の損傷	をモデル化した非線形ばね				
支承部	ジョイント プロテクター (A1, A2)	取付ボルトの破 断によるサイド ブロックの脱落	橋軸直角方向の地震応 答による遊間を超える 変位と,取付ボルト耐 力を超える水平反力	ジョイントプロテクターの 遊間及び剛性を考慮した非 線形ばね				
	落橋防止 構造 (A1, A2)	落橋防止ケーブ ルの破断(A1),落橋防止ケ ーブルの変形・ 損傷(A2)	橋軸方向及び橋軸直角 方向の大変位及び,主 桁とケーブルの接触に よる破断・損傷	ケーブルの遊間及び降伏を 考慮した非線形ばね				
下	下部構造全体	ひび割れ,かぶ りコンクリート のうき	曲げモーメントとせん 断力により損傷	ひび割れ,降伏を考慮した トリリニア型 M−¢非線形 はり要素				
部 構 造 P3,1	(A1, P1, P2, P3, P4, A2)	残留変位	地震動水平力により橋 軸方向及び軸直角方向 の移動,回転	下部構造の残留変位を強制 変位として入力(強制変位 は、下部構造間の延伸量と して整理)				
基礎構造	杭 (P2, P3, P4)	残留変位,ひび 割れ (P2)	曲げモーメントとせん 断力により損傷	基礎と地盤間の抵抗特性を 考慮できる線形ばね要素 (集約ばね)※P2 基礎の塑 性化を考慮するケースでは 塑性化を模擬する仮想非線 形はり要素を配置				

表-5.3.1 損傷状況をふまえた各部材のモデル化の方針

表-5.3.2 各部材のモデル化の方法

部位		構造形式	モデル化	減衰 定数
	床版		ファイバー要素	0.03
上部構造	主桁	鋼5径間連続非合成鈑桁橋	はり要素(線形)	0.02
	横桁		はり要素(線形)	0.02
支承部	A1, A2 橋台	分散支承(直角方向固定)	ばね要素(非線形)	
(ゴム支承)	P1, P2, P3, P4 橋脚	分散支承(全方向分散)	ばね要素(非線形)	
ジョイント プロテクター	A1, A2 橋台	サイドブロック	ばね要素(非線形)	0.01
落橋防止構造	A1, A2 橋台	落橋防止ケーブル	ばね要素(非線形)	0.01
橋台	A1, A2 橋台	逆T式橋台	はり要素(線形)	0.05
	P1 橋脚	張出式円形柱橋脚	はり要素(非線形)	0.02
橋脚	P2, P3 橋脚	張出式矩形柱橋脚(中空断面)	はり要素(非線形)	0.02
	P4 橋脚	張出式円形柱橋脚(中空断面)	はり要素(非線形)	0.02
	A1 橋台	場所打ち杭 φ1200	ばね要素(線形)	0.2
基礎工	P1 橋脚	深礎杭 φ4500	ばね要素(線形)	0.2
	P2 橋脚	場所打ち杭 φ1500	ばね要素(線形)*	0.2
	P3 橋脚	場所打ち杭 φ1500	ばね要素(線形)	0.2
	P4 橋脚	深礎杭 φ6000	ばね要素(線形)	0.2
	A2 橋台	深礎杭 φ2000	ばね要素(線形)	0.2

*P2 橋脚のみ基礎の塑性化を模擬した非線形はり要素を適用したケースも検討した。

A1~P1支間の解析モデルの模式図を図-5.3.2に示す。上部構造のモデル化にあたり,RC床版 と桁は別々にはり要素でモデル化し,床版及び主桁の接続をモデル化するためにダミー要素を設 置した。また,床版-主桁間の接続は,表-5.3.3に示す境界条件を有するピン結合とした。

図-5.3.2 A1~P1 支間の解析モデルの模式図(実際の要素配置とは異なる)

培用冬州	橋軸	橋軸直角	鉛直	橋軸	橋軸直角	鉛直
児芥禾件	方向	方向	方向	周り	周り	周り
ピン結合	固定	固定	固定	自由	固定	自由

表-5.3.3 ピン結合境界条件

5.3.2 各部材のモデル化

(1) 上部構造

図-5.3.3 に大切畑大橋の上部構造断面図を, 表-5.3.4 に設計資料を基に算出した上部構造の重量を示す。主桁と床版はそれぞれモデル化し、主桁の重量は単位体積重量として与え、床版の質量は要素分割に合わせて節点集中質量として与えた。なお, 表-5.3.4 に示す「主桁(鋼重)」には、 横構及び対傾構の重量も含んでいる。

A1~P1 断面図 S=1/50

P1~A2断面図 S=1/50

図-5.3.3 上部構造断面図

	単位体積重量	高さ	幅	重量
	(kN/m^3)	(m)	(m)	(kN/m)
床版				
舗装(車道)	22.56	0.07	8.000	12.635
舗装(歩道)	22.56	0.03	3.000	2.031
床版	24.52	0.22	12.500	67.444
ハンチ (G1)	24.52	0.08	1.195	2.345
ハンチ (G2)	24.52	0.08	0.860	1.687
ハンチ (G3)	24.52	0.08	0.860	1.687
ハンチ (G4)	24.52	0.08	0.860	1.687
ハンチ (G5)	24.52	0.08	1.145	2.246
増しコンクリート	23.05	0.04	3.000	2.766
地覆(歩道)	24.52	0.17	0.400	1.668
地覆(分離)	24.52	0.50	0.315	3.863
地覆(車道)	24.52	0.32	0.600	4.709
高欄(歩道)	<u> </u>		<u> </u>	4.934
高欄(分離)				0.589
高欄(車道)	—		—	4.934
床版小計				115.225
主桁 (鋼重)				32.373
	合計(床版・主	桁)		147.598

表-5.3.4 上部構造重量

床版については、地震による損傷は明らかではないが、ひび割れが確認されていることから、 部材の応力-ひずみ関係と2軸曲げの影響(My – Mz相関)を評価することができるファイバー要 素によりモデル化した。コンクリートの応力-ひずみ関係は、2次関数型コンクリートモデル、鉄 筋の応力-ひずみ関係は、バイリニア型の移動硬化則としている。

主桁及び横桁については、それぞれ表-5.3.5に示す全断面有効剛性(断面積 A, 断面二次モー メント I, ねじり剛性 J から決定)とした線形はり要素とした。また、主桁要素は上部構造重心位 置に配置するものとし、上部構造の重心位置は床版下面位置とした。

部材分割は、1~3 次振動モードが考慮できるように、1 支間を 10 分割程度で分割することとし、横桁配置に合わせて分割した。

	項目		断面特性	A (m2)	J	Y軸周り	Z軸周り
			<u> </u>	2 016E_02	0.0255-07	I y (m4)	1Z (M4)
		0	101	3.910E-02	9.935E-07	9.012E-05	3.410E-0
		থ	102	6 16/E_02	7 044E 00	0 587E-04	7 316E_0
			103	3 016E_02	0 035E-07	9.567E-04	3 /18E_0
		4	104	5 110E-02	5.263E-06	3 800E-04	5 487E-0
		6	105	6 604E_02	0 126E_06	1 069E_02	9 005E_0
		0	100	0.004E-02	9. 130E-00	1 400E 04	0.095E-0
	G1	0	107	4.220L-02	Z. 030L-00	7 7675 04	6 020E 0
		0	100	5.940E-02	7.080E-00	1.060E.02	0.929E-02
		9	109	0.004E-02	9. 130E-00	1.008E-03	8.095E-0
			110	<u>3.910E-02</u>	9.935E-07	9.012E-03	<u>3.418E-0</u>
		(1) (12)	110	5.002E-02	4.421E-00	4.059E-04	5.573E-0
		(12)	112	2 016E 02	0.025E.07	7.30/E-04	0.070E-0
			113	3.910E-02	9.935E-07	9.012E-03	5.410E-0
		(14)	201	4.004E-02	3.011E-00	0 612E-04	2 410E 0
		0	201	1 200E 02	9.933L-07	9.012L-03	3.410L-0
			202	4.380E-02	2.4ZZE-00	2.030E-04	4.218E-0
		3	203	4.304E-02	2. 101E-00	1.741E-04	4.087E-0
		(4)	204	4.304E-02	2. TUTE-00	1. /4IE-04	4.087E-0
		5	205	5.260E-02	4. 707E-06	4.011E-04	5. 746E-0.
		6	206	7. 186E-02	7.594E-06	1. 552E-03	9.097E-0
	G2	\mathcal{O}	207	4.304E-02	2. TOTE-06	1. /4IE-04	4.08/E-0
		8	208	5.510E-02	4.585E-06	6.206E-04	6.1/6E-0
		(9)	209	7. 186E-02	7.594E-06	1.552E-03	9.09/E-0
			210	5.510E-02	4. 585E-06	6.206E-04	6.1/6E-0
			211	5.510E-02	4.585E-06	6.206E-04	6. 1/6E-0
			212	0.284E-02	5.528E-06	9.304E-04	1.510E-0
		(13)	213	3.916E-02	9.935E-07	9.612E-05	3.418E-0
		(14)	214	4.884E-02	3.811E-06	3.5/2E-04	5.090E-0
			301	3.916E-02	9.935E-07	9.612E-05	3.418E-0
		2	302	4.380E-02	2.422E-06	2.030E-04	4.218E-0
		(3)	303	5. /56E-02	3.261E-06	7.253E-04	6.580E-0
		(4)	304	4. 190E-02	2.366E-06	1.361E-04	3.892E-0
		(5)	305	4.9/2E-02	3.484E-06	4.058E-04	5.241E-0
		(6)	306	6.668E-02	9.906E-06	1.135E-03	8.193E-0
主桁	G3		307	4. 152E-02	1. /54E-06	1.248E-04	3.82/E-0
		(8)	308	5.060E-02	4.258E-06	3.552E-04	5.401E-0
		(9)	309	6.668E-02	9.906E-06	1.135E-03	8.193E-0
			310	4. 152E-02	I. /54E-06	1.248E-04	3.82/E-0
			311	5. 160E-02	4.421E-06	4.059E-04	5.5/3E-0
		(12)	312	5. /8IE-02	5.9/3E-06	7.426E-04	6.62/E-0
			313	3.916E-02	9.935E-07	9.612E-05	3.418E-0
		(14)	314	4. 708E-02	1.844E-06	2. /19E-04	4. /8/E-0
			401	3.916E-02	9.935E-07	9.612E-05	3.418E-0
		(2)	402	4.664E-02	3.360E-06	2.530E-04	4. / 12E-0
		3	403	5. /28E-02	5. 721E-06	7.030E-04	6.536E-0
		(4)	404	4. 152E-02	1. /54E-06	1.248E-04	<u>3.827E-0</u>
		5	405	4.928E-02	2.343E-06	3.810E-04	5.166E-0
		(6)	406	6.668E-02	9.906E-06	1.135E-03	8.193E-0
	G4		407	4. 190E-02	2.366E-06	1.361E-04	<u>3.892E-0</u>
		(S)	408	5. 110E-02	0.203E-06	3.800E-04	5.48/E-0
		(9)	409	0.004E-02	0. 2/3E-06	1.080E-03	<u>δ. U82E-0</u>
			410	4. 152E-02	1. /54E-06	1. 248E-04	3.82/E-0
			411	5.060E-02	4. 258E-06	3.552E-04	5.401E-0
			412	<u> </u>	0.9/3E-U6	1.420E-U4	0.02/E-0
			413	3.910E-02	9.935E-0/	9.012E-05	3.418E-0
		(14)	414	4. /96E-02	2.044E-06	3. 120E-04	4.939E-0
			501	4. 152E-02	1. /54E-06	I 248E-04	3.82/E-0
		<u>v</u>	502	5.460E-02	2. /59E-06	5.862E-04	0. U90E-0
		(3)	503	6. 108E-02	b. //4E-06	9. 108E-04	<u> /. 219E-0</u>
		4	504	3.910E-02	9.935E-07	9.012E-05	3.418E-0
		(5)	505	5.260E-02	4. /U/E-06	4. 011E-04	<u>5./46E-0</u>
		6	506	6. 136E-02	4. 194E-06	9.348E-04	7.268E-0
	G5	(7)	507	3.916E-02	9.935E-07	9.612E-05	<u>3.418E-0</u>
	-	(8)	508	4.884E-02	3.811E-06	3.5/2E-04	5.090E-0
		(9)	509	6.024E-02	5.886E-06	8. 422E-04	7.074E-0
		10	510	3.916E-02	9.935E-07	9.612E-05	<u>3.418E-0</u>
		1	511	5.160E-02	4. 421E-06	4.059E-04	5.573E-0
		12	512	5.800E-02	4.355E-06	6.758E-04	6.687E-0
		13	513	3.916E-02	9.935E-07	9.612E-05	3.418E-0
		(14)	514	5.160E-02	4.421E-06	4.059E-04	5.573E-0
						1 3005 05	
構た	支点」	上横桁	601	2.582E-02	4.328E-07	1. /89E-05	1.639E-0

表-5.3.5 主桁及び横桁の断面剛性

注)「断面特性番号」は今回作成した解析モデルの分割要素に対応している

(2) 支承部

支承は、全支点積層ゴム支承を適用しており、端支点部にはジョイントプロテクターを設置し ている。支承は1基ずつモデル化し、表-5.3.6に示すとおり、鉛直方向は固定、回転方向は自由 として、水平方向は損傷後の挙動を考慮できる非線形ばね要素を使用した。文献 2)を参考に、表 -5.3.7及び図-5.3.4に示すように、水平方向の非線形特性として、せん断ひずみが 250%を超過 すると硬化し、300%に至ると破断するように設定した。なお、表-5.3.7に示したボルト破断耐力 は、支承のモデル化には考慮しておらず、5.4.4項に示す損傷判定において判定の閾値として参 照している。ここでのボルト破断耐力は、5.3.3項(表-5.3.11)に示す実強度比を考慮した推 定実強度としている。

また,A1 橋台及び A2 橋台の支承に設置されているジョイントプロテクターの損傷が考慮でき るように,正側,負側それぞれについて,図-5.3.5 に示す非線形特性を有するばね要素を使用し た。ジョイントプロテクターの水平耐力は,ジョイントプロテクターを固定するボルトの引張降 伏耐力を基に,421.4 kN と設定した。ここで,降伏耐力には5.3.3 項(表-5.3.11)に示す実強 度比を考慮した推定実強度を用いている。

「「お定数」		モデル化の条件						
		(kN/m)	橋軸方向	橋軸直角 方向	鉛直方向	橋軸回り	直角方向	鉛直回り
插山如	A1	1654.2	非線形 非線形		田中	白山	白山	白山
備百部	A2	2041.3	特性	特性	回た	日田	日田	日田
	P1	2760.7	非線形 非線形 					
橋脚部	P2	4871.6		非線形 特性	固定	自由	自由	自由
	P3	4871.6						
	P4	2957.6						

表-5.3.6 支承部のモデル化条件

表-5.3.7 支承部の支承ゴム及びボルトの耐力

		支承ゴム硬化開始 (kN)	支承ゴム破断耐力 (kN)	ボルト破断耐力 (kN)
A1		496.1	1091.5	1081.9
(百 口 間)	A2	612.5	1347.5	1081.9
橋脚部	P1	1035.1	2277.3	1380.6
	P2	1035.1	2277.3	1380.6
	P3	1035.1	2277.3	1380.6
	P4	1035.1	2277.3	1380.6

図-5.3.4 ゴム支承本体の非線形特性 3)

図-5.3.5 ジョイントプロテクターの非線形特性

(3) 落橋防止構造

大切畑大橋では、落橋防止システムとして、主桁とパラペットを接続するケーブル式の落橋防 止構造が設置されているが、上部構造が橋軸方向の地震力によって A2 橋台側に、橋軸直角方向 の地震力によって G5 側に大きく移動した結果、A1 橋台のケーブルが破断し、A2 橋台のケーブル に変形や被覆材の損傷等が生じた。

A1 橋台のケーブルが全て破断しており,橋軸方向の移動によって引張破断が生じたものと考え られる。また,A2 橋台のケーブルは中間部が変形しており,橋軸直角方向の移動によって主桁に 衝突して引張力又はせん断力が生じたと考えられる。そこで,落橋防止システムに使用されてい るケーブルのモデル化にあたっては,図-5.3.6 に示す非線形特性を有するばね要素を使用し,計 算された変位量を基に,損傷の判定を行うこととした。ただし,図-5.3.6 のモデルでは,一方向 の応答による破断挙動しかモデル化できていないため,損傷の判定においてはケーブル降伏時の 変位を破断変位とみなし,解析による応答変位(橋軸方向と橋軸直角方向の合成変位)が破断変 位を超過する場合を「破断」と判定した。

図-5.3.6 落橋防止ケーブルの非線形特性

(4) 橋脚

地震後に一部の橋脚では基部にひび割れが確認された。そこで、図-5.3.7に示すように、コン クリートのひび割れ及び鉄筋の降伏を考慮できるトリリニア型の非線形はり要素(M- Ø)を使用 した。表-5.3.8に橋脚の断面を示す。なお、M-Ø関係及び塑性ヒンジの算定は、それぞれ道示 V 編¹⁾ 6.2 及び 8.5 の規定を基に行った。

					1× 0.0.0	间种的	Щ	-		
				P1	橋軸	P2	橋軸	P2 橋	P2 橋軸中空断面部	
		断面	ī	10(3)	マ 2012 (AC) せん眠 なし よが価量 なし 線形)		□ 〒 マ て て て マ て て て て て て て て て て て て て	20	yp また。 時子: V 2012 (RC) せん時: なし よらか: なし ようか: なし ようか: なし (中空非線形)	
		鉄筋	i	SD	295	S	D345		SD345	
				直角方向	橋軸方向	橋軸方向	直角方向	橋軸方向	直角方向	h
		上面(一段	5月)	80xD32ctc127	80xD32ctc127	47 × D32	23xD32	47 × D32	23xD32	2
		かぶり(m)	0.130	0.130	0.135	0.135	0.135	0.135	
		上面(二段	殳目)	80xD32ctc119	80xD32ctc119	24xD32	8xD32	24xD32	8xD32	
		かぶり(m))	0.230	0.230	0.265	0.615	0.265	0.615	
		上面(三段	殳目)			39xD32		39xD32		
	- 44 00	かぶり(m)			0.615		0.615		
	土鉄肋	下面(一段	5月)			39xD32	8xD32	39xD32	8xD32	
		かぶり(m)			0.615	0.615	0.615	0.615	
		下面(二日	, 登目)			24xD32	23xD32	24xD32	23xD32	2
		かぶり(m))			0.265	0.135	0.265	0.135	
		下而(三月	。 (1971)			47xD32		47xD32		
		かごし(m)				0 135		0 135		
		<i>汉</i> 、八川	,	D	22	0.100	22		D22	
带鉄筋 横拘束鉄筋有効長d		25	92	1000			1000			
	新面番号			P3 橋軸	P3 橋軸中	P空断面部	P4	橋軸	P4 橋軸中	空断面部
влышт э		300	yo htf: V 2012 (RG) せん断 なし しらひ なし 量小数面量 なし 精輪非線形)	ys 日 1 1 1 1 1 1 1 1 1 1 1 1 1	2c せん時 彼し しSD: なし 主義範世: なし 非線形)	400	で		マ マ 2 マ 2 4 2 5 4 2 5 4 2 5 4 2 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	
	鉄筋			SD345	SD SD	345	SD:	295	SD:	295 市务士白
			(有用方向) 47×000	■四万回 97D20	- 備用方向 - 47×D92	<u> 二月万</u> 月 97-099	備職方回 40xD20ata1825	■四万円 40×D20+++1825	備用方回 40×D20+++1825	■円万円 40×D20×t+162 5
ŀ	<u>上面(一段日)</u> かごい(m)		0.135	0 135	0 135	0.135	40xD29606100.5	40xD296t6100.5	40xD29000100.5	40xD290t0100.5
ŀ	トあ(二段日)		47×D32	10vD32	47vD32	10vD32	80vD29ctc158 7	80vD29ctc158 7	80vD29ctc158 7	80vD29ctc158 7
ŀ	<u> エロ(ー校日/</u> かぶり(m)		0 265	0.615	0 265	0.615	0 230	0 230	0 230	0 230
ŀ	上面(三段日)		39xD32	0.010	39xD32	0.010	80xD29ctc256.0	80xD29oto256.0	80xD29oto256.0	80xD29ctc256.0
	<u>ー面(</u>		0.615		0.615		0.620	0.620	0.620	0.620
主鉄筋	下面(一段日)		39xD32	10xD32	39xD32	10xD32				0.010
ŀ	かぶり(m)		0.615	0.615	0.615	0.615				
ŀ	下面(二段日)		47xD32	27xD32	47xD32	27xD32				
ŀ	かぶり(m)		0.265	0.135	0,265	0,135				
ŀ	下面(三段日)		47xD32		47xD32					
ł	かぶり(m)		0,135		0.135					
HE AL AL	径			D22	D	22	D	19	D	19
带鉄筋	横拘束鉄筋有	ī効長d		1000	10	00	33	92	33	92

表-5.3.8 橋脚断面

(5) 橋台

地震後に胸壁のひび割れ,変形,欠損等が確認されているが,橋台背面の土砂の影響の不確実 性が大きいため,本研究では,線形はり要素によりモデル化した。

(6) 基礎

道示 V 編 ¹に基づき,基礎及び地盤間の抵抗特性を表現するばね要素を使用した。表-5.3.9 に 各ばね定数を示す。なお、大切畑大橋の設計にあたって、フーチング下面に仮想要素(剛はり要 素)を入れ、仮想要素を介して連成項が 0 である集約ばね要素を設置しており、今回作成した解 析モデルでも同様とした。

また,地震後の調査においては,P2橋脚の基礎に塑性化が確認されている。そのため,P2橋脚の基礎の塑性化を考慮することで,損傷の再現性が向上することが期待される。ただし,動的解析において基礎の塑性をモデル化する一般的手法は確立していない。そこで,本章では橋軸方向及び橋軸直角方向について,仮想要素に非線形特性を設定することで,疑似的に基礎の塑性化を表現することを検討した(後述のCase-6)。図-5.3.8に示すとおり,地震後に塑性化が確認されたP2橋脚のフーチング下端から基礎の集約ばねの間に設置された仮想要素にバイリニア型の非線形要素を設定した。当該要素の降伏曲げモーメントMyは,以下のように設定した。

My=[P2支承のせん断耐力]×[フーチング下端から支承までの高さ]×[低減率] ここで、低減率は、ゴム支承本体の破断よりも先行して基礎が降伏するように0.8と仮定した。

橋軸方向				
	仮想要素長 (m)	鉛直ばね (kN/m)	水平ばね (kN/m)	回転ばね (kN·m/rad)
A1 橋台	1.609	3,762,841	2,395,828	15,245,064
P1 橋脚	4.546	1,386,859	2,751,538	61,328,137
P2 橋脚	2.950	4,622,864	2,698,054	62,335,467
P3 橋脚	1.443	5,547,437	12,174,504	92,144,957
P4 橋脚	7.278	1,849,136	3,210,440	109,306,836
A2 橋台	2.303	3,522,173	1,775,590	9,750,561
橋軸直角方向				
	仮想要素長 (m)	鉛直ばね (kN/m)	水平ばね (kN/m)	回転ばね (kN·m/rad)
A1 橋台	1.609	3,762,841	2,395,828	48,536,770
P1 橋脚	4.546	4,160,568	2,751,538	61,328,137
P2 橋脚	2.950	6,191,326	2,698,054	107,121,354
P3 橋脚	1.443	6,450,497	12,174,504	125,475,413
P4 橋脚	7.278	4,267,252	3,210,440	109,306,836
A2 橋台	2.303	3,522,173	1,775,590	37,296,158

表-5.3.9 基礎のばね定数

図-5.3.8 基礎の非線形特性の設定

5.3.3 材料強度

表-5.3.10に大切畑大橋の部材ごとの材料強度を示す。材料強度は,設計資料の記載内容を基に した。実際の材料強度を使用して解析を行う方が地震時応答及び損傷状況を精度よく推定できる ものと期待されるが,大切畑大橋では実際の材料強度は計測されていない。そこで,本章ではコ ンクリートの圧縮強度及び鋼材の降伏強度を対象として,材料強度の設計値(コンクリートの設 計基準強度及び鋼材の公称値)及び材料試験の結果得られた材料の実際の強度の関係性を統計的 に分析した既往の資料³を基に,より現実の強度に近い可能性がある強度(以下「統計値から算出 した推定実強度」という。)を算出し,解析を行った(後述のCase-1~3, 5, 6)。また,材料特性 値の違いに着目した比較ケースとして,公称値による解析も実施している(Case-4)。

各材料強度の設計値に対する統計値から算出した推定実強度を表-5.3.11に示す。

位置	工種	コンクリート 圧縮強度 (設計基準強度)	鉄筋降伏強度 (公称値)
床版	-	24 N/mm ²	295 N/mm ² (SD295A)
1.1 (本)	躯体	21 N/mm ²	295 N/mm ² (SD295A)
AI 偷口	場所打ち杭	30 N/mm ²	295 N/mm ² (SD295A)
11.11.1括即	躯体	21 N/mm ²	295 N/mm ² (SD295A,B)
₽1,₽4↑尙/応	深礎杭	24 N/mm ²	295 N/mm ² (SD295A)
D2 D2 运时	躯体	21 N/mm ²	345 N/mm ² (SD345)
Г2,Г3↑尚/四	場所打ち杭	30 N/mm ²	295 N/mm ² (SD295A)
い海山	躯体	21 N/mm ²	295 N/mm ² (SD295A)
A2個口	深礎杭	24 N/mm ²	295 N/mm ² (SD295A)

表-5.3.10 部材ごとの材料強度

表-5.3.11 材料強度の設計値及び統計値から算出した推定実強度

	司马拉古	統計値から算出した	統計値から算出した
	 衣 計 恒	推定実強度/設計値	推定実強度
	21N/mm ²	1.30	27.30 N/mm ²
	24N/mm ²	1.24	29.76 N/mm ²
全国十十	295N/mm ²	1.2265	361.8175 N/mm ²
亚 巴个 小	345N/mm ²	1.2265	423.1425 N/mm ²

※鋼材の「統計値から算出した推定実強度/設計値」については、鋼材種類によらず、SD295

(D16)の結果を使用した。

5.4 入力条件

5.4.1 入力地震動

本解析に用いる入力地震動は、大切畑大橋で熊本地震後に実施された余震観測で得られた記録 を基に評価された当該橋梁位置のサイト増幅特性 ⁴⁾を用い、サイト特性置換手法 ⁵⁾より地震動を 推定した。サイト特性置換手法に用いる地震動の位相特性は、熊本地震本震時に西原村役場で観 測された地震動(以下、「西原村小森」という。)⁶⁾を用いた。西原村小森は、一部の周期において 地盤と構造物の相互作用の影響があったことが示唆されている ⁷⁾ものの、当該橋と一番近い観測 点であることに加えて、観測された地震動には 2m 近い変位が観測記録に含まれていることが指 摘されている⁸⁾。

大切畑大橋における A1, A2 橋台の表層地盤の増幅特性は, A1, A2 橋台で実施した PS 検層結果 より推定した地盤モデルを基に推定した。なお,地盤の非線形特性は,土木研究所資料⁹を基にフ ィッテングして設定した。A1 橋台位置の表層地盤のモデルを表-5.4.1 に, A2 橋台位置の表層地 盤のモデルを表-5.4.2 に示す。

推定した地震動の時刻歴波形を図-5.4.1に推定した地震動の加速度応答スペクトルを図-5.4.2 に示す。動的解析では、A1 橋台位置での推定波形を A1 橋台, P1 及び P2 橋脚に作用させ、A2 橋台位置での推定波形を P3 及び P4 橋脚、A2 橋台に同時に作用させることとした。

土質区分	深さ (m)	層厚 (m)	密度 (g/cm ³)	Vs (m/s)	減衰定数	Vp (m/s)	減衰定数
盛土	3.00	3.00	1.50	130	3.85	430	1.92
火山灰質 砂質シルト	9.00	6.00	1.60	150	3.33	430	1.67
自破砕 安産溶岩	18.00	9.00	1.90	310	1.61	770	0.81
工学的 基盤面	-	-	1.95	500	0.50	1800	0.25

表-5.4.1 A1 橋台位置の地盤モデル

表-5.4.2 A2 橋台位置の地盤モデル

土質区分	深さ (m)	層厚 (m)	密度 (g/cm ³)	Vs (m/s)	減衰定数	Vp (m/s)	減衰定数
盛土	1.90	1.90	1.50	160	3.13	450	1.56
非溶結 凝灰岩	4.50	2.60	1.90	220	2.27	450	1.14
非溶結 凝灰岩	8.50	4.00	1.90	340	1.47	810	0.74
非溶結 凝灰岩	10.90	2.40	1.90	340	1.47	810	0.74
非溶結 凝灰岩	12.65	1.80	1.90	240	2.08	810	1.04
工学的 基盤面	-	-	1.95	500	0.50	1800	0.25

5. 4. 2 断層変位の入力方法

地震後の現地測量により得られた,A1橋台に対する各橋脚天端及びA2橋台橋座の相対移動量 を図-5.4.3に示す。解析では,橋脚天端及び橋台橋座部の変位を各下部構造の変位とみなし,こ の変位による下部構造間の距離の延伸を断層変位の影響として,フーチング下面に強制変位とし て入力した。

5.4.3 検討ケース

本章では、解析モデルの材料強度及び基礎の非線形特性の設定有無並びに入力条件を変化させた6ケースの解析を行い、実際の損傷状況との比較を行った。検討ケースを表-5.4.3に、各検討ケースにおける入力方法のイメージを図-5.4.4に示す。

Case-1 では、断層変位を強制変位として作用させる静的解析を、Case-2 では、地震動のみを作 用させる動的解析を行い、断層変位及び地震動単独での橋の応答を検証する。Case-3 では、断層 変位を強制変位として作用させた後に、地震動を作用させた動的解析を行う。Case-4 及び Case-5 では、入力方法は Case-3 と同様とし、Case-4 では材料強度に設計強度強度を適用した解析モデル を、Case-5 では、Case-1~Case-3 と同様に材料強度を統計値から算出した推定実強度に設定した うえで、基礎の非線形特性を考慮した解析モデルを使用して解析を行った。Case-6 では、橋に対 して最も厳しい入力条件として、地震動の時刻歴波形及び断層変位の変位波形を同時に作用させ た動的解析を行った。ここで、断層変位は入力地震動変位の最大時刻から1秒間で作用するよう に入力している。

Case-1~3,6の比較を通じて、入力・解析方法の差異が応答解析結果に与える影響を考察する。 また、Case-3~5の比較を通じて、解析モデルの設定方法のうち、材料強度の値の違い及び基礎の 非線形特性の設定有無の影響を考察する。

ケース	材料強度 (5.3.3)	基礎の 非線形特性 (5.3.2(6))	入力・解析方法
Case-1	統計値から算出 した推定実強度	なし	断層変位のみ作用させる強制変位解析
Case-2	統計値から算出 した推定実強度	なし	地震動のみ作用させる動的解析
Case-3	統計値から算出 した推定実強度	なし	断層変位を想定した強制変位を入力した状態を初 期状態として,地震動に対する動的解析を実施
Case-4	設計基準強度 及び公称値	なし	断層変位を想定した強制変位を入力した状態を初 期状態として,地震動に対する動的解析を実施
Case-5	統計値から算出 した推定実強度	あり	断層変位を想定した強制変位を入力した状態を初 期状態として,地震動に対する動的解析を実施
Case-6	統計値から算出 した推定実強度	なし	地震動と断層変位を同時に入力(両者を合成した 入力波に対する動的解析を実施)

表-5.4.3 検討したケース

図-5.4.4 各ケースにおける入力方法

5.4.4 解析結果の評価方法

本章では, 表-5.4.4 に示す各部材の応答値に基づく破壊に対する照査を行い, 第2章で整理した実損傷と照査結果を比較することで, 解析結果の評価を行った。部材ごとの判定基準を以下に 概説する。

(1) 支承

支承を構成する部材のうち,解析結果の評価にあたって着目した箇所を図-5.4.5に示す。支承 については、地震後に①ゴム支承本体が破断(A1,A2橋台)、②ゴム支承本体のせん断変形の残 留(P2橋脚)、③上沓及び下沓取付ボルトの破断及び抜け出し(P1,P3,P4橋脚)の3通りの損 傷が確認された。そこで、ゴム支承本体の破断耐力、破断変位及びボルトのせん断降伏耐力に着 目して照査を行い、4通りの評価を行った。このうち、せん断キーが荷重を分担すると考えられる ことから、ボルトのせん断耐力を超える支承水平反力が作用した場合でも、必ずしもボルトが破 断するとは判断できないため、「非損傷又は破断」という評価を行っている。

また、考えられる耐力の組合せより4通りの評価区分としたが、大切畑大橋においては、全て の支承部においてゴム支承本体の破断耐力はセットボルト又は取付ボルトのせん断耐力を上回っ ているため、解析上の判定として「ゴム支承本体の破断」は生じない支承部構造となっている。

実際の支承の損傷状態は、A1 橋台及び A2 橋台においてゴム支承本体の破断が生じ、P2 を除く 橋脚では取付ボルトの損傷により上下部構造が分離した。以上を踏まえると、実際の損傷状態は、 解析上の判定として A1 橋台及び A2 橋台は「破断」、P2 を除く橋脚は「非損傷又は破断」に対応 すると考えられる。

(2) 橋脚

橋脚については、地震後に①基部にひび割れ (P1, P3, P4 橋脚), ②基部にひび割れ及び残留変位 (P2 橋脚)が生じる損傷が確認されたことから、応答曲率の大小に応じた評価を行った。なお、許容曲率は、限界状態 2 に相当する曲率である。また、せん断耐力の算出も行ったが、設計式では安全側の結果となるため、損傷の再現性の評価に使用することは適当ではないので、本章では参考値として記載している。

(3) ジョイントプロテクター

ジョイントプロテクターについては、地震後に取付ボルトの破断(A1, A2 橋台)が確認されている。そのため、水平反力を算出し、水平反力により生じる曲げ引張が取付ボルトの引張耐力を超過すれば、取付ボルトが損傷したと評価することとした。

(4) 落橋防止ケーブル

落橋防止ケーブルについては、地震後にケーブルの引張破断(A1橋台)及び変形(A2橋台) が確認されている。そこで、橋軸方向と橋軸直角方向の合成変位として変位を算出し、最大変形 量が遊間と破断変位の和を超過すれば、ケーブルが破断したものとした。ここでは、破断変位と して、ケーブル降伏時の変位を仮定した。

部材	照查式(照查結果)	評価
	以下の①かつ②が成立するとき ①ゴム支承本体の破断耐力>支承水平反力 又は ゴム支承本体の破断変位>支承応答変位 ②取付ボルトのせん断降伏耐力>支承水平反力 又は 上沓又は下沓セットボルトのせん断降伏耐力>支承水平反力	非損傷
古承	以下の①かつ②が成立するとき ①ゴム支承本体の破断耐力>支承水平反力 又は ゴム支承本体の破断変位>支承応答変位 ②取付ボルトのせん断降伏耐力≤支承水平反力 又は 上沓又は下沓セットボルトのせん断降伏耐力≤支承水平反力	非損傷 又は 破断
	以下の①かつ②が成立するとき ①ゴム支承本体の破断耐力≤支承水平反力 又は ゴム支承本体の破断変位≤支承応答変位 ②取付ボルトのせん断降伏耐力>支承水平反力 又は 上沓又は下沓セットボルトのせん断降伏耐力>支承水平反力	ゴム支承 本体の 破断
	以下の①かつ②が成立するとき ①ゴム支承本体の破断耐力≤支承水平反力 又は ゴム支承本体の破断変位≤支承応答変位 ②取付ボルトのせん断降伏耐力≤支承水平反力 又は 上沓又は下沓セットボルトのせん断降伏耐力≤支承水平反力	破断
	応答曲率<ひび割れ曲率	非損傷
桥即	ひび割れ曲率≦応答曲率<降伏曲率	ひび割れ
中心口间上	降伏冊率≦応答曲率<計容曲率 許容曲率≦応答曲率	<u> </u> 基部降伏 許容曲率 を超過
ジョイント	取付ボルトの引張耐力に至る水平力>支承水平反力	非損傷
プロテクター	取付ボルトの引張耐力に至る水平力≦支承水平反力	損傷
落橋防止	最大変形量<遊間+破断変位	非損傷
ケーブル	最大変形量≧遊間+破断変位	損傷

表-5.4.4 解析結果の評価方法

5.5 解析結果

5. 5. 1 Case-1 の解析結果

(1) 解析結果の評価

Case-1における解析結果の評価を表-5.5.1に示す。断層変位のみ作用させる強制変位解析では, 全体的に実際の損傷よりも応答が小さく,地震動と断層変位を両方作用させる必要があると考え られる。

	支承	(橋	橋脚		・トプロ ター	落橋防止 ケーブル	
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
A1 橋台	ゴム支承本 体の破断	非損傷	_	_	損傷	損傷 なし	破断	損傷 なし
P1 橋脚	取付ボルト の損傷	非損傷	基部ひび 割れ	損傷なし				
P2 橋脚	ゴム支承本 体の変形	非損傷	基部ひび 割れ・変形	基部降伏				
P3 橋脚	取付ボルト の損傷	非損傷	基部ひび 割れ	損傷なし	_			
P4 橋脚	取付ボルト の損傷	非損傷	基部ひび 割れ	ひび割れ	_			_
A2 橋台	ゴム支承本 体の破断	非損傷			損傷	損傷	破断	損傷 なし

表-5.5.1 Case-1の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を示す。

(2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.2 に,支承の水平荷重及び変形量(絶対値) を図-5.5.1 に示す。支承反力,変形量ともに線形範囲内で応答しており,損傷は生じないという 解析結果となった。

図-5.5.1 支承の水平荷重及び変形量(絶対値)(Case-1)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。

	,											
支承反力												
田村	A1 1	备台	P1 ∜	喬脚	P2	喬脚	P3 7	僑脚	P4	喬脚	A2	橋口
112 圓	G1	G5	G1	G5								
最大応答値(橋軸方向)(KN)	363	350	244	188	927	808	315	243	445	683	31	327
最大応答値(橋軸直角方向)(KN)	6	6	73	73	90	91	128	127	89	89	92	191
支承ゴム破断耐力(kN)	10	91	22	77	22	LT TT	22	LL	22	77	13,	48
アンカーボルトせん断降伏耐力(kN)	11	98	18	72	21	97	21	67	18	72	15	73
取付ボルトせん断降伏耐力 (kN)	13	81	13	81	13	81	13	81	13	81	13	81
セットボルトせん断降伏耐力(kN)	10	82	24	37	24	37	24	:37	24	37	10	82
支承変形量												
西村	A1 1	备台	P1 ∜	喬脚	P2 ‡	喬脚	P3 7	僑脚	P4	喬脚	A2	橋
[17] 臣	Gl	Gδ	G1	GS	G1	G5	G1	G5	G1	Gδ	Gl	G5
最大応答値(橋軸方向) (m)	0.220	0.211	0.089	0.068	0.190	0.166	0.065	0.050	0.151	0.231	0.015	0.160
最大応答値(橋軸直角方向) (m)	0.005	0.005	0.026	0.026	0.018	0.019	0.026	0.026	0.030	0.030	0.045	0.094
支承ゴムの破断変位 (m)	0.3	60	0.4	50	0.2	:55	0.0	255	0.4	20	0.3	60
支承ゴムの硬化開始変位 (m)	0.3	00	0.3	75	0.2	:13	0.0	213	0.3	50	0.3	00
解析の評価結果	手	員傷	耕非	員傷	排	員傷	排	員傷	手手	員傷	新 非	員傷

表-5.5.2 支承の反力及び変形量の解析結果 (Case-1)

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.3及び表-5.5.4に示す。本章では,照査結 果が最も厳しい柱基部の要素における発生曲率及び発生せん断力(絶対値)を記載した。橋軸方 向について, P2橋脚では降伏曲率を, P4橋脚ではひび割れ曲率を超過しており,実際の損傷と整 合しているが, P1橋脚及び P3橋脚では,損傷しないという評価結果になっており,損傷を過小 推定している。

(a) 橋軸方向の照査結果 (単位:1/m) 橋脚 曲率 ひび割れ曲率 降伏曲率 許容曲率 評価結果 P1 橋脚 5.401×10^{-5} 6.643×10^{-5} 8.406×10^{-4} 1.791×10^{-2} 損傷なし 2.173×10^{-3} 6.140×10⁻⁵ 7.346×10⁻⁴ 1.027×10^{-2} P2 橋脚 基部降伏 P3 橋脚 4.878×10^{-5} 5.387×10^{-5} 6.185×10^{-4} 3.231×10^{-3} 損傷なし P4 橋脚 4.678×10^{-5} 2.685×10^{-4} 5.756×10^{-4} 3.288×10^{-3} ひび割れ

表-5.5.3 曲げ破壊照査 (Case-1)

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	3.782×10^{-5}	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	損傷なし
P2 橋脚	3.901×10 ⁻⁵	3.580×10 ⁻⁵	4.189×10 ⁻⁴	6.009×10 ⁻³	損傷なし
P3 橋脚	1.287×10^{-5}	3.590×10 ⁻⁵	4.061×10 ⁻⁴	1.703×10 ⁻³	損傷なし
P4 橋脚	2.683×10 ⁻⁵	4.678×10 ⁻⁵	5.756×10 ⁻⁴	3.288×10 ⁻³	損傷なし

表-5.5.4 せん断破壊照査(Case-1)

(a) 橋軸方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	1082.0	18963.9	損傷なし
P2 橋脚	4338.7	10558.4	損傷なし
P3 橋脚	1395.4	12938.1	損傷なし
P4 橋脚	2822.1	19132.2	損傷なし

(b) 橋軸直角方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	363.7	18963.9	損傷なし
P2 橋脚	451.4	25906.2	損傷なし
P3 橋脚	636.8	26986.7	損傷なし
P4 橋脚	442.8	19132.2	損傷なし

(4) ジョイントプロテクターの解析結果

図-5.5.2 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。本報 告書では、G1 桁及び G5 桁の結果のみ代表して記載している。A2 橋台側では、水平反力がジョイ ントプロテクターのサイドブロックボルトの引張耐力を超過しており、実際の損傷と整合してい るが、A1 橋台側については、応答変位がサイドブロック遊間内に留まりサイドブロックに衝突し ない結果となっており、応答が過小評価となっている。

(5) 落橋防止ケーブルの解析結果

表-5.5.5 に落橋防止ケーブルの最大変形量を示す。最大変形量は、橋軸方向及び橋軸直角方向の合成変位として算出した。本報告書では、G1 桁及び G5 桁の結果のみ代表して記載している。本検討で使用した落橋防止装置では、遊間長及び破断変位の合計が 701mm であるが、いずれもこれを下回る解析結果となり、実際の損傷と整合しない結果となった。

設置位置	最大変形量
A1 橋台・G1 桁	208 mm
A1 橋台・G5 桁	200 mm
A2 橋台・G1 桁	58 mm
A2 橋台・G5 桁	169 mm

表-5.5.5 落橋防止ケーブルの最大変形量(Case-1)

5. 5. 2 Case-2 の解析結果

(1) 解析結果の評価

Case-2 における解析結果の評価を表-5.5.6 に示す。支承及び落橋防止ケーブルに関して,実際の損傷よりも応答が小さくなる傾向があり,地震動と断層変位を両方作用させる必要があると考えられる。

	+	- च	香助		ジョイン	/ トプロ	落橋	防止
			们的加小		テク	ター	ケー	ブル
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
	ゴム支承本	七担佐			把作	把作	工中座后	損傷
AI 倘口	体の破断	- 作惧饧			損傷	損協	柳文四日	なし
D1	取付ボルト	北铝作	基部ひび	基部				
PI临网	ゆ の損傷 ポ損傷		割れ	降伏				
D2 括即	ゴム支承本	石中時日	基部ひび	基部				
P2 临时	体の変形	和又四日	割れ・変形	降伏				
D2 括即	取付ボルト	非損傷	基部ひび	基部				
P3 临内	の損傷	又は破断	割れ	降伏				
D4	取付ボルト	北归作	基部ひび	基部				
14 16 四月	の損傷	升 顶窗	割れ	降伏				
12 场山	ゴム支承本	非坦作			坦作	铝作	石中序	損傷
A2 間口	体の破断	小 顶饧			│ 損傷 │ 損	頂饧	初又的	なし

表-5.5.6 Case-2 の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を,黄色地部分は実際の損傷状況との 整合性を評価できない結果を示す。 (2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.7に,支承の水平荷重及び変形量(絶対値) を図-5.5.3に示す。また、支承変形履歴並びに支承反力及び変形量の時刻歴応答波形を図-5.5.4 から図-5.5.6に示す。A1橋台、A2橋台、P1橋脚及びP4橋脚では、応答が線形範囲に留まり過 小評価となっている。反対に、P2橋脚では、実際よりも過大に損傷を推定している。また、P3橋 脚では、支承水平反力が取付ボルトのせん断降伏耐力を超過しているが、ゴム支承本体の破断耐 力(変位)は超過していないことから、「非損傷又は破断」という評価になった。

図-5.5.3 支承の水平荷重及び変形量(絶対値)(Case-2)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。

支承反力												
田光	Al	橋台	P1 ∜	喬脚	P2 ∜	畜脚	é Ed	喬脚	₽4 ‡	僑脚	A2 ‡	备台
加厚	G1	G5	Gl	G5	G1	G5	Gl	GS	G1	G5	G1	G5
最大応答値(橋軸方向)(kN)	602	514	<i>LTT</i>	782	904	954	1014	1001	791	747	609	581
最大応答値(橋軸直角方向) (kN)	245	245	541	541	2160	2156	1611	1614	522	522	309	303
支承ゴム破断耐力(kN)	10	161	22	77	22	77	22	77	22	77	13	48
アンカーボルトせん断降伏耐力(KN)	11	98	18	72	21	97	21	97	18	372	15	73
取付ボルトせん断降伏耐力 (kN)	13	81	13	81	13	81	13	81	13	81	13	81
セットボルトせん断降伏耐力 (kN)	10	82	24	37	24	37	24	37	24	37	10	82
支承変形量												
開北	Al	橋台	P1 ‡	喬脚	P2 ∜	喬脚	P3 /	喬脚	P4 ∤	僑脚	A2	漸力
江匡	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5
最大応答値(橋軸方向) (m)	0.311	0.302	0.281	0.283	0.186	0.196	0.208	0.206	0.267	0.252	0.298	0.285
最大応答値(橋軸直角方向) (m)	0.148	0.148	0.196	0.196	0.418	0.418	0.232	0.232	0.177	0.177	0.151	0.148
支承ゴムの破断変位 (m)	0.	360	0.4	50	0.2	55	0.2	255	0.4	t20	0.3	60
支承ゴムの硬化開始変位 (m)	0.0	300	0.3	75	0.2	13	0.2	213	0.3	350	0.3	00
解析の評価結果	丰	損傷	科书	員傷	破	浙	れ X 料	員傷 破断	生	員傷	ま	員傷

表-5.5.7 支承の反力及び変形量の解析結果 (Case-2)

-192-

-193-

図-5.5.5 支承反力の時刻歴応答波形 (Case-2)

■支承変形量

[J.J.J.] 又不及形重的時刻進心各級形(Case-

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.8及び表-5.5.9に示す。曲げ破壊に関する 照査では、橋軸方向については、全ての橋脚基部で降伏曲率を超過しており、実際の損傷と整合 している。橋軸直角方向については、P3橋脚のみに降伏を超過する応答が見られ、その他の橋脚 はひび割れ発生程度の応答となっている。また、せん断破壊に関する照査では、橋軸方向につい て、P3 橋脚の基部で設計上のせん断耐力を超過した。

		(a) 橋軸方	向の照査結果		(単位:1/m)
橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	4.246×10 ⁻³	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	基部降伏
P2 橋脚	4.788×10^{-3}	6.140×10 ⁻⁵	7.346×10 ⁻⁴	1.027×10^{-2}	基部降伏
P3 橋脚	1.876×10^{-3}	5.387×10 ⁻⁵	6.185×10 ⁻⁴	3.231×10 ⁻³	基部降伏
P4 橋脚	7.567×10 ⁻⁴	4.678×10 ⁻⁵	5.756×10-4	3.288×10 ⁻³	基部降伏

表-5.5.8 曲げ破壊照査 (Case-2)

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	6.918×10 ⁻⁴	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	ひび割れ
P2 橋脚	2.084×10^{-4}	3.580×10 ⁻⁵	4.189×10 ⁻⁴	6.009×10 ⁻³	ひび割れ
P3 橋脚	4.325×10^{-4}	3.590×10 ⁻⁵	4.061×10 ⁻⁴	1.703×10 ⁻³	基部降伏
P4 橋脚	3.182×10 ⁻⁴	4.678×10 ⁻⁵	5.756×10 ⁻⁴	3.288×10 ⁻³	ひび割れ

表-5.5.9 せん断破壊照査 (Case-2)

(a) 橋軸方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	5967.3	18389.7	非損傷
P2 橋脚	9894.8	10558.4	非損傷
P3 橋脚	12835.1	11772.5	損傷
P4 橋脚	5282.5	18342.2	非損傷

(b) 橋軸直角方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	4447.9	18963.9	非損傷
P2 橋脚	11329.7	25906.2	非損傷
P3 橋脚	16997.6	26103.7	非損傷
P4 橋脚	5810.5	19132.2	非損傷

(4) ジョイントプロテクターの解析結果

図-5.5.7 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。A1 橋 台側及び A2 橋台側ともに、水平反力がサイドブロックボルトの引張耐力を超過しており、実際 の損傷と整合していた。

(5) 落橋防止ケーブルの解析結果

表-5.5.10に落橋防止ケーブルの最大変形量を示す。最大変形量は,橋軸方向及び橋軸直角方向の合成変位として算出した。本検討で使用した落橋防止装置では,遊間長及び破断変位の合計が701mmであるが,いずれもこれを下回る解析結果となり,実際の損傷と整合しない結果となった。

設置位置	最大変形量
A1 橋台・G1 桁	310 mm
A1 橋台・G5 桁	309 mm
A2橋台・G1桁	340 mm
A2橋台・G5桁	321 mm

表-5.5.10 落橋防止ケーブルの最大変形量(Case-2)

5. 5. 3 Case-3 の解析結果

(1) 解析結果の評価

Case-3 における解析結果の評価を表-5.5.11 に示す。支承では、A1 橋台について実際の損傷と 整合しているものの、P1、P2 橋脚及び A2 橋台では実損傷と整合していない。橋脚については、 全ての橋脚が降伏曲率を超過し、実際の損傷と整合している。ジョイントプロテクターについて は、実際の損傷と整合しているが、落橋防止ケーブルについては、A1 橋台及び A2 橋台ともに損 傷を再現できていない。

	÷	·	 本 即		ジョイン	/トプロ	落橋	防止
		./升	们间几4		テク	ター	ケー	ブル
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
	ゴム支承本	石中座户			归作	旧作	石中座丘	損傷
AI 倘口	体の破断	41文四1			損傷	損協	柳文四日	なし
D1	取付ボルト	北归作	基部ひび	基部				
PI临时	●の損傷		割れ	降伏				
D2	ゴム支承本	工中国后	基部ひび	基部				
P2 临府	体の変形	一般町 割れ・変	割れ・変形	降伏				
D2 括即	取付ボルト	非損傷	基部ひび	基部				
P3 临时	の損傷	又は破断	割れ	降伏				
D4 括即	取付ボルト	非損傷	基部ひび	基部				
14 1 前加	の損傷	又は破断	割れ	降伏				
1.2 坯厶	ゴム支承本	非損傷			坦作	铝作	石中序	損傷
AZ 間口	体の破断	又は破断			— 損傷		破断	なし

表-5.5.11 Case-3 の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を,黄色地部分は実際の損傷状況との 整合性を評価できない結果を示す。 (2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.12 に、支承の水平荷重及び変形量(絶対値)を図-5.5.8 に示す。また、支承変形履歴並びに支承反力及び変形量の時刻歴応答波形を図-5.5.9 から図-5.5.11 に示す。

A1 橋台では,橋軸方向における変形量が支承ゴムの破断変位を超過しており,実際の損傷と整合している。

一方, P1 橋脚は,応答が線形範囲に留まり過小な応答となっている。P2 橋脚は,橋軸方向にお ける変形量が支承ゴムの破断変位を超過しているが,これは実際の損傷と整合していない。

P3 橋脚, P4 橋脚及び A2 橋台では,支承水平反力が取付ボルト又はセットボルトのせん断降伏耐力を超過しているが,ゴム支承本体の破断耐力(変位)は超過していないことから「非損傷又は破断」という評価結果となった。P3, P4 橋脚は実損傷と整合している可能性があるが, A2 橋台は損傷部位が実際の損傷状態と整合していない。

図-5.5.8 支承の水平荷重及び変形量(絶対値)(Case-3)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。

支承反力												
置や	A1	橋台	P1 {	喬脚	P2 ∤	喬脚	P3 7	喬脚	P4	喬脚	A2	喬台
177 目	G1	G5	G1	G5	G1	GS	G1	GS	Gl	G5	G1	G5
最大応答値(橋軸方向) (kN)	1066	1068	836	783	1450	1028	966	926	964	1727	570	1232
最大応答値(橋軸直角方向)(KN)	253	253	584	584	2015	2017	2144	2141	589	589	460	426
支承ゴム破断耐力 (kN)	1	091	22	77	22	77	22	77	22	77	13.	48
アンカーボルトせん断降伏耐力(KN)		198	18	72	21	97	21	97	18	72	15	73
取付ボルトせん断降伏耐力 (KN)	1	381	13	81	13	81	13	81	13	81	13	81
セットボルトせん断降伏耐力(KN)	1	082	24	37	24	37	24	37	24	37	10	82
支承変形量	_		_						_			
田七	A1	橋台	P1 /	喬脚	P2	喬脚	P3 /	喬脚	P4 ∮	喬脚	A2 ‡	御也
177. 匡	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5
最大応答値(橋軸方向) (m)	0.395	0.377	0.303	0.284	0.227	0.211	0.205	0.190	0.326	0.389	0.279	0.351
最大応答値(橋軸直角方向) (m)	0.153	0.153	0.211	0.211	0.471	0.471	0.250	0.250	0.199	0.199	0.225	0.209
支承ゴムの破断変位 (m)	0.	360	0.4	150	0.2	255	0.2	255	0.4	20	0.3	60
支承ゴムの硬化開始変位 (m)	0.	300	0.3	375	0.2	213	0.2	213	0.3	50	0.3	00
# +として ごむ (二・4+ 田	44 72	\•\ 144	+ 1 T	日/信	412	1.1A1	排損修	瘍又は	非損修	募又は	非損傷	専又は
米中派団に出っている中国	一	<u>ال</u>	у Т	貝汤	文正		破	断	破	断	破	新
※A1 橋台については, ①ゴム支承本体の破断変1 承本体の破断」となる。しかし, 5.4.4(1)に 応答変位がゴム支承の破断変位を超えたというこ	位<支承点記載した)	5答変位, (3 通り, ゴム) 承の水平反	<u>③セットボ</u> 支承とセッ 力はセット	ルトのせん トボルトの 、ボルトの	断降伏耐たっ水平耐力	カ>支承水の大小関係	平反力と 利は (ゴム いるはずで	よっている 支承) > 'あり, ②0	ため , 表 -((セットボ))不等号は)	5.4.4 によ レト)とな ぜんあるは	る判定上にっているたずである。	r「ゴム戎 さめ、
次の a), b) の要因によるものと考えられる。a) 算上の分解能の問題による計算誤差により, 計9 b) AI 支承においては, ゴム支承本体の破断耐 セットボルトのせん断耐力も下回る値となった。 のせん断降伏耐力<支承水平反力となるため, 排		(関 を 市 デ 元 本 平 元 元 二 の 調 大 水 平 平 元 元 二 の 調 大 水 平 平 元 元 一 の 調 大 水 平 平 元 元 元 元 一 一 元 元 元 一 一 元 元 一 一 元 元 一 七 た た ん 一 た た ん 一 た た ん 一 た た ん 一 た た ん た し た ん た ん た ん た た ん た し た ん た ん た ん た し た ん た し た ん た し た ん た し た し た し た し た し た し た し た し た し た し し し し し し し し し し し し し	√化した骨 「反力は、」 「「「「「」」」	络線におい 実際のゴム まば等しい □ゴム支 ^須	·て,破断c 支承本体の ため, a) 長本体の破 長本体の破	の点で剛性 2破断耐力 の計算誤ぎ 断変位<対	が急変す。 よりわずか 記により支げ に承応答変	5ために、 シに小さく 承の最大小 位、 ②セッ	積分計 なった。 (平反力が (トボルト	心 承 答 承 ② 反◆		のピークは されない 輝点 メージ)
										+		▶欻位

表-5.5.12 支承の反力及び変形量の解析結果 (Case-3)

-202-

図-5.5.10 支承反力の時刻歴応答波形 (Case-3)

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.13及び表-5.5.14に示す。曲げ破壊に関する照査では、橋軸方向について、全ての橋脚基部で降伏曲率を超過しており、実際の損傷と整合している。橋軸直角方向については、P3橋脚のみに降伏を超過する応答が見られ、その他の橋脚はひび割れ発生程度の応答となっている。また、せん断破壊に関する照査では、橋軸方向のP3橋脚でせん断耐力を超過した。以上の様に、橋脚の損傷判定はCase-2と同様になっている。

(a) 橋軸方向の照査結果 (単位:1/m) 評価結果 橋脚 曲率 ひび割れ曲率 降伏曲率 許容曲率 P1 橋脚 1.629×10^{-3} 6.643×10^{-5} 8.406×10^{-4} 1.791×10^{-2} 基部降伏 9.960×10^{-3} 6.140×10⁻⁵ 7.346×10^{-4} 1.027×10^{-2} P2 橋脚 基部降伏 P3 橋脚 1.371×10^{-3} 5.387×10^{-5} 6.185×10^{-4} 3.231×10^{-3} 基部降伏 基部降伏 P4 橋脚 2.528×10^{-3} 4.678×10^{-5} 5.756×10^{-4} 3.288×10^{-3}

表-5.5.13 曲げ破壊照査 (Case-3)

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	7.928×10^{-4}	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	ひび割れ
P2 橋脚	2.293×10 ⁻⁴	3.580×10 ⁻⁵	4.189×10 ⁻⁴	6.009×10 ⁻³	ひび割れ
P3 橋脚	7.738×10 ⁻⁴	3.590×10 ⁻⁵	4.061×10 ⁻⁴	1.703×10 ⁻³	基部降伏
P4 橋脚	3.747×10^{-4}	4.678×10 ⁻⁵	5.756×10 ⁻⁴	3.288×10 ⁻³	ひび割れ

表-5.5.14 せん断破壊照査 (Case-3)

(a) 橋軸方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果	
P1 橋脚	5682.5	18389.7	非損傷	
P2 橋脚	10472.7	10558.4	非損傷	
P3 橋脚	12537.4	11772.5	損傷	
P4 橋脚	6924.7	18342.2	非損傷	

(b) 橋軸直角方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果	
P1 橋脚 4702.8		18963.9	非損傷	
P2 橋脚	10794.0	25906.2	非損傷	
P3 橋脚	17727.0	26103.7	非損傷	
P4 橋脚	6114.0	19132.2	非損傷	

(4) ジョイントプロテクターの解析結果

図-5.5.12 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。A1 橋台側及び A2 橋台側ともに,水平反力がサイドブロックボルトの引張耐力を超過しており,実際の損傷と整合していた。

(5) 落橋防止ケーブルの解析結果

表-5.5.15 に落橋防止ケーブルの最大変形量を示す。最大変形量は,橋軸方向及び橋軸直角方向 の合成変位として算出した。本検討で使用した落橋防止装置では,遊間長及び破断変位の合計が 701mmであるが,いずれもこれを下回る解析結果となり,実際の損傷と整合しない結果となった。

設置位置	最大変形量		
A1 橋台・G1 桁	360 mm		
A1 橋台・G5 桁	354 mm		
A2 橋台・G1 桁	359 mm		
A2橋台・G5桁	379 mm		

表-5.5.15 落橋防止ケーブルの最大変形量(Case-3)

5. 5. 4 Case-4 の解析結果

(1) 解析結果の評価

Case-4 における解析結果の評価を表-5.5.16 に示す。損傷判定は、全て Case-3 と同様の評価結果になっている。

	支承		橋脚		ジョイントプロ		落橋防止	
					テクター		ケーブル	
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
	ゴム支承本	破断			損傷	損傷	破断	損傷
AI 備口	体の破断							なし
D1	取付ボルト	非損傷	基部ひび	基部	_		_	
PI临时	の損傷		割れ	降伏				
D2	ゴム支承本	破断	基部ひび	基部		_		_
『こ小前加中	体の変形		割れ・変形	降伏				
D2	取付ボルト	非損傷	基部ひび	基部				
P3 1 简称	の損傷	又は破断	割れ	降伏				
D4	取付ボルト	非損傷	基部ひび	基部				
₽4 1 間加中	の損傷	又は破断	割れ	降伏				
1.2 桥山	ゴム支承本 非損傷	非損傷			損傷	損傷	破断	損傷
AL 们向口	体の破断	又は破断						なし

表-5.5.16 Case-4の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を,黄色地部分は実際の損傷状況との 整合性を評価できない結果を示す。 (2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.17 に、支承の水平荷重及び変形量(絶対値)を図-5.5.13 に示す。また、支承変形履歴並びに支承反力及び変形量の時刻歴応答波形を図-5.5.14 から図-5.5.16 に示す。

基本的に Case-3 と同様の傾向であるが, A1 橋台では, 橋軸方向における変形量が支承ゴムの 破断変位を超過しており, 実際の損傷と整合している。

P1 橋脚は、応答が線形範囲に留まり過小な応答となっている。P2 橋脚は、橋軸方向における変 形量が支承ゴムの破断変位を超過する過大な応答となっており、実際の損傷状態と整合しない。

P3 橋脚, P4 橋脚及び A2 橋台は,「非損傷又は破断」となり, P3, P4 橋脚は実損傷と整合している可能性があるが, A2 橋台は損傷部位が実際の損傷状態と整合していない。

図-5.5.13 支承の水平荷重及び変形量(絶対値)(Case-4)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。
支承反力												
	A1	橋台	P1 /	僑脚	P2 7	僑脚	b3	僑脚	P4 ‡	喬脚	A2 7	橋台
间70	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5
最大応答値(橋軸方向)(kN)	1048	1069	849	787	1498	1031	957	878	973	1771	578	1237
最大応答値(橋軸直角方向)(kN)	259	259	573	573	1944	1934	2148	2145	580	580	442	427
支承ゴム破断耐力 (KN)	10	191	22	77	22	77	22	77	22	77	13	48
アンカーボルトせん断降伏耐力(KN)	1	98	18	372	21	67	2]	67	18	:72	15	73
取付ボルトせん断降伏耐力 (kN)	13	81	13	81	13	81	13	81	13	81	13	81
セットボルトせん断降伏耐力(KN)	10	182	24	37	24	37	27	37	24	37	10	82
支承変形量	-											
開行	A1	橋台	P1 7	僑脚	P2 7	僑脚	P3 :	僑脚	P4 ‡	喬脚	A2 7	橋口
17.1 匡	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5
最大応答値(橋軸方向)(m)	0.395	0.380	0.307	0.285	0.228	0.212	0.196	0.180	0.329	0.391	0.283	0.351
最大応答値(橋軸直角方向) (m)	0.157	0.157	0.208	0.208	0.487	0.487	0.251	0.250	0.196	0.196	0.216	0.209
支承ゴムの破断変位 (m)	0.	360	0.4	450	0.2	255	0.0	255	0.4	120	0.3	990
支承ゴムの硬化開始変位 (m)	0.	300	0.0	375	0.0	213	0.0	213	0.3	50	0.3	00
解析の誣価袪里	14比	* *		昌傾	対比	山光	非	員傷	特利	員傷	排制	員傷
	ТХH.	× 1 (4	116	月刻	X/H.		Z (1	破断	又は	破断	又は	破断
※A1橋台の支承の損傷判定は,応答値か	らは「ゴ	ム支承本	本の破断	」と判定	されるが	いこれは	Case-3	上同様に副	计算誤差0	の影響と	考えられ	る。最支
承の大応答変位が支承本体の破断変位を表	留えてい	ることから	5,	の最大応	答反力も	支承本体	この破断雨	计力を超近	画しておう), 支承7	本体の破	新耐力よ

り小さいセットボルトせん断降伏耐力も超過していると判断されるため,損傷判定は「破断」とした。(表-5.5.12の注記参照)

表-5.5.17 支承の反力及び変形量の解析結果(Case-4)

-211-

図-5.5.15 支承反力の時刻歴応答波形 (Case-4)

図-5.5.16 支承変形量の時刻歴応答波形 (Case-4)

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.18及び表-5.5.19に示す。曲げ破壊に関する照査では、橋軸方向又は橋軸直角方向について、全ての橋脚基部で降伏曲率を超過した。また、 せん断破壊に関する照査では、橋軸方向のP2橋脚及びP3橋脚でせん断耐力を超過した。

		(a) 橋軸方	向の照査結果		(単位:1/m)
橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	2.275×10^{-3}	6.718×10 ⁻⁵	7.255×10 ⁻⁴	1.806×10 ⁻²	基部降伏
P2 橋脚	9.611×10 ⁻³	6.156×10 ⁻⁵	7.697×10 ⁻⁴	1.056×10 ⁻²	基部降伏
P3 橋脚	1.391×10 ⁻³	5.402×10 ⁻⁵	6.374×10 ⁻⁴	2.780×10 ⁻³	基部降伏
P4 橋脚	2.680×10 ⁻³	4.679×10 ⁻⁵	5.949×10 ⁻⁴	3.371×10 ⁻³	基部降伏

表-5.5.18 曲げ破壊照査 (Case-4)

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	1.306×10^{-3}	6.718×10 ⁻⁵	7.255×10^{-4}	1.806×10 ⁻²	基部降伏
P2 橋脚	2.459×10 ⁻⁴	3.591×10 ⁻⁵	4.385×10^{-4}	6.179×10 ⁻³	ひび割れ
P3 橋脚	7.775×10^{-4}	3.601×10 ⁻⁵	4.182×10 ⁻⁴	1.450×10 ⁻³	基部降伏
P4 橋脚	4.102×10 ⁻⁴	4.679×10 ⁻⁵	5.949×10 ⁻⁴	3.371×10 ⁻³	ひび割れ

表-5.5.19 せん断破壊照査 (Case-4)

	(a)	橋軸方岡	句の照	查結果	
1.)			<u>, , , , , , , , , , , , , , , , , , , </u>		(1.1

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	4834.4	15286.8	非損傷
P2 橋脚	10313.4	9923.2	損傷
P3 橋脚	12937.7	11075.8	損傷
P4 橋脚	6846.6	15329.6	非損傷

(b) 橋軸直角方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	4989.0	15286.8	非損傷
P2 橋脚	10666.6	24658.9	非損傷
P3 橋脚	16645.8	24859.9	非損傷
P4 橋脚	5520.5	16051.8	非損傷

(4) ジョイントプロテクターの解析結果

図-5.5.17 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。A1 橋台側及び A2 橋台側ともに,水平反力がサイドブロックボルトの引張耐力を超過しており,実際の損傷と整合していた。

(5) 落橋防止ケーブルの解析結果

表-5.5.20に落橋防止ケーブルの最大変形量を示す。最大変形量は,橋軸方向及び橋軸直角方向の合成変位として算出した。本検討で使用した落橋防止装置では,遊間長及び破断変位の合計が701mmであるが,いずれもこれを下回る解析結果となり,実際の損傷と整合しない結果となった。

設置位置	最大変形量
A1 橋台・G1 桁	361 mm
A1 橋台・G5 桁	357 mm
A2 橋台・G1 桁	356 mm
A2橋台・G5桁	381 mm

表-5.5.20 落橋防止ケーブルの最大変形量(Case-4)

5. 5. 5 Case-5の解析結果

(1) 解析結果の評価

Case-5 における解析結果の評価を表-5.5.21 に示す。支承では、P3 橋脚で実際の損傷と整合しているが、それ以外については実際の損傷と整合していない。橋脚については、P2 橋脚は過小な 応答評価となっているが、それ以外の橋脚は実際の損傷状態と整合している。ジョイントプロテクターについては、実際の損傷と整合しているが、落橋防止ケーブルについては、損傷を再現で きていない。

	÷	T.A.	橋脚		ジョイン	ノトプロ	落橋	防止
			FJ/J~ *		テク	ター	ケー	ブル
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
	ゴム支承本	石中座户			归作	归作	石中座丘	損傷
AI 倘口	体の破断	和又四日			頂窗	頂窗	和文内	なし
D1	取付ボルト	北归作	基部ひび	基部				
P1 临时	の損傷	升 顶窗	割れ	降伏				
D2 括明	ゴム支承本	工中国后	基部ひび	ひび				
P2 临时	体の変形	和文内	割れ・変形	割れ				
D2 括即	取付ボルト	石中時日	基部ひび	基部				
P3 16 瓜中	の損傷	和又四日	割れ	降伏				
D4 括即	取付ボルト	北归作	基部ひび	基部				
14 1 而四	の損傷	升 顶窗	割れ	降伏				
1.2 坯厶	ゴム支承本	非坦作			坦作	铝作	石中序	損傷
AZ 間口	体の破断	小 1月饧			頂饧	頂饧	和又的	なし

表-5.5.21 Case-5の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を,黄色地部分は実際の損傷状況との 整合性を評価できない結果を示す。

(2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.22 に、支承の水平荷重及び変形量(絶対値)を図-5.5.18 に示す。また、支承変形履歴並びに支承反力及び変形量の時刻歴応答波形を図-5.5.19 から図-5.5.21 に示す。A1 橋台及び P3 橋脚では、橋軸方向における変形量が支承ゴムの破断変位を超過しており、実際の損傷と整合している。P1 橋脚、P4 橋脚及び A2 橋台では、損傷が生じていない結果になっており、損傷を過小評価している。一方、P2 橋脚では損傷を過大評価となっている。

図-5.5.18 支承の水平荷重及び変形量(絶対値)(Case-5)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。

支承反力												
西州	$A1$ $\stackrel{1}{\rightarrow}$	衝台	P1 持	喬脚	P2	喬脚	P3 /	僑脚	₽4 ‡	僑脚	A2 5	衝亡
117月	G1	GS	Gl	GS	G1	GS	Gl	GS	G1	G5	G1	G5
最大応答値(橋軸方向)(kN)	1085	1089	831	780	904	947	946	881	854	1057	959	1033
最大応答値(橋軸直角方向)(kN)	321	321	593	593	1836	1826	2170	2167	594	594	435	518
支承ゴム破断耐力 (KN)	10	91	22	77	22	77	22	77	22	<i>TT</i>	13	48
アンカーボルトせん断降伏耐力(KN)	11	98	18	72	21	97	21	57	18	:72	15	:73
取付ボルトせん断降伏耐力 (kN)	13	81	13	81	13	81	13	81	13	81	13	81
セットボルトせん断降伏耐力 (kN)	10	82	24	37	24	37	24	37	24	137	10	82
支承変形量												
置空	A1	喬台	P1 ‡	喬脚	₽2 †	喬脚	P3 /	僑脚	∳ †d	僑脚	A2 7	橋台
目元	G1	G5	Gl	Gδ	G1	GS	Gl	GS	Gl	G5	G1	G5
最大応答値(橋軸方向) (m)	0.404	0.386	0.301	0.283	0.186	0.195	0.194	0.181	0.289	0.351	0.328	0.334
最大応答値(橋軸直角方向) (m)	0.194	0.194	0.215	0.215	0.453	0.453	0.333	0.333	0.201	0.201	0.213	0.254
支承ゴムの破断変位 (m)	0.0	360	0.4	50	0.2	255	0.2	255	0.4	120	0.3	360
支承ゴムの硬化開始変位 (m)	0.3	300	0.3	:75	0.2	213	0.2	213	£'0	350	0.3	300
解析の評価結果	破	膨	计书	員傷	破	膨行	碗	膨	¥∃€	員傷	¥∃€	員傷

(Case-5)
の解析結果
び変形量の
支承の反力及
表-5.5.22

-219-

■支承変形量

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.23及び表-5.5.24に示す。曲げ破壊に関する照査では、橋軸方向について、P2橋脚以外の橋脚基部で降伏曲率を超過した。本 Case では P2 橋脚のみ基礎の降伏をモデル化したため、P2の変形は基礎に集中し、柱の応答が抑えられたと考 えられる。これは、橋脚の中で P2橋脚の損傷程度が最も大きい実際の状況とは整合していない。 橋軸直角方向については、P3橋脚のみ降伏曲率を超過した。また、せん断破壊に関する照査では、 橋軸方向の P3橋脚でせん断耐力を超過した。

表-5.5.23 曲げ破壊照査 (Case-5)

		(a) 橋軸方	向の照査結果		(単位:1/m)
橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	1.330×10 ⁻³	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	基部降伏
P2 橋脚	3.072×10^{-4}	6.111×10 ⁻⁵	7.337×10^{-4}	1.026×10 ⁻²	ひび割れ
P3 橋脚	2.204×10 ⁻³	5.387×10 ⁻⁵	6.185×10 ⁻⁴	3.231×10 ⁻³	基部降伏
P4 橋脚	1.742×10 ⁻³	4.678×10 ⁻⁵	5.756×10-4	3.288×10 ⁻³	基部降伏

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	6.882×10 ⁻⁴	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	ひび割れ
P2 橋脚	6.183×10 ⁻⁵	3.560×10 ⁻⁵	4.184×10^{-4}	6.006×10 ⁻³	ひび割れ
P3 橋脚	8.554×10 ⁻⁴	3.590×10 ⁻⁵	4.061×10 ⁻⁴	1.703×10^{-3}	基部降伏
P4 橋脚	3.506×10 ⁻⁴	4.678×10 ⁻⁵	5.756×10 ⁻⁴	3.288×10 ⁻³	ひび割れ

表-5.5.24 せん断破壊照査 (Case-5)

(a) 橋軸方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	5665.8	18389.7	非損傷
P2 橋脚	4794.7	11662.9	非損傷
P3 橋脚	12888.6	11772.5	損傷
P4 橋脚	6773.7	18342.2	非損傷

(b) 橋軸直角方向の照査結果

	. ,		
橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	4972.3	18963.9	非損傷
P2 橋脚	8948.3	25906.2	非損傷
P3 橋脚	17819.6	26986.7	非損傷
P4 橋脚	6101.7	19132.2	非損傷

(4) ジョイントプロテクターの解析結果

図-5.5.22 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。A1 橋台側及び A2 橋台側ともに,水平反力がサイドブロックボルトの引張耐力を超過しており,実際の損傷と整合していた。

(5) 落橋防止ケーブルの解析結果

表-5.5.25 に落橋防止ケーブルの最大変形量を示す。最大変形量は,橋軸方向及び橋軸直角方向 の合成変位として算出した。本検討で使用した落橋防止装置では,遊間長及び破断変位の合計が 701mmであるが,いずれもこれを下回る解析結果となり,実際の損傷と整合しない結果となった。

設置位置	最大変形量
A1 橋台・G1 桁	375 mm
A1 橋台・G5 桁	371 mm
A2 橋台・G1 桁	394 mm
A2橋台・G5桁	352 mm

表-5.4.25 落橋防止ケーブルの最大変形量(Case-5)

5. 5. 6 Case-6 の解析結果

(1) 解析結果の評価

Case-6 における解析結果の評価を表-5.5.26 に示す。地震動又は断層変位の一方のみを作用させる場合と比較すると、支承及びジョイントプロテクターについては、実際の損傷と整合している。一方、橋脚については、全体的に過大に損傷を推定している。

	+	- च	按时	I	ジョイン	>トプロ	落橋	防止
		小	们的小	I	テク	ター	ケー	ブル
	実損傷	解析	実損傷	解析	実損傷	解析	実損傷	解析
A1 橋台 二 P1 橋脚 F P2 橋脚 二 P3 橋脚 F P4 橋脚 F A2 橋台 二	ゴム支承本	工中座后			把作	担伤	工中座后	損傷
AI 倘口	体の破断	和文件川	所 一 一 損傷 新 基部ひび 許容曲 一 割れ 率超過 一 新 基部ひび 許容曲 割れ・変形 率超過 一 協 基部ひび 許容曲 支断 割れ・変形 率超過 協 基部ひび 許容曲 支断 割れ 率超過 協 基部ひび 許容曲 資助れ 率超過 一	損傷	頂饧	柳文四日	なし	
D1	取付ボルト	石中時日	基部ひび	許容曲				
PI而和	の損傷	和又的	割れ	率超過				
D2 括即	ゴム支承本	石中時日	基部ひび	許容曲				
PZ 術師	体の変形	和又四日	割れ・変形	ひび 許容曲 変形 率超過				
D2 长时	取付ボルト	非損傷	基部ひび	許容曲				
P3 临时	の損傷	又は破断	割れ	率超過				
D4 按即	取付ボルト	七担伤	基部ひび	許容曲				
174 作前加中	の損傷	升 顶窗	割れ	率超過				
12 桥山	ゴム支承本	石中時日			归作	归作	石中座丘	損傷
AZ 間口	体の破断	和又的			頂饧	1.1111 1.1111 1.1111111111111111111111	和又的	なし

表-5.5.26 Case-6 の評価結果

※表中,青地部分は実際の損傷状況と一致していない結果を,黄色地部分は実際の損傷状況との 整合性を評価できない結果を示す。 (2) 支承の解析結果

支承反力及び変形量の応答値と耐力の関係を表-5.5.27 に、支承の水平荷重及び変形量(絶対値)を図-5.5.23 に示す。また、支承変形履歴並びに支承反力及び変形量の時刻歴応答波形を図-5.5.24 から図-5.5.26 に示す。A1、A2 橋台及び P1 橋脚では、橋軸方向における変形量が支承ゴムの破断変位を超過しており、実際の損傷と整合している。また、P3 橋脚では、支承水平反力が取付ボルトのせん断降伏耐力を超過しているが、ゴム支承本体の破断耐力(変位)は超過していないことから、「非損傷又は破断」という評価になった。

一方, P2 橋脚はゴム支承本体の破断変位を超える応答となり,実損傷と整合せず過大な応答となっている。P4 橋脚は応答が線形範囲に留まり過小な応答となっている。

図-5.5.23 支承の水平荷重及び変形量(絶対値)(Case-6)

※図中,赤色の丸印は橋軸方向の最大応答値を,緑色の丸印は橋軸直角方向の最大応答値を示す。

支承反力												
田村	Al	衝台	P1 ∲	喬脚	P2 ∮	喬脚	P3 /	喬脚	₽4 ‡	喬脚	A2 #	商
12. 臣	G1	GS	G1	GS	G1	G5	G1	GS	G1	G5	Gl	G5
最大応答値(橋軸方向) (kN)	1083	848	651	662	2163	2216	801	836	838	854	771	1331
最大応答値(橋軸直角方向) (kN)	794	794	1756	1756	1977	1982	2027	2025	952	952	844	582
支承ゴム破断耐力(kN)	10	91	22	77	22	77	22	77	22	77	134	48
アンカーボルトせん断降伏耐力(kN)	11	98	18	72	21	97	21	97	18	72	15′	73
取付ボルトせん断降伏耐力(kN)	13	81	13	81	13	81	13	81	13	81	138	81
セットボルトせん断降伏耐力(kN)	10	82	24	37	24	37	24	37	24	37	108	82
支承変形量												
曲や	Al	衝位	P1 ∲	喬脚	P2	喬脚	P3 /	喬脚	P4 ∤	喬脚	A2 f	商
117. 匡	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5	G1	G5
最大応答値(橋軸方向)(m)	0.384	0.335	0.236	0.240	0.750	0.697	0.164	0.172	0.283	0.289	0.313	0.432
最大応答値(橋軸直角方向)(m)	0.330	0.330	0.772	0.772	0.962	0.962	0.246	0.246	0.322	0.322	0.319	0.285
支承ゴムの破断変位 (m)	0.0	360	0.4	50	0.2	:55	0.2	:55	0.4	120	0.3	60
支承ゴムの硬化開始変位 (m)	0.3	300	0.3	375	2.0	:13	0.2	213	£.0	50	0.3	00
解析の評価結果	一	膨	破	膨	琬	断	実工	員傷 破断	针	員傷	破	浙

表-5.5.27 支承の反力及び変形量の解析結果 (Case-6)

-230-

■支承変形量

図-5.5.26 支承変形量の時刻歴応答波形 (Case-6)

(3) 橋脚の解析結果

曲げ破壊及びせん断破壊に関する照査結果を表-5.5.28及び表-5.5.29に示す。曲げ破壊に関す る照査では、橋軸方向及び橋軸直角方向について、全ての橋脚基部で降伏曲率を超過し、かつ橋 軸方向の P2 橋脚, P3 橋脚及び P4 橋脚並びに橋軸直角方向の P1 橋脚, P3 橋脚及び P4 橋脚では、 許容曲率を超過しており、全ての橋脚について、実際の損傷よりも過大に損傷を推定している。 また、せん断破壊に関する照査では、橋軸方向及び橋軸直角方向について、多くの橋脚でせん断 耐力を超過した。

表-5.5.28 曲げ破壊照査(Case-6) (a) 橋軸方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	1.071×10^{-2}	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	基部降伏
P2 橋脚	3.448×10 ⁻²	6.140×10 ⁻⁵	7.346×10^{-4}	1.027×10^{-2}	許容曲率超過
P3 橋脚	1.885×10^{-2}	5.375×10 ⁻⁵	6.182×10 ⁻⁴	3.237×10 ⁻³	許容曲率超過
P4 橋脚	7.903×10 ⁻³	4.614×10 ⁻⁵	5.737×10 ⁻⁴	3.284×10 ⁻³	許容曲率超過

(b) 橋軸直角方向の照査結果

(単位:1/m)

橋脚	曲率	ひび割れ曲率	降伏曲率	許容曲率	評価結果
P1 橋脚	3.440×10 ⁻²	6.643×10 ⁻⁵	8.406×10 ⁻⁴	1.791×10 ⁻²	許容曲率超過
P2 橋脚	5.836×10 ⁻³	3.580×10 ⁻⁵	4.189×10 ⁻⁴	6.009×10 ⁻³	基部降伏
P3 橋脚	1.807×10^{-3}	3.550×10 ⁻⁵	4.052×10 ⁻⁴	1.715×10^{-3}	許容曲率超過
P4 橋脚	4.167×10 ⁻³	4.678×10 ⁻⁵	5.756×10 ⁻⁴	3.288×10 ⁻³	許容曲率超過

表-5.5.29 せん断破壊照査 (Case-6)

(a) 橋軸方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	18096.9	18389.7	非損傷
P2 橋脚	35893.8	10558.4	損傷
P3 橋脚	58665.8	11772.5	損傷
P4 橋脚	54930.5	18342.2	損傷

(b) 橋軸直角方向の照査結果

橋脚	せん断力 (kN)	せん断耐力 (kN)	評価結果
P1 橋脚	27568.1	18389.7	損傷
P2 橋脚	17293.9	25146.4	非損傷
P3 橋脚	80677.9	26103.7	損傷
P4 橋脚	30971.4	18342.2	損傷

(4) ジョイントプロテクターの解析結果

図-5.5.27 にジョイントプロテクターの橋軸直角方向の水平反力及び変形量の履歴を示す。A1 橋台側及び A2 橋台側ともに,水平反力がサイドブロックボルトの引張耐力を超過しており,実際の損傷と整合していた。

(5) 落橋防止ケーブルの解析結果

表-5.5.30に落橋防止ケーブルの最大変形量を示す。最大変形量は,橋軸方向及び橋軸直角方向 の合成変位として算出した。本検討で使用した落橋防止装置では,遊間長及び破断変位の合計が 701mmであるが,いずれもこれを下回る解析結果となり,実際の損傷と整合しない結果となった。

設置位置	最大変形量
A1 橋台・G1 桁	393 mm
A1 橋台・G5 桁	398 mm
A2橋台・G1桁	459 mm
A2橋台・G5桁	423 mm

表-5.5.30 落橋防止ケーブルの最大変形量 (Case-6)

5.5.7 解析結果の総括

表-5.5.31 に全ケースの解析評価結果を示す。解析結果の評価は、5.4.4 のとおりとした。 (1) 強制変位又は地震動のみを作用させた場合(Case-1, Case-2)

断層変位を想定した強制変位のみを静的に作用させた Case-1 では、ほぼ全ての部材で実際の損 傷状況を再現できておらず、地震動と組み合わせて作用させる必要があることを示唆している。 断層変位を含まない地震動のみを入力した Case-2 では、橋脚及びジョイントプロテクターの損傷 を再現できているが、P2 を除く支承と落橋防止ケーブルについては、実際には損傷しているにも かかわらず、解析上は損傷しないという結果となっており、危険側の推定となっている。

(2) 地震動及び断層変位を両方作用させた場合(Case-3, Case-6)

最も厳しい入力条件を想定した Case-6 では、支承及び橋脚の損傷が過大評価される傾向にある が、安全側に評価していると判断することができ、設計においては地震動及び断層変位の両方を 考慮する方が望ましいと言える。一方、断層変位と地震動を分けて考慮した Case-3 では、橋脚に ついては実際の損傷と整合しているものの、支承の損傷は過大評価しているものも過小評価して いるものもあり実際の損傷状態とは整合していない。

地震動又は断層変位の一方のみを考慮した Case-1 及び Case-2 が損傷を過小評価したことに対して、地震動及び断層変位の両方を考慮した Case-3 及び Case-6 は相対的に安全側の評価をしており、設計上望ましいと考えられる。一方、Case-3 及び Case-6 でも、部材の損傷を十分な精度で再現できていないことから、断層変位を入力するタイミングや方法については更なる検討が必要と考えられる。

(3) 解析モデルの設定を変化させた場合(Case-4, Case-5)

材料強度を設計基準強度及び公称値とした Case-4 は、統計値から算出した推定の実強度を使用 した Case-3 と比較すると、支承や橋脚等の応答値に若干の変化は見られるものの、各部材の損傷 評価には差異が見られず、今回の解析条件では、材料強度の設定方法が損傷評価に与える影響は 確認されなかった。

また, P2 橋脚の基礎の塑性化をモデル化した Case-5 では, Case-3 と比較して P2 橋脚の応答値 に変化は見られたものの, P2 橋脚以外の損傷評価には差が見られなかった。また, Case-5 では, P3 橋脚の損傷評価が実際の損傷と整合しているが, Case-3 及び Case-4 では適切に評価できてい た P1 橋脚の評価が実際の損傷と整合していない。したがって, 今回の解析条件では, 基礎の非線 形特性の設定が損傷の推定精度の向上に対して有意に影響していることは確認されなかった。

以上の解析結果から、断層変位の影響を適切に評価するためには断層変位と地震動は一連の動 的解析の中で同時に入力する必要性があることが示唆された。一方、明確な差が見られなかった 材料強度及び基礎の非線形特性の設定方法については、パラメトリックスタディ等を通じて更な る検討を行う必要がある。

수비수	+	土w 小口 佔			角本行	結果		
~		夫派の損湯	Case-1	Case-2	Case-3	Case-4	Case-5	Case-6
A1	橋台	ゴム支承本体の破断	非損傷	非損傷	破断	破断	破断	破断
P1	「橋脚	取付ボルトの 損傷	非損傷	非損傷	非損傷	非損傷	非損傷	破断
P2	橋脚	ゴム支承本体 の残留変形	非損傷	破断	破断	破断	破断	破断
Р	3橋脚	取付ボルトの 損傷	非損傷	非損傷 又は破断	非損傷 又は破断	非損傷 又は破断	破断	非損傷 又は破断
$\mathbf{P}_{\mathbf{r}}$	4橋脚	取付ボルトの 損傷	非損傷	非損傷	非損傷 又は破断	非損傷 又は破断	非損傷	非損傷
A	2 橋台	ゴム支承本体の破断	非損傷	非損傷	非損傷 又は破断	非損傷 又は破断	非損傷	破断
Р	1橋脚	基部ひび割れ	損傷なし	基部降伏	基部降伏	基部降伏	基部降伏	許容曲率を 超過
Р	2 橋脚	基部ひび割れ 残留変形	基部降伏	基部降伏	基部降伏	基部降伏	いで割れ	許容曲率を 超過
Р	3橋脚	基部ひび割れ	損傷なし	基部降伏	基部降伏	基部降伏	基部降伏	許容曲率を 超過
P	4 橋脚	基部ひび割れ	ひび割れ	基部降伏	基部降伏	基部降伏	基部降伏	許容曲率を 超過
A	1橋台	損傷	損傷なし	損傷	損傷	損傷	損傷	損傷
A	2 橋台	損傷	損傷	損傷	損傷	損傷	損傷	損傷
A	1橋台	破断	損傷なし	損傷なし	損傷なし	損傷なし	損傷なし	損傷なし
A	2 橋台	破断	損傷なし	損傷なし	損傷なし	損傷なし	損傷なし	損傷なし
払	部分は気	実際の損傷状況と	一致していない	結果を, 黄色地	部分は実際の損	第状況との整合↓	生を評価できない	、結果を示す。

表-5.5.31 解析評価結果

-235-

5.6 本章の結論と今後の展望

本章では、橋の耐震設計において比較的簡便に実施できる断層変位評価手法を検討することを 目的に、大切畑大橋の骨組みモデルを作成し、入力条件及び解析モデルの設定を変化させた複数 のケースを対象に実際の損傷状態との比較を行い、解析方法の妥当性を考察した。

入力条件については、断層変位を作用させた後に地震動を作用させる場合が、今回の検討ケー スの中では最も損傷の再現性が高かったものの、支承の損傷を過小に評価する結果が確認された。 一方、地震動の変位のピーク時に断層変位を作用させた場合には、全体的に損傷を過大に評価す る傾向が確認された。また、断層変位の変位方向や変位量、変位速度等が応答解析結果に与える 影響については、本研究では検討していない。断層変位の影響を考慮した設計手法の確立に向け ては、これら断層変位の特性値の設定方法や、断層変位を入力するタイミングについて、さらな る検討が必要である。

一方,解析モデルに適用する材料特性の不確実性が損傷評価結果に与える影響については,明 確な影響は確認されなかった。今回の検討に適用した材料強度は,文献 3)に示される実強度と設 計強度の比率を単純に掛け合わせて推定した単純な仮定となっており,部材強度のばらつきを十 分反映できていないことも要因の一つと考えられることから,今後は,各種材料試験の結果等か ら,材料強度のばらつきを考慮したモデル作成を行い,解析結果に与える影響を検証する必要が ある。また,基礎の損傷に伴う塑性化について,本章の検討に適用した基礎の非線形特性はアド ホックなものであり,より一般的な手法の検討を通じて,解析結果に与える影響を検証する必要 がある。また,今回の検討においては,地震後の調査結果から塑性化した基礎位置が既知であっ たが,設計段階では基礎の損傷に関する情報が未知であり,この点についても今後さらなる検討 を要する。

参考文献

- 1) (公社)日本道路協会:道路橋示方書·同解説 V 耐震設計編, 2017.
- 2) ゴム支承の地震時の性能の検証方法に関する共同研究報告書,共同研究報告書 No.512, 2020.
- 3) 独立行政法人土木研究所:鋼材料・鋼部材の強度等に関する統計データの調査,土木研究所 資料 No.4090, 2008.
- 4) 中尾吉宏,片岡正次郎:平成28年熊本地震の余震観測に基づくサイト増幅特性の分析,第20
 回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論文集,pp.251-256,2017.
- Y. Hata, A. Nozu, K. Ichii: A Practical Method to Estimate Strong Ground Motions after an Earthquake, Based on Site Amplification and Phase Characteristics, *Bulletin of the Seismological Society of America*, Vol.101, No.2, pp.688-700, 2011.
- 6) 気象庁:地方公共団体震度計の波形データ,https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jis hin/1604160125_kumamoto/index2.html#chui(2022年2月9日閲覧)
- 7) Y. Ishii, M. Yamada, S. Yagi, S. Kataoka: Verification of Observation Record of the 2016 Kumamoto Earthquakes by a Soil-Structure System, *The 17th World Conference on Earthquake Engineering*, 2021.
- 8) 岩田知孝:益城町宮園・西原村小森本震記録の解析, https://sms.dpri.kyoto-u.ac.jp/topics/masikinishihara0428ver2.pdf(2022年2月9日閲覧)
- 9) 建設省土木研究所:地盤の地震時応答特性の数値解析法-SHAKE:DESRA-,土木研究所資料 No.1778, 1982.
- 10) 大住道生,中尾尚史,石井洋輔,二宮智大:橋全体系の地震時応答解析における地盤変位の 入力方法に関する実証研究,第23回橋梁等の耐震設計シンポジウム講演論文集,pp.191-198, 2021.

第6章 断層変位を考慮した地震応答解析における

モデル化に関する検討

6.1 本章の概要

本研究では、断層変位の影響を考慮した耐震設計手法の提案に向け、(1)断層変位の影響を受ける 橋の応答に関する知見の拡充、(2)断層変位を考慮した地震応答解析におけるモデル化に関する知見 の拡充、(3)構造の有する不確実性の影響に関する知見の拡充に着目して、損傷状況の観察による考 察(第2章)及び解析的検討(第3章~第5章)を行ってきた。ここでは、上記の(2)の観点から、第 3章から第5章に示した各解析的検討の結果についての比較を行うことで、モデル化の相違が地震応 答解析結果に与える影響について考察を行った。

6.2 比較ケースの整理

第3章から第5章に示した解析の内容を表-6.1.1に示す。表-6.1.1では、モデル化方法、モデル化 の対象範囲、解析種別、入力地震動と入力方法に着目して整理している。表-6.1.1を踏まえ、次に示 す4項目の観点で比較考察を行った。

比較① 断層変位に対する静的応答解析結果の比較(比較 Case: Case1-1, Case2-1)

比較② 同一推定地震動に対する動的解析結果の比較(比較 Case: Case1-4, Case2-2)

比較③ 断層変位の影響を考慮した地震動応答解析結果の比較

(比較 Case : Case1-2, Case1-3, Case2-3, Case2-4, Case2-5. 参考として Case1-4, Case2-2 も比較) 比較④ 支承応答に着目した結果の比較(比較 Case : Case1-4, Case2-2)

比較①から比較③は解析方法や入力地震動がある程度同じ解析ケースを比較することで,解析モデルの相違が応答評価に与える影響を考察することを目的とした着眼点である。比較のための指標は, 第3章に示した橋脚のドリフトγを採用した。ドリフトγの算出式を式 (6.1.1) として再掲する。

$$\gamma = \frac{u}{L} \tag{6.1.1}$$

ここに, γ:ドリフト

u:橋脚基部に対する橋脚天端の相対変位(m)

L:橋脚柱高さ(m)

0	モデル	=	モデル化対象	[]の記載:ホ	オ料特性の設定	È	471 ±	년 1년 미네	入力地震動	地震動
Case	種別	地盤	基礎	橋脚・橋台	上部構造	添架管	1947	斤種 別	※変位/地震動計算方法 は欄外に補足	入力方法
1-1		ソリッ	ソリッド要素	ソリッド要 ま	シェル要素 (床版は含ま	シェル 西 寿	線型	静的解析	強制変位①	地盤モデル底 面に変位分布 を入力
1-2	3次元	「女糸		糸	ない)	女糸	線型	動的解析	推定地震動①(ピー クを含む2.5秒間)	モデル全体に 加速度入力
1-3	FEモデル	N II M		ソリッド亜	ソリッド亜		線型	動的解析	推定地震動① (t=0~18秒)	モデル全体に 加速度入力
1-4		ド要素	ソリッド要素	素	素	_	線型	動的解析	推定地震動②(ピー ク含む10秒間)	モデル全体に 加速度入力
2-1				けい西美「堆	けい西美「堆		非線形	静的解析	強制変位②	多点入力 (全下部構造で 異なる変位)
2-2		_	集約バネ	定実特性値]	定実特性値]	-	非線形	動的解析	推定地震動② (t=0~40秒)	<mark>多点入力</mark> (A1-P2とP3-A2に 分けて2種類の地 震動を入力)
2-3	3次元	—	集約バネ	はり要素[推 定実特性値]	はり要素[推 定実特性値]		非線形	動的解析	送制亦は②たけり	多点入力
2-4	骨組み モデル	—	集約バネ	はり要素 [設計値]	はり要素 [設計値]	—	非線形	動的解析	温制変位 ② どう 後に推定地震動 ② (t=0, 40秒) た3 = 1	(強制変位は至下) 部構造で異な
2-5		—	集約バネ(P2 塑性化考慮)	はり要素[推 定実特性値]	はり要素[推 定実特性値]	—	非線形	動的解析	(1=0~40秒)を入力	る, 地展動はAT- P2/P3-A2に区分)
2-6		_	集約バネ	はり要素[推 定実特性値]	はり要素[推 定実特性値]	_	非線形	動的解析	推定地震動②(t=0 ~40秒)と強制変位 ②を同時に入力 ※ 強制変位は推定地震 動の変位最大時刻に 入力.	<mark>多点入力</mark> (強制変位は全下 部構造で異な る, 地震動はA1- P2/P3-A2に区分)
*	強制変	位①	:国土地理院制	震源断層モデ	ル ¹⁾ を用いてO	kada式 ²⁾	こより推定	こした地表変	位の空間分布.(第3	章 参照)

表-6.1.1 解析ケース一覧

 ※ 強制変位① :国土地理院震源断層モデル¹を用いてOkada式²により推定した地表変位の空間分布.(第3章参照)
 強制変位② :地震後に測量にて計測した各下部構造天端位置(橋脚梁及び橋台橋座部)の残留変位.(第5章参照)
 推定地震動① :震源由来の長周期パルス. Asano and Iwata³による震源モデルを用いた有限差分法⁴⁾により推定した 工学的基盤面における地震動のピーク時波形.(第3章参照)
 推定地震動② :サイト特性置換法⁵⁾により推定したA1橋台付近及びA2橋台付近の地表面地震動波形.(第5章参照)

応答解析結果の比較指標としては、その他、上部構造の応答や支承応答なども考えられるが、ここでは損傷状態との比較も念頭に橋脚の応答に着目して比較を行うこととした。なお、第5章に示した Case2 シリーズの解析では橋脚の応答を曲率で評価したが、3次元ソリッド要素を用いてモデル化した Case1 シリーズとの比較にあたって、別途ドリフトを算出した。

比較④は、対象橋梁の代表的な損傷である支承の破断に着目し、支承の応答挙動を比較することを 目的とした。モデル化方法以外の差異の影響を極力小さくするため、入力条件が概ね等しい動的解析 である Case1-4 と Case2-1 を比較ケースとした。

比較ケース(比較①~比較④)ごと比較考察の結果を次節に示す。

6.3 解析結果の比較考察

6.3.1 断層変位に対する静的解析結果の比較(比較①)

本項では、断層変位を静的に考慮した場合の橋梁の応答評価を比較する。比較対象の Case1-1 は地盤も含めてモデル化した 3 次元 FE モデル, Case2-1 は道路橋の設計で一般的に用いられている 3 次元 フレームモデル(基礎と地盤の抵抗は集約バネでモデル化)である。

入力断層変位は、Case1-1 については、国土地理院による震源断層モデル¹⁾を用いて Okada 式²⁾ に より推定した地盤の変位分布をモデル化した地盤の底面に入力している。Case2-1 については、地震後 の対象橋梁の測量による下部構造間の相対残留変位を、強制変位として3次元フレームモデルの各下 部構造の下端節点に入力している。

Case1-1 と Case2-1 の解析による橋脚のドリフトを図-6.1.1 に示す。同図には、道路橋示方書(以下、「道示」と呼ぶ) V 編 ⁶ に準じて算出した柱基部降伏時、及び橋脚の限界状態 2 に相当する変位時のドリフト及び実損傷の程度も併記している。併せて、Case1-1 の各下部構造位置での地盤の水平変位(A1橋台に対する相対変位)及び Case2-1 の各橋脚基部への入力断層変位を図-6.1.2 に示す。

図-6.1.2 静的解析における入力断層変位の比較(A1 橋台を基準とした各下部構造の相対水平変位)

図-6.1.1 より, Case1-1 は P1, P4 橋脚で限界状態 2 相当のドリフトの 2 倍程度の応答が生じ, P2 橋脚は基部降伏程度のドリフト, P3 橋脚は基部降伏の 40%程度のドリフトとなっている。Case2-1 は P2 橋脚の応答が最も大きく基部降伏程度のドリフトが生じているが, P1, P3, P4 は P2 橋脚と比較し て 3.2%~18%程度と小さいドリフトとなっている。

Case1-1 と Case2-1 を比較すると、Case1-1 のドリフトが Case2-1 の 1.3 倍~59 倍と応答が大きい傾向が見られる。また、橋脚ごとのドリフトの大小関係は、P1、P4 橋脚が大きくその間の橋脚が小さい Case1-1 と、P2 橋脚が大きく他が小さい Case2-1 とで傾向が逆になっている。

断層変位(図-6.1.2)を比較すると、向きについて EW 方向は概ね一致しているが、NS 方向には逆の傾向が見られた。ただし、P2 橋脚のみ傾向が異なり、EW 方向に逆向きで、NS 方向の向きは一致している。全体的な傾向として西向きに変位している傾向は一致していると言える。なお、Case2-1の入力断層変位は測量に基づく橋梁の支間方向の伸張量から算出した A1 橋台に対する各下部構造の相対変位である。

断層変位と橋脚のドリフトを比較すると、Case1-1の断層変位量の方が Case2-1 よりやや小さい傾向 が見られる一方で、前述の通り Case1-1 の方がドリフトが大きい傾向にある。Case1-1 では Case2-1 で 考慮していない鉛直方向の変位も入力していることが影響している可能性が考えられる。Case1-1 で は考慮している鉛直変位は、10mm~138mm となっている(A1 橋台を基準にして上方向に P1:10.6mm, P2:23.0mm, P3:59.7mm, P4:79.9mm, A2:138mm)。また、Case2-1 で P2 橋脚のドリフトが卓越 する原因として、P2 橋脚の入力断層変位方向が他の橋脚と異なることが影響していると考えられる。

次に実際の橋脚の損傷状態と比較する。橋脚の損傷状態は、第2章に示したように、P2橋脚が最も 顕著で最大4.0mm幅のひび割れが柱基部に密な間隔で生じ、かぶりコンクリートのうきが発生してい た(柱基部の降伏を超え限界状態2に至らない程度の範囲の状態と想定される)。一方、P1、P3、P4 橋脚はひび割れ幅0.2mm~1.0mmであり、相対的に軽微な損傷となっている。P2橋脚の損傷が、橋梁 の中で相対的に大きいという傾向はCase2-1に一致するものの、Case2-1は全体的に降伏に至らない小 さな応答となっており、過小に応答が評価されていると言える。一方、Case1-1は限界状態2を超える ような応答が算出されており、過大な応答となっていると言える。

以上より,静的に断層変位を考慮した解析では,実際の損傷状態に整合した結果は得られず,また, 断層変位の推定値や橋梁のモデル化方法によって結果が大きく異なることが確認された。断層変位に ついては,鉛直方向変位も橋脚の応答に一定の影響を及ぼしている可能性が考えられる。

6.3.2 同一推定地震動に対する動的解析結果の比較(比較2)

本項では同じ方法で推定した地震動入力に対する動的解析の結果を比較する。比較対象とした Case1-4のモデルは地盤及び下部構造については Case1-1と同一であるが、上部構造については床版を 含めた断面剛性が等価な梁部材としてモデル化している(適用要素はソリッド要素,**第4章**参照)。 Case2-2のモデルは前節の Case2-1 と同一である。入力地震動はサイト特性置換法⁵により推定した架 橋位置近傍の地震動を用いている。なお、地震動の推定は、A1 橋台近傍の地震動、A2 橋台近傍の地 震動をそれぞれ推定し(図-6.1.3)、Case2-2 では A1~P2 に A1 近傍の推定地震動を、P3~A2 に A2 近傍の地震動をそれぞれ入力している。一方、Case1-4 では下部構造毎の加速度入力ができないため、 モデル全体に A1 橋台近傍の推定地震加速度を入力している。また、解析時間は、Case2-2 は地震動全 体の 40 秒間の解析を行っているが、Caes1-4 は解析モデルのデータサイズが大きいことから入力加速 度ピークを含む 10 秒間の解析としている。Case2-2 と比較して解析時間は短いが、ピーク時の地震動 波形を含んでおり、主要な応答は適切に評価できると考えられる。

Case1-4 と Case2-2 の解析による橋脚のドリフトを図-6.1.4 に示す。図-6.1.1 と同様に柱基部降伏時,及び橋脚の限界状態2に相当する水平変位時のドリフト等も併記している。図-6.1.4 より Case1-4 は全ての橋脚で限界状態2相当のドリフトの2倍程度以上の応答が生じている(P1:5.3 倍, P2:1.8 倍, P3:1.7 倍, P4:7.1 倍)。Case2-2 は全ての橋脚で基部降伏程度のドリフトが生じている。

Case1-1 と Case2-1 を比較すると、Case1-1 のドリフトが Case2-1 の 3.2 倍~11 倍と応答が大きい傾向が見られる。また、橋脚ごとのドリフトの大小関係を見ると、前節の静的解析の結果に類似しており、P1、P4 橋脚が大きくその間の橋脚が小さい Case1-4 と、P2 橋脚が最も大きい Case2-2 とで傾向が逆になっている。

図-6.1.5 Case2-2 に対する入力地震動と Case1-4 におけるフーチング下面位置での振動 の応答スペクトル

実際の損傷状態と比較すると、Case2-2の応答が P1、P2 橋脚が降伏を超過、P3、P4 橋脚が基部降伏 程度であり概ね損傷状態と整合する結果となっている。Case1-4の応答が大きい傾向は、前項の静的解 析と同様であった。Case1-4 では地盤までモデル化しており、地盤による地震動応答の増幅も影響して いると考えられる。そこで、Case1-4 における、入力地震動加速度波形とフーチング下面位置での加速 度波形の応答スペクトルを図-6.1.5 に示す。各加速度波形を二重積分して算出した変位波形の応答ス ペクトルも同図に併記した。同図より、地盤による地震動の増幅が確認され、これが Case2-2 に比較 して Case1-4 の応答が大きくなった要因の一つと考えられる。

以上より、同一方法で推定した地震動を用いた動的解析では、地盤のモデル化の有無に応じて地盤 による増幅の影響が応答評価に影響を及ぼすことが確認された。橋脚の応答の傾向が、橋梁のモデル 化方法によって大きく異なる点は前項の静的解析の結果と同様であった。実際の損傷との比較では、 橋脚のドリフトのみに着目すると Case2-2 が比較的損傷状態と整合していたが、第5章に示したよう に支承等その他の損傷の状態は整合していない点に留意が必要である。

6.3.3 断層変位の影響を考慮した地震動応答解析結果の比較(比較③)

前項までは断層変位及び地震動を個別に考慮した解析結果の比較を示した。本項では断層変位の影響を含む地震動に対する動的解析結果について比較を行う。

断層変位の影響を考慮した入力は、Case1-2、Case1-3 では Asano and Iwata³⁾ による震源モデルを用いた有限差分法⁴⁾ により推定した地震動を用いている。この推定地震動は断層変位を含んだものとなっている。解析時間は、解析モデルのデータサイズ等も踏まえて、Case1-2 が地震動のピークを含む

2.5 秒間, Case1-3 が初めの 18 秒間でこれもピークを含んでいる。Case2-3~2-6 では, Case2-1 に用いた断層変位を強制変位として入力した状態を初期状態として Case2-2 で用いたサイト特性置換法による地震動に対する動的解析を行っている。解析時間は Case2-2 同様に 40 秒である。Case2-6 では, Case2-2 で用いたサイト特性置換法による地震動と Case2-1 の入力条件とした断層変位を同時に入力した動的解析を実施した。地震動の加速度波形を二重積分した時刻歴変位波形のピーク時刻に Case2-1 の入力変位が 1 秒間で漸増付与される様に合成した時刻歴変位波形を作成し, これを入力とした動的解析を実施している。

解析モデルは、Case1-2 は Case1-4 と同様に地盤を含む FE モデルであるが、上部構造は主桁、横桁、 対傾構、横構及び添架管をシェル要素でモデル化している一方、床版はモデル化していない。Case1-3 は Case1-4 と同一のモデルである。Case2 シリーズは、モデル化に用いた要素種別や要素分割が全て同 一であるが、Case2-4 のみ材料特性に公称値等の設計値を用いている。他の Case は、材料特性として、 既往の統計データを基に推測した実値を用いている。また、Case2-5 は現地調査により損傷が確認され た P2 橋脚基礎の塑性化を模擬し、基礎ばねに非線形特性を与えている。

各 Case の橋脚のドリフトを図-6.1.6 に示す。参考として,前項に示した,断層変位を含まない地 震動入力に対する応答である Case1-4, Case2-2 も含めて整理している。

各 Case 間の比較をすると、Case2 シリーズと比較して Case1 シリーズの応答が大きい傾向が見られ る。これは前項までの比較と同様の傾向である。ただし、Case2 シリーズのうち Case2-6 のみ傾向が異 なり、Case1 シリーズと同等かそれ以上の応答が生じている。また、限界状態2 に相当するドリフト と比較して 1.4 倍~7.9 倍の応答となっており、応答評価としては過大な評価となっていると考えられ る。Case2-6 は、サイト特性置換法により推定した地震動に断層変位を地震動のピークに合わせて重ね て入力するケースであり、Case2 シリーズで最も厳しい入力条件と想定したものである。以上の結果 は、この想定に整合する結果と言える。Case1 シリーズの応答が大きい傾向には、図-6.1.5 に示した ような地盤による地震動の増幅も影響していると推測される。

図-6.1.6 断層変位の影響を考慮した地震動応答解析結果の比較
Casel シリーズでは、有限差分法による地震動を入力とした Casel-2、1-3 と比較してサイト特性置換法による Casel-4 が大きい応答となっている。第3章で考察した様に、入力地震動の位相特性等に応じた橋脚毎の応答の位相のばらつきが要因の一つと考えられる。また、Casel-4 の入力地震動はサイト特性置換法により推定した設計上の地盤面における地震動であり、地盤による地震動の増幅の影響が含まれるものであるが、図-6.1.5 に示したようにモデル化した地盤によりさらに増幅されていると考えられ、その影響で応答が大きくなっていることも考えらえる。

Case2 シリーズでは、サイト特性置換法による地震動のみを入力した Case2-2 と比較して Case2-3, 2-4 は、P2、P4 橋脚の応答がやや大きく P1、P3 橋脚の応答は同等程度である。Case2-3、2-4 は Case2-2 に Case2-1 の断層変位を初期条件として強制変位として与えたものであり、Case2-1 (図-6.1.1) で 断層変位の影響が比較的大きい P2、P4 橋脚で応答が大きくなり、断層変位の影響が比較的小さい P1、 P3 橋脚では大きな影響がなかったと考えることができる。なお、Case2-3 と Case2-4 の相違点である 材料特性値の影響は顕著ではないが、推定の実値(公称値より大きい)を用いた Case2-3 の応答がや や小さい傾向が見られる。一方、Case2-5 については、P2 橋脚以外は Case2-3、2-4 と同様の傾向であ るが、P2 橋脚のみ傾向が異なり応答が大きく低減している。これは、Case2-5 のみ P2 橋脚基礎の塑性 化を考慮したことが要因と考えられる。

実際の損傷状態と比較すると、Case2-6 は前述の通り、過大な傾向が見られる。また、Case1 シリーズの全ての橋脚、及びCase2-3、2-4のP2 橋脚、P4 橋脚は限界状態2を超える応答となっており、これも損傷状態と比較すると過大である。一方、Case2-3~2-5のP1 橋脚、P3 橋脚は基部降伏程度の応答であり橋脚の損傷状態とは整合が見られるが、第5章に示したように支承の応答などその他の部材の再現性には課題がある。6.3.1項、6.3.2項で考察したような断層変位の推定方法(鉛直方向の有無も含む)の影響や、モデル化した地盤による地震動の増幅の影響の他、地震動の推定方法や断層変位の考慮の仕方の違いによる影響も大きく、応答評価結果は大きくばらつくことが確認された。

6.3.4 支承応答に着目した解析結果の比較(比較④)

ここまでは橋脚のドリフトを指標に各 Case の比較考察を行ってきた。本項では、対象橋梁の顕著な 損傷の1つである支承部の損傷に着目し、支承の動的応答変位を指標に比較考察を行う。まず、前項 と同様に動的解析の結果(Case1-2~Case1-4, Case2-2~Case2-6)について、支承の最大応答変位を比 較する。次に、同じ方法で推定した地震動入力に対する動的解析である Case1-4 と Case2-1 を対象に、 支承の動的応答の比較として、水平面内での変位方向に着目して比較を行う。

始めに動的解析による支承の最大応答変位を図-6.1.7に示す。同図には、支承の損傷状況との比較の参考としてせん断ひずみ 250%時及び 300%時の変位も併記している。なお、Case2 シリーズの支承応答変位について、第5章では、橋軸方向及び橋軸直角方向それぞれに対して支承をモデル化したばね要素の応答変位を示して考察を行ったが、ここでは Case1 シリーズとの比較のため、橋軸方向と橋軸直角方向の変位を合成した水平変位を指標に考察している。

各 Case を比較すると、図-6.1.6 と同様に Casel シリーズの応答が Case2 シリーズと比較して大き いが、Case2-6 のみ傾向が異なっている。ただし、Case2-6 で応答が大きいのは P1 橋脚, P2 橋脚のみ で P3 橋脚, P4 橋脚の応答はその他の Case2 シリーズと同程度である。Case2 シリーズは支承の破断 をモデル化しており、Case2-6 では P1 橋脚, P2 橋脚で支承が破断したことから応答変位が大きくなっ ている。P3 橋脚, P4 橋脚の支承は解析上破断していない。Case1 シリーズは支承の破断はモデル化し おらず、支承は弾性部材としてモデル化されているが、応答変位は Case2 シリーズより大きい結果と なっている。これは図-6.1.6 で考察した様に、地盤による地震動の増幅等が影響していると考えられ る。なお、Case1-2 の応答が小さいが、これは Case1-2 のみ床版がモデル化されておらず、その影響に よる慣性力の相違が、支承応答に顕著に表れたものと考えられる。

実際の損傷状態は、P2 橋脚以外で支承が破壊している。この結果を再現できた解析 Case は無かった。図-6.1.6 での考察のように、各種要因による応答評価のばらつきが大きいと考えられる。ここで

は、損傷状態との比較も念頭に支承の最大応答変位に着目して比較を行った。次に変位挙動(時刻ご との変位方向)に着目して比較を行う。比較は、同じ方法で推定した地震動入力に対する動的解析で ある Case1-4 と Case2-2 を対象に行った。

まず,支承破断の順序を図-6.1.8 に示す。同図は,第4章の図-4.6.2 に合わせて入力加速度波形に 重ねて支承が破断するタイミングを縦線で示している。Casel-4 は第4章に基づき各支承がせん断ひ ずみ250%に達した時刻を,Case2-2 は第5章に基づき支承が破断に至った時刻をそれぞれ示している。 図-6.1.8 より,Casel-4 の方が Case2-2 と比較して早いタイミングで支承の破断に至っていることが 分かる。両者で破断している支点部の数も異なるものの,P2,P3支承が先に破断し,A1支承が最後 に破断している点は一致している。Casel-4 では支承の破断をモデル化していないため,破断後の支承 の応答は評価できない。そこで,第4章の図-4.6.4 に準じて,A2 橋台の支承が破断する 1.7 秒までの 間の支承応答について,Casel-4 と Case2-2 を比較することとする。

支承水平変位のリサージュ曲線(時刻 t=0 秒~1.7 秒)を図-6.1.9 に示す。同図では、Case1-4 の応答が相対的に大きいことが分かる。変位方向の推移を比較するため、0.2 秒ごと表示時間を延ばして描画したグラフを図-6.1.10~図-6.1.15 に示す。

図-6.1.10~図-6.1.15 より, Case1-4 と Case2-2 を比較して,部分的に変位方向に類似性が見られ る時刻もあるものの,両者に明確な相関は見られなかった。各支承部において,変位挙動に類似性が 見られた点を以下に列記する。

- A1 支承部(図-6.1.10) については, 0.4 秒前後の変位方向には類似性が見られる。1.2 秒~1.7 秒 において, 向きは異なるが時計回りに回転している方向性は一致している。
- P1 支承部(図-6.1.11) については, 0.6 秒~1.0 秒において, 向きは異なるが反時計回りに回転 する方向性は一致している。
- P2 支承部(図-6.1.12) については、0.6 秒~1.0 秒において、南方向に移動してから反転して北 方向に移動し、再度反転して南方向に移動する方向性は一致している。1.0 秒~1.4 秒において、 向きは異なるが、時計回りに回転する方向性は一致している。
- P3 支承部(図-6.1.13) については、0.6 秒~1.0 秒において、南方向に移動してから反転して北方向に移動し、反時計回りに回転する方向性は一致している。
- P4 支承部(図-6.1.14) については, 0.2 秒~0.4 秒の最初の変位方向は北向きで一致している。
- A2 支承部 (図-6.1.15) については、明確な類似性は確認できない。

図-6.1.10 A1 橋台の支承水平変位リサージュ曲線の時間変化

図-6.1.11 P1 橋台の支承水平変位リサージュ曲線の時間変化

図-6.1.12 P2 橋台の支承水平変位リサージュ曲線の時間変化

図-6.1.13 P3 橋台の支承水平変位リサージュ曲線の時間変化

図-6.1.14 P4 橋台の支承水平変位リサージュ曲線の時間変化

図-6.1.15 A2 橋台の支承水平変位リサージュ曲線の時間変化

6.4 総括

本章では、断層変位を考慮した地震応答解析におけるモデル化に関する知見の拡充を目的に、第3 章~第5章に示した解析結果の比較考察を通して、地震動や断層変位の推定方法の違い、また解析モ デルや断層変位入力方法等の解析条件の違いなどが応答評価結果に与える影響について考察を行った。 得られた知見を以下に示す。

- 1) 静的に断層変位を考慮した解析(Case1-1, 2-1)の比較より、地表断層変位の推定値や橋のモデル 化方法によって結果が大きく異なることが確認された。また、地表断層変位として鉛直方向の変 位成分も一定の影響を及ぼしている可能性が考えられた。鉛直方向の地表断層変位も含め、地表 断層変位の不確実性が応答解析結果に与える影響は大きいと考えられる。地表断層変位を推定し て応答解析を行う場合であっても、解析結果は大きな不確実性を有することに留意が必要である。
- 2) 同一方法で推定した地震動を用いた動的解析(Case1-4, 2-6)の比較より、地盤のモデル化の有無に応じて地盤による増幅の影響が応答評価に影響を及ぼすことが確認された。地震動の推定及び対象構造系のモデル化においては、地盤による地震動の増幅をどこで考慮するのかを明確にする重要性が再確認されたと言える。
- 3)時刻歴応答解析結果(Case1-2~1-4, Case2-2~2-6)の比較では、地震動の推定方法や断層変位の 考慮の仕方の違いによる影響も大きく、応答評価結果は大きくばらつくことが確認された。現時 点では、長周期パルスや地表断層変位の影響を一定の信頼性をもって評価することは困難と言え る。橋梁の設計において、長周期パルスや地表断層変位の影響の解析的な評価を試みる場合にお いても、解析結果の有する大きな不確実性に留意し、不測の事態への対応を考えることが必要と 考えらえる。
- 4) 同一方法で推定した地震動を用いた動的解析(Case1-4, 2-2)について、支承の応答評価を比較す ると、支承損傷のタイミングは異なるが、損傷順序について P2, P3 橋脚が先に破断し、A1 橋台 が最後に破断している点は一致していた。ただし、タイミングのばらつきは前述 3)の様に地震 動及び地表断層変位の推定方法や解析条件の相違による影響が大きいと考えられ、3)同様、評価 結果には大きな不確実性が含まれることに留意が必要である。
- 5) 同一方法で推定した地震動を用いた時刻歴応答解析(Case1-4, 2-2)の比較では、変位方向に部分 的な類似性は確認されるものの、全体として両 Case に明確な相関は確認されなかった。これにつ いても、前述 3)の通り、地震動及び地表断層変位の推定方法、解析条件等の違いの影響が大きい と考えられる。

以上のように、断層変位の影響を含む強震動に対する応答解析を行う場合、モデル化方法の差異が 結果に与える影響は、損傷評価結果を大きく変える程度に大きいことが確認された。断層近傍に計画 される橋梁の設計等において断層変位の影響を不測の事態として解析的に考慮しようとする場合、モ デル化による不確実性の大きさに十分留意する必要がある。特に、これらの影響についての解析的評 価結果を確定的にとらえることは、危険側の判断となる可能性が無視できず、解析結果を超える又は 解析結果と異なる応答が生じる可能性を常に念頭に置く必要があると考えられる。このような想定に 対する対応として、例えば、橋の損傷形態や損傷が進展するシナリオを考え、多角的・多重的なリス ク対応を検討することも有効であると考えられる。

参考文献

- Kobayashi, T., Yarai, H., Kawamoto, S., Morishita, Y., Fujiwara, S., and Hiyama, Y.: Crustal deformation and fault models of the 2016 Kumamoto earthquake sequence: foreshocks and main shocks, In: Freymueller J., Sanchez L. (eds), *International Symposium on Advancing Geodesy in a Changing World*, *International Association of Geodesy Symposia*, Vol.149. Springer, Cham, DOI 10.1007/1345 2018 37,
- Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, *Bulletin of the Seismological Society of America*, Vol.75, No.4, pp.1135-1154, 1985.
- Asano, K., and Iwata, T.: Source Rupture Processes of the Foreshock and Mainshock in the 2016 Kumamoto Earthquake Sequence Estimated from the Kinematic Waveform Inversion of Strong Motion Data, *Earth, Planets and Space*, 68:147, 2016.
- 4) Aoi, S., and Fujiwara, H.: 3-D Finite Difference Method Using Discontinuous Grids, *Bulletin of the Seismological Society of America*, Vol.89, pp.918-930, 1999.
- 5) Y. Hata, A. Nozu, K. Ichii: A Practical Method to Estimate Strong Ground Motions after an Earthquake, Based on Site Amplification and Phase Characteristics, *Bulletin of the Seismological Society of America*, Vol.101, No.2, pp.688-700, 2011.
- 6) 日本道路協会:道路橋示方書・同解説 V 耐震設計編, 2017.

第7章 損傷シナリオを考慮した断層変位対策

に関する解析的検討

7.1 検討の背景

7.1.1 シナリオデザイン設計法の概要

道路橋示方書(以下「道示」という。)V編¹⁾に規定される設計地震動は,過去の地震被害の経 験や調査研究を基に地震動特性等のばらつきの影響を考慮して設定されているが,設計地震動を 上回る地震動が発生する可能性は否定できない。また,近年では地震動以外に,津波,斜面崩壊 等,断層変位といった地震動に付随する事象が道路橋に影響し,大きな被害が発生している。

こうした設計で想定しない作用に対する構造物のレジリエンスに関する理論的検討^{2),3)}や作用 の不確実性を想定した具体的な構造に関する検討^{4,7)}はなされているが, 危機耐性の考え方をふま えた一般性のある設計法の体系と, これを基に個別の構造物の具体的な諸元を決定するための設 計方法を提案するには至っていない。このような背景のもとで,筆者らは,従来の道路橋の耐震 設計を通じて確保されてきた耐震性能を担保しつつ,設計での想定を超える作用(以下,超過作 用と呼ぶ。)に対しても,できるだけその機能が損なわれない,又は仮に損われても速やかに機能 回復できる構造を実現する設計体系として,「シナリオデザイン設計法」を提案し⁸⁻¹⁰⁾,その実現 手段として耐力階層化鉄筋を用いた RC 橋脚に関する研究を行ってきた^{11),12)}。

限界状態設計法を基礎とする現在の耐震設計の枠組みでは,設計作用に対して構造物の応答が 限界状態を超えないことの信頼性を照査する。このとき,構造物に関わる様々な不確実性は部分 係数で考慮される。即ち,道示においては,作用に関する不確実性は荷重係数や荷重組み合わせ 係数で,構造物の応答や抵抗に関する不確実性は調査・解析係数や部材・構造係数,抵抗係数で それぞれ考慮される。

一方,津波,斜面崩壊等,断層変位の影響は,現状では設計計算で具体的に想定されない。こ れは,これらの作用は部分係数によりその不確実性に対応して構造物に抵抗特性を確保させる限 界状態設計法により対処すべき作用ではなく,別の方策で対応するという設計思想によると考え られる。別の方策として,道示では,その影響を受けないような架橋位置とすること等が挙げら れている。この様な設計思想の背景には,津波,斜面崩壊等,断層変位の影響の様な作用は,不 確実性が現状では明らかではないことも含めて作用の定量的な評価方法が確立されていないこと や,極めて大きい作用が生じることも想定されるこれらの作用に対して構造物の抵抗特性を確保 することには限界があるとの判断がある¹⁾。

以上の様に、現在の耐震設計では対処できない不測の作用に対しては、限界状態設計法による 設計ではない別の対応が必要となり、その対応策の一つとして、シナリオデザイン設計法が位置 づけられる。シナリオデザイン設計法は、超過作用を受けた場合の橋の破壊モードや部材等の破 壊する順序を制御することで、橋が崩壊に至るまでに想定される過程(シナリオ)のうち、相対 的に望ましいシナリオへの誘導を図ることを目的とする。シナリオデザイン設計法の概要を、超 過作用として設計地震動を超える強度の地震動(以下,超過地震動と呼ぶ。)を想定した場合を例 として図-7.1.1 に示す⁸⁾。

シナリオデザイン設計法では、まず従来の設計と同様、架橋位置や橋長、橋梁形式の選定等を 行った上で、具体的な諸元を決める設計を行う。そのうえで、超過地震動のレベルに応じた橋の 損傷モードを確認し、崩壊に至るまでの過程を検証する。さらに、崩壊に至るまでの過程におい て、橋の損傷に係るクリティカルエレメントを抽出、選定する。ここで、レベル2地震動が作用 した場合に、橋脚基部の塑性化を許容する設計をした橋脚を例に考える。このような橋では、レ ベル2地震動を上回る地震動が作用した場合、橋脚基部の塑性変形が進展し、最終的には橋脚の 倒壊や橋全体の崩壊に至る。したがって、橋脚基部に塑性化を考慮する橋では、橋脚基部がクリ ティカルエレメントであると言える。

最後に、シナリオごとのクリティカルエレメント及び破壊モードをふまえて、望ましいシナリ オの選定を行う。前述の橋脚基部に塑性化を許容した橋を例に説明すると、図-7.1.2に示すよう に、超過地震動により橋脚基部の塑性変形が進行し、橋脚が倒壊することは望ましいシナリオと は言えない。一方、レベル2地震動までは橋脚基部の塑性化を許容し、超過地震動に対しては、 橋脚の塑性変形がさらに進展する前に支承部が先行して破壊するように耐力を増加させることに より過大な橋脚の変形を抑制することで、致命的な被害一即ち望ましくないシナリオーを回避す ることが出来る。このように、崩壊に至るまでのシナリオは複数想定されるが、その中で最も望 ましいシナリオの選定を行う。また、一般に作用する外力や各部材の耐力には不確実性やばらつ きが伴うため、確定論的にシナリオの選定を行った後、部材の破壊尤度を制御し、シナリオの転 換を図るようにする。

図-7.1.1 シナリオデザイン設計法の概要⁸⁾

図-7.1.2 シナリオデザイン設計法の考え方⁸⁾

以上の様に、シナリオデザイン設計法は、道示 V 編¹)に規定される現行の耐震設計の枠組みを 拡張した設計法であり、設計地震動に対しては、現行の耐震設計と同等の耐震性能を確保し、さ らに超過地震動等の設計で想定しない作用に対しては、シナリオの選定を通じて、できるだけ機 能が損なわれない、又は仮に損われても速やかに機能回復できるような構造の実現を図るもので ある。

7.1.2 耐力階層化鉄筋の概要

崩壊に至るまでのシナリオを検討し、そのうち最も望ましいシナリオを選定するにあたって、 損傷を特定の部材に意図的に誘導する必要がある。そのためには、設計段階において、各部材の 耐力を階層的に設定し、破壊する順序を制御する必要がある。橋脚基部の塑性化を許容する橋の 場合、超過作用に対して、例えば橋脚が限界状態3を超える前に支承部を破壊することで、致命 的な被害を回避することが可能となる。この例では、橋脚が限界状態2を超え、限界状態3を超 えない範囲での応答に対して、支承部が破壊するようにするため、橋脚の水平抵抗力(限界状態 2相当)、支承部の水平耐力、橋脚の水平抵抗力(限界状態3)の順に耐力を階層化する必要があ る。一方、通常のRC橋脚の場合、限界状態2を超えた後、橋脚の耐力が大きく増加することは ないため、支承部の破断耐力を橋脚の限界状態2相当の荷重及び限界状態3相当の荷重の間に設 定することは困難である。

そこで、上記のような耐力階層化を実現するために、通常の軸方向鉄筋とは別に耐力階層化鉄筋を導入する方法が検討されてきた^{11),12)}。なお、ここでは、橋脚高さが一定の連続桁橋で、上部 構造が RC 単柱式橋脚と支承により支持されている橋梁を想定している。耐力階層化鉄筋の考え 方のイメージを図-7.1.3に示す。耐力階層化鉄筋は、フーチング埋込部及び柱内部の一部分の付 着を切り、下端部に遊間を設けており、橋脚の変位が限界状態2に相当する変位に至った後に始

図-7.1.3 耐力階層化鉄筋の考え方 12)

めて作動し,限界状態3に至る前に橋脚耐力を増加させる構造となっている。通常のRC橋脚に このような遊間を設けた耐力階層化鉄筋を配置することで,設計作用に対しては現行の設計法で 確保している性能と同等の性能が確保される。さらに,限界状態2を超える応答に対して,耐力 階層化鉄筋により増加する橋脚の耐力が支承部の耐力を上回り,超過作用が作用した場合でも, 支承部に損傷が誘導され,橋脚が限界状態3に至るような致命的な被害を回避することが可能に なる。耐力階層化鉄筋を用いることで,部材間の耐力を階層化し,望ましいシナリオへの転換を 図ることが可能になる。

7.1.3 断層変位を想定したシナリオデザイン

本章で対象とする断層変位を想定したシナリオデザインの考え方について,図-7.1.4 に示す。 ここでは、上部構造が支承を通じて単柱式 RC 橋脚に支持される構造を想定している。

図-7.1.4 断層変位を想定したシナリオデザインのイメージ

道路橋に,地震動に加えて断層変位が作用する場合でも,現行の耐震設計¹の枠組みでは,種々 の安全余裕が考慮されていることから,一定程度の断層変位までは,限界状態を超えない範囲で の橋脚基部の塑性化に留まると考えられる。しかしながら,断層変位の変位量が更に大きくなる と,橋脚に作用する水平力が増加し,橋脚の倒壊など,橋全体の崩壊につながる致命的な被害が 発生するおそれがある(図中「対策を行わない場合」)。

これに対して,耐力階層化鉄筋を導入し,支承部に損傷を誘導したうえで,橋座部を拡幅して, 上部構造の落橋を抑止する構造とした場合を考える。一定以下の断層変位までは,限界状態を超 えない範囲の橋脚の塑性化に留まる点は同様であるが,より大きな断層変位に対しては,橋脚の 倒壊に至るより前に支承部が破断し,それ以降は橋脚に作用する水平力が増加しないことから, 致命的な被害には至らないと考えられる(図中「損傷制御を行う場合」)。このように,支承部に 損傷を誘導するような設計とすることによって,致命的な被害に至りにくい,より望ましいシナ リオへの転換が可能になると期待される。そこで,本章では,断層変位を含む地震動入力に対す る耐力階層化鉄筋の有効性を確認することを目的に解析的検討を行った結果を示す。

7.2 検討方法

7.2.1 検討目的

耐力階層化鉄筋を導入することで、断層変位が作用した場合に、橋脚の倒壊等の致命的な被害 を回避する(致命的な被害に至らないシナリオへと転換する)ことが可能になると期待される。 そこで、本章では、地震動及び断層変位を想定した変位を入力した動的解析を行い、断層変位に 対する耐力階層化鉄筋を用いた構造の有効性を検証することを目的とした。

7.2.2 検討フロー

本章の検討フローを図-7.2.1 に示す。モデル構築においては、「道路橋の耐震設計に関する資料」¹³⁾に示される鋼 5 径間連続桁橋を基として、各橋脚に耐力階層化鉄筋を適用した構造とした (7.3 節)。次に、作用させる地震動及び断層変位の設定方法や断層位置に関する検討を行った (7.4節)。地震動及び断層変位が作用した時の各部材の応答から、断層変位に対する耐力階層化 鉄筋を用いた構造の有効性を検証した(7.5節)。

注)括弧内に本章の該当節を示している

7.2.3 解析方法

本章における解析では、地震動及び地表断層変位が下部構造基部に作用する仮定でモデル化した入力条件に対する時刻歴応答解析を行った。解析モデルは7.3節に示す3次元骨組みモデルとし、入力条件は7.4節に示すように設定した。解析にはTDAPIIIを用い、時間積分はNewmark 法(β=0.25)、反復条件は残差力ノルムが1.0×10⁻⁶以下になる又は反復回数が200回までとした。

7.3 解析モデル

7.3.1 対象橋梁及びモデル化の概要

本章での検討の対象とする橋梁の一般図を図-7.4.1 に,また解析に用いるモデルの概要を図-7.4.2 にそれぞれ示す。対象橋梁は、「道路橋の耐震設計に関する資料」¹³⁾に示される鋼5径間連続桁橋とし、7.1節に示したシナリオデザインを適用して橋脚に耐力階層化鉄筋を適用し、超過作用に対して支承部に損傷を誘導させる構造とした。

耐力の階層化の状況を以下に示す。橋脚は、「道路橋の耐震設計に関する資料」¹³から断面寸法 は変更せず、道示 V 編 ¹に基づく静的解析による照査を満足するように配筋を見直したうえで、 階層化鉄筋を追加する構造とした。支承部の破壊部位は、早期復旧の観点から支承アンカーボル トに損傷を誘導することとし、「橋脚」「支承アンカーボルト」「耐力階層化鉄筋作動後の橋脚」の 間で耐力の階層化を行うこととした。耐力比は、橋脚の応答が限界状態2を超えて限界状態3に 至らないまでの間に支承アンカーボルトが破断するように、既往の載荷実験から求めた支承アン カーボルト及び橋脚の耐力のばらつきより、文献8)に準じて設定した。即ち、支承アンカーボル ト耐力が、限界状態2における橋脚耐力の1.15倍以上、かつ耐力階層化鉄筋による耐力増加後の 橋脚耐力が支承アンカーボルト耐力の1.15倍以上とした。

以上の耐力階層化の結果,橋脚の橋軸方向の水平耐力は,耐力階層化鉄筋の作動前が7,301 kN, 作動後が10,575 kN(支承アンカーボルト水平耐力の1.16 倍),橋軸直角方向の耐力が16,155 kN となった(7.3.3 項)。また,橋脚の支承アンカーボルト水平耐力は9,144 kN(橋脚耐力の1.25 倍)となった(7.3.5 項)。なお,対象橋梁の柱寸法では,橋軸直角方向の橋脚耐力が支承アン

図-7.3.2 解析モデル概要

カーボルトの破断耐力よりも大きいことから、耐力階層化の対象とはしていない。

この対象橋梁について、地表断層変位を含む地震動が作用した際の動的応答を解析的に評価す るために、図-7.3.2に示すように橋全体系を3次元骨組みモデルとしてモデル化することとした。 上部構造、橋脚、橋台の各構造をはり要素で、支承及び基礎はばね要素でモデル化した。また耐 力階層化鉄筋を別途モデル化し、桁-橋台間の衝突、パラペットの破壊及び橋台背面土の抵抗も 考慮したモデル化とした。各モデル化の詳細は次項以降に述べる。

7.3.2 上部構造のモデル化

上部構造は,1本の線形はり要素としてモデル化した。上部構造断面は図-7.3.1(b)に示した通りである。断面諸元を表-7.3.1に示す。なお,要素分割については,支間を2分割する節点配置とした。

	項目	諸元	諸元	
上部構造重量		30,790 kN	断面積	0.5880 m ²
慣性力	橋軸方向	0.0 m	面内断面2次モーメント	0.1883 m ⁴
作用高	橋軸直角方向	2.5 m	面外断面2次モーメント	7.1713 m ⁴
ヤング係数		2.00×10 ⁵ N/mm ²	ねじり定数	0.0069 m ⁴
せん断弾	生係数	$7.69 \times 10^4 \text{ N/mm}^2$	—	_

表-7.3.1 上部構造諸元

7.3.3 橋脚のモデル化

橋脚は、文献 13)に示されている図-7.3.1(c)の橋脚を基として、現行の設計基準で地震時保有 水平耐力法による照査を満足するように、図-7.3.3、表-7.3.2 に示すように軸方向鉄筋は D35 (SD345),帯鉄筋は D22 (SD345) に鉄筋の径及び材質を変更し、コンクリートの設計強度は 24N/mm²とした。なお,再設計にあたっての1橋脚あたりの上部構造死荷重は,文献14)に示さ れる実測値と設計値の比の平均値(実測値/設計値=1.043)により実際の上部構造死荷重を推定 して用いた.また,材料特性は文献15)に基づき,表-7.3.2注)に示す実測値と設計値の平均値 を用いて推定した実強度を用いた.

橋脚のモデル化は線形はり要素を基本とし,塑性ヒンジ領域(柱基部から804.4mmまでの区間) のみ道示 V編¹⁾に基づく M- Ø関係(武田モデル)を設定した非線形はり要素を適用した。橋脚の 降伏曲げモーメントは 7,301 kN, せん断耐力は 15,233 kN である。橋脚モデルを図-7.3.4 に示す。 耐力階層化鉄筋のモデル化は次項に示す。

図-7.3.3 橋脚断面図

表-7.3.2	橋脚諸元
諸元	項目
II 種地般	上部構造死荷重

項目	諸元	項目	諸元
地盤種別	II 種地盤	上部構造死荷重	7,262 kN
地域区分	A1	活荷重	2,550 kN
支承条件	分散ゴム支承	L1 分担重量	7,262 kN
梁高さ	2.5 m	L2分担重量	7,262 kN
躯体高さ	7.5 m	慣性力作用高さ	0.25 m
躯体断面高さ	2.2 m	_{乳計水亚電} L1	0.25
躯体断面幅	5.0 m	して前小平辰 一度の博準値 L2 タイフ	° I 1.30
基礎形式	場所打ち杭	度の標準値 L2 タイフ	° II 1.75
コンクリート圧縮強度	30.2 N/mm ²	注)材料特性値及び上音	『工死荷重は,以下の
コンクリートヤング率	2.81×10 ⁴ N/mm ²	比率 14), 15)を使用して推済	則した実値とした。
鉄筋材質	SD345	項目	実値/設計値(平均)
鉄筋降伏強度	393 N/mm ²	鉄筋ヤング率	0.9529
鉄筋ヤング率	1.91×10 ⁵ N/mm ²	鉄筋降伏強度	1.14
軸方向鉄筋径	D35-2 段	コンクリート圧縮強度	1.26
帯鉄筋径 (中心間隔)	D22 (150 mm)	上部構造重量	1.043

7.3.4 耐力階層化鉄筋のモデル化

耐力階層化鉄筋は, D51 (SD490)を橋軸方向に対して軸方向鉄筋に合わせて配置した (図-7.3.3)。 モデル化にあたっては,各耐力階層化鉄筋が塑性ヒンジ領域(柱基部から804.4mmの区間)で機 能するものとして,この間を非線形ばね要素で1本ずつモデル化した。各耐力階層化鉄筋は,鉄 筋の荷重変位関係を表す修正 M-P モデル¹⁶⁾で荷重変位関係を与えた非線形ばね要素と,耐力階層 化鉄筋の定着部の挙動(引張側の遊間と圧縮荷重を負担しない挙動)を再現するための非線型ば ね要素(以下「トリガー要素」という。)を直列に接続することでモデル化した(図-7.3.5).トリ ガー要素は,耐力階層化鉄筋の下端部に配置した二重節点を結ぶ要素として遊間をモデル化して いる。ここで,階層化鉄筋定着部の遊間は,事前に行ったプッシュオーバー解析の結果から,限 界状態2を超えた時点で耐力階層化鉄筋が作動するように設定し,12.8mmとしている。

項目	諸元	項目	諸元		
引張側鉄筋本数(呼び径)	37本(D51)	—			
遊間	12.8 mm	_			
塑性ヒンジ長	0.8044 m	注) 材料特性値は, 以	下の比率 ¹⁵⁾ を使用して		
鉄筋降伏強度	41,900 kN	推測した実値とした。			
鉄筋ヤング率	1.91×10 ⁵ N/mm ²	項目	実値/設計値(平均)		
1本あたりばね定数	4.80×10 ⁵ kN/m	鉄筋ヤング率	0.9529		
降伏時変形量	2.36 mm	鉄筋降伏強度	1.14		

表-7.3.3 耐力階層化鉄筋の諸元

7.3.5 支承部のモデル化

(1) モデル化の方針

支承は,文献 13) に基づき,全支点を積層ゴム支承とした。支承条件は,橋台の支承では橋軸 方向を弾性,橋軸直角方向及び鉛直方向を固定に,橋脚の支承では橋軸方向及び橋軸直角方向を 弾性,鉛直方向を固定とした。積層ゴム支承は,支承アンカーボルト破断後にベースプレートと 沓座モルタル間の摩擦力のみ負担するように,非線

形ばね要素を用いてモデル化した(図-7.3.6).

橋台及び橋脚上の積層ゴム支承の諸元は,文献 13)と同様の諸元としており,1基あたりのせん断 剛性は,橋台の支承は1,672 kN/m,橋脚の支承は 4,817 kN/mと設定し,1支承線の支承数を合計した 値を支承アンカーボルトの破断耐力とした。

支承ばねは,橋軸方向と橋軸直角方向に独立して 設定しており,橋軸方向及び橋軸直角方向でアンカ ーボルトの破断は連動していない。

図-7.3.6 積層ゴム支承の非線形モデル

項目	橋脚	橋台		
橋軸方向有効寸法	680 mm	530 mm		
橋軸直角方向有効寸法	680 mm	530 mm		
一層あたりのゴム層厚	24 mm	24 mm		
一基あたりのゴム層数	4 層	7 層		
せん断弾性係数	1.0 N/mm ²	1.0 N/mm ²		
支承基数	5 基	5 基		
一次形状係数	7.1	5.5		
二次形状係数(橋軸)	7.1	3.2		
二次形状係数(橋軸直角)	7.1	3.2		
一基あたりせん断剛性	4,817 kN/m	1,672 kN/m		

表-7.3.4 積層ゴム支承の諸元

注)解析モデルのせん断剛性は、別途実施した材料試験から得られた実値/設計値(=1.44) を乗じた値を用いた

(2) 支承の破断耐力の設定

支承は、7.3.1項で述べたように、支承アンカーボルトで破断させるものとし、その水平耐力は、耐力階層化鉄筋が機能していない橋脚耐力の1.15倍以上として設定する。支承アンカーボルトの諸元を表-7.3.5に示す。なお、橋台位置の支承アンカーボルトについては、レベル2地震動が作用した時の橋軸方向水平荷重(2,432kN)及び橋軸直角方向水平荷重(4,440kN)並びに250% せん断ひずみ時荷重(5,056kN)を比較し、最も大きい荷重である250%せん断ひずみ時荷重に対して破断しないように諸元を決定した。

支承アンカーボルト破断後の摩擦抵抗力については,表-7.3.6に示すように,死荷重解析時に おける各支承の鉛直反力に対して,動摩擦係数を乗じた値を使用する。なお,動摩擦係数の値は 別途実施した実験結果から 0.56 とした[®]。

項目	橋脚	橋台
アンカー径	42 mm	28 mm
アンカーボルト本数	4本	6本
支承数	5 基	5 基
実せん断強度	330 N/mm ²	330 N/mm ²
アンカーボルト耐力	9,144 kN	6,096 kN

表-7.3.5 支承アンカーボルトの諸元

表-7.3.6 支承アンカーボルト破断後の摩擦抵抗力

項目	P1, P4	P2, P3	A1, A2
鉛直反力	7,086 kN	6,346 kN	2,733 kN
摩擦抵抗力	3,968 kN	3,554 kN	1,531 kN
アンカーボルト耐力	9,144 kN	9,144 kN	6,096 kN
破断時変位	0.2637 m	0.2637 m	0.5064 m
初期降伏変位	0.1144 m	0.1025 m	0.1272 m

7.3.6 橋台のモデル化

(1) モデル化の方針

橋台躯体及びパラペットの諸元を表-7.3.7に示す。橋台躯体の断面寸法及びコンクリートのヤング係数は,文献13)に記載されている曲げ剛性から推定し,コンクリートのせん断弾性係数は道示 III 編¹⁷⁾ に基づいて算出した。また,パラペットの断面高は文献13)と同様の値を使用し,断面幅は橋台躯体と同じ値とした。

図-7.3.7に橋台及びパラペットの解析モデルの概要を示す。橋台及びパラペットは,線形はり 要素としてモデル化した。また,パラペットについては,次に示すように,パラペット基部での 破壊を非線形ばね要素(以下「曲げ破壊ばね」という。)でモデル化することとした。

	1 /2 1	
項目	橋台躯体	パラペット
断面高	2.0 m	0.6 m
断面幅	12.0 m	12.0 m
高さ	5.1 m	2.9 m
コンクリートヤング係数	2.35×10 ⁴ N/mm ²	2.35×10 ⁴ N/mm ²
コンクリートせん断弾性係数	1.02×10 ⁴ N/mm ²	1.02×10 ⁴ N/mm ²

表-7.3.7 橋台躯体及びパラペットの諸元

図-7.3.7 橋台及びパラペットの解析モデル

(2) パラペットの曲げ破壊のモデル化

パラペットでは、計算上、桁の衝突に伴う曲げ破壊がせん断破壊に先行することから、図-7.3.8 のようにパラペット基部に曲げ破壊ばねを設定した。曲げ破壊ばねの諸元を表-7.3.8に示す。曲 げ破壊ばねは二重節点ばねとして、基部に M-0 ばねを設定し、桁がパラペットに衝突する方向の みに非線形特性(履歴吸収なし)を設定した。

(a) モデルの概要
(b) 曲げ破壊ばねの骨格曲線
図-7.3.8 パラペットの曲げ破壊ばねのモデル化

項目	値
パラペット断面高	0.6 m
パラペット断面幅	12.0 m
断面二次モーメント	0.216 m ⁴
ヤング係数	2.35×10 ⁴ N/mm ²
曲げ剛性	$5.08 \times 10^{6} \mathrm{N} \cdot \mathrm{m}^{2}$
降伏曲げモーメント	6105.4 kN∙m
桁衝突反力作用高	2.5 m
曲げ降伏時反力	2442.16 kN
降伏変位	0.002506 m
降伏回転角	0.001002 rad
M-0 ばね剛性	6.091×10 ⁹ N·m/rad

表-7.3.8 曲げ破壊ばねの諸元

(3) 橋台背面土抵抗のモデル化

背面土ばねの概要を図-7.3.9 に,諸元を表-7.3.9 に示す。背面土ばねは,既往資料¹⁸⁾を参考 に,N値=15,粘着力*c*=0, せん断抵抗角φ=30°,単位体積重量γ=18kN/m³と仮定し,ばねの引 張側には抵抗せず圧縮側のみ履歴吸収を描く非線形ばね要素とした。ばねの初期剛性及び地盤反 力の上限値は,表-7.3.9に示すように,深さごとに算出した。

表-7.3.9 背面土ばねの諸元

土の	単重(k	基重(kN/m ³) 粘着力(kN/m ²) 地表載		地表載荷(l	地表載荷(kN/m²) 水平大反力係		向地盤 (kN/m ³)	受動土圧係数					
	18			0		0		20,495		3.505			
ばね	深度	受動土	Ē	有効全	割増	水平支持力	水平ば	水平ば	地盤反力	ばね初	ばね降伏		
No.	(m)	(kN/m ²)		面幅(m)	係数	の上限値	ね影響	ね影響	上限值	期剛性	変位(m)		
						(kN/m^2)	幅(m)	長(m)	(kN)	(kN/m)			
1	0.000	0		12	1.000	0	12	0.2000	0	49,188	0.0000		
2	0.400	25		25		12	1.017	25	12	0.8250	248	202,900	0.0012
3	1.650	104		1.650 104		12	1.069	111	12	1.8875	2514	462,111	0.0054
4	4.175	263		12	1.174	309	12	1.9000	7045	467,285	0.0151		
5	5.450	344		12	1.227	422	12	1.2750	6457	313,573	0.0206		
6	6.725	424		12	1.280	543	12	1.2750	8308	313,573	0.0265		
7	8.000	505		12	1.333	673	12	0.6375	5148	156,787	0.0328		

7.3.7 基礎のモデル化

基礎-地盤の抵抗は、図-7.3.10 に示すように、基礎の重心位置に連成項を0としたばね(基礎 ばね)を設置することでモデル化した。基礎ばねの諸元は、文献13)を基に、表-7.3.10 に示す連 成項を0とした時のばね定数の値を算出した。

橋軸方向の各ばね定数 橋軸直角方向の各ばね定数 基礎 減衰 水平方向 鉛直方向 回転方向 水平方向 鉛直方向 回転方向 位置 定数 $(\times 10^6 \text{kN/m})$ $(\times 10^6 \text{kN/m})$ $(\times 10^7 \text{kN} \cdot \text{m/rad})$ $(\times 10^6 \text{kN/m})$ $(\times 10^6 \text{kN/m})$ $(\times 10^7 \text{kN} \cdot \text{m/rad})$ 3.593 6.142 4.749 0.2 A1 3.593 6.142 8.802 P1 2.763 4.012 3.201 2.763 4.012 3.201 0.2 P2 2.763 3.201 2.763 4.012 3.201 0.2 4.012 P3 2.763 4.012 3.201 2.763 4.012 3.201 0.2 2.763 P4 4.012 3.201 2.763 4.012 3.201 0.2 3.593 6.142 4.749 6.142 8.802 0.2 A2 3.593

表-7.3.10 基礎ばねの諸元

7.3.8 桁-橋台間の衝突ばねのモデル化

桁及び橋台の衝突を考慮するために,資料^{13),18)}に基づき,初期遊間を有する衝突ばねを設定した。衝突ばねの概要を図-7.3.11 に,諸元を表-7.3.11 に示す。

表-7.3.11 衝突ばねの諸元

項目	値
桁断面積	0.588 m ²
ヤング係数	2.00×10 ⁵ N/mm ²
桁長	200 m
剛性比	2
要素分割数	10
衝突ばね剛性	1.176×10 ⁷ kN/m
初期遊間	250 mm

7.3.9 減衰のモデル化

固有値解析は、全体系モデルから各非線形ばね(耐力階層化鉄筋、パラペットの曲げ破壊ばね、 背面土ばね、桁-パラペット衝突ばね)を除いたモデルで実行した。表-7.3.12に固有周期0.10秒 以上の固有モードの固有値解析結果の一覧を示す。固有値解析の結果、橋軸方向卓越モードは1 次及び13次、橋軸直角卓越モードは2次、9次及び15次であった。図-7.3.12に示すとおり、こ れらのモードに対して過減衰とならないように、橋軸方向の1次モード及び橋軸直角方向の9次 モードの組み合わせである Rayleigh 型減衰を設定した。

また,既往の研究²⁰⁾で指摘されているように,橋脚の質量及び塑性ヒンジの減衰力を考慮した 場合,耐力階層化が適切に行うことが出来ないことから,ここでは,橋脚の質量及び塑性ヒンジ 部の減衰力を考慮しないモデルとした。

	\land	田右垣動粉	田右田畑	エード演奏	刺激係数		有効質量			累積有効質量			亚進3万回	
	\backslash	回行版動效	回伯阿朔	1 1 194 3C	Х	Y	Z	Х	Y	Z	Х	Y	Z	主条積有効 質量比
		(Hz)	(s)	(%)	(-)	(-)	(-)	(kN)	(kN)	(kN)	(%)	(%)	(%)	(%)
	1	0.96	1.04	5.26	62.0	0.0	0.0	3843.0	0.0	0.0	50.0	0.0	0.0	16.5
	2	1.05	0.95	6.42	0.0	0.0	56.0	0.0	0.0	3138.0	50.0	0.0	40.0	30.0
	3	1.53	0.65	2.12	0.0	8.1	0.0	0.0	64.8	0.0	50.0	1.0	40.0	30.3
	4	1.68	0.60	2.16	-0.3	0.0	0.0	0.1	0.0	0.0	50.0	1.0	40.0	30.3
	5	1.75	0.57	4.59	0.0	0.0	0.0	0.0	0.0	0.0	50.0	1.0	40.0	30.3
	6	2.05	0.49	2.28	0.0	14.4	0.0	0.0	207.1	0.0	50.0	4.0	40.0	31.2
	7	2.48	0.40	2.42	-0.4	0.0	0.0	0.1	0.0	0.0	50.0	4.0	40.0	31.2
	8	2.83	0.35	2.55	0.0	-39.7	0.0	0.0	1576.0	0.0	50.0	24.0	40.0	38.0
	9	3.25	0.31	6.06	0.0	0.0	25.5	0.0	0.0	652.4	50.0	24.0	49.0	40.8
	10	3.92	0.25	11.05	0.0	0.5	0.0	0.0	0.3	0.0	50.0	24.0	49.0	40.8
	11	3.94	0.25	11.05	1.1	0.0	0.0	1.2	0.0	0.0	50.0	24.0	49.0	40.8
	12	3.94	0.25	11.04	0.0	0.1	0.0	0.0	0.0	0.0	50.0	24.0	49.0	40.8
	13	3.98	0.25	10.78	-33.9	0.0	0.0	1151.0	0.0	0.0	64.0	24.0	49.0	45.7
	14	4.42	0.23	14.11	0.0	0.0	0.0	0.0	0.0	0.0	64.0	24.0	49.0	45.7
	15	4.54	0.22	13.93	0.0	0.0	-36.9	0.0	0.0	1362.0	64.0	24.0	67.0	51.6
	16	4.54	0.22	13.90	0.0	0.0	0.0	0.0	0.0	0.0	64.0	24.0	67.0	51.6
	17	4.56	0.22	13.64	0.0	0.0	1.4	0.0	0.0	1.9	64.0	24.0	67.0	51.6
	18	5.08	0.20	12.52	0.0	0.0	0.0	0.0	0.0	0.0	64.0	24.0	67.0	51.6
橋台が卓越一	. 19	6.01	0.17	15.37	0.0	0.0	-35.0	0.0	0.0	1228.0	64.0	24.0	82.0	56.9
	20	6.39	0.16	19.17	0.0	-0.2	0.0	0.0	0.0	0.0	64.0	24.0	82.0	56.9
橋台が貞越→	21	6.40	0.16	19.28	36.1	0.0	0.0	1300.0	0.0	0.0	81.0	24.0	82.0	62.5
	22	6.91	0.14	2.17	0.0	0.2	0.0	0.0	0.0	0.0	81.0	24.0	82.0	62.5
	23	7.24	0.14	8.56	0.0	0.0	0.0	0.0	0.0	0.0	81.0	24.0	82.0	62.5
	24	9.67	0.10	19.18	0.0	0.0	0.0	0.0	0.0	0.0	81.0	24.0	82.0	62.5
	25	9.70	0.10	19.09	0.0	-14.5	0.0	0.0	208.8	0.0	81.0	27.0	82.0	63.4
	26	9.73	0.10	18.95	0.0	0.0	0.0	0.0	0.0	0.0	81.0	27.0	82.0	63.4
	27	9.77	0.10	18.80	0.0	61.1	0.0	0.0	3733.0	0.0	81.0	75.0	82.0	79.4
	28	9.81	0.10	3 3 8	0.0	0.0	10.1	0.0	0.0	102.6	81.0	75.0	84.0	70.0

表-7.3.12 固有値解析の結果

7.4 入力条件

7.4.1 断層変位の影響を含む地震動の考え方

解析で使用する地震動及び断層変位の条件を表-7.4.1に示す。地震動としては、道示 V 編¹⁾で 規定される標準波形を使用した。通常の動的解析では、加速度波形を用いた相対系入力を行うが、 断層変位との合成を考慮した入力とするため、ここでは絶対系入力を行った。

解析で使用する地震動の時刻歴波形を図-7.4.1に,絶対系入力で使用する変位波形を図-7.4.2 に示す。変位波形は,加速度波形をフーリエ変換し,周波数領域で2回積分した後に,ノイズ処 理として 0.1Hz 以下および 20Hz 以上の周波数領域を除去するフィルタリングを行って作成した。

解析で使用する断層変位の変位波形を図-7.4.3に示す。断層変位の変位波形は入力地震動の開始時刻を一致させ、変位波形の最大値が生じる時刻に断層変位が終了するように設定した。断層変位の変位速度は、2016年熊本地震における観測結果(西原村小森)を参考に2m/sと設定した。本章での検討は、2016年熊本地震を対象としたものではないが、断層変位の速度についての一般化された知見が無いため、実際に生じうる変位速度として上記の様に設定したものである。また、既往の報告¹⁹⁾では、西原村小森での速度波形では、最大2.6 m/s が確認されているが、これには振動成分も含まれていることを考慮し、断層変位速度としては2m/sと設定した。なお、西原村小森における速度波形では、振動成分として0.6 m/s以上の速度振幅も確認されるが、入力する断層変位の速度が大きい方が安全側の評価になると判断し、2.6 m/sの小数点以下を切り下げた2 m/s とした。

入力地震動		道路橋示方書 標準加速度波形	
		II 種地盤レベル2地震動(タイプII)1 波目	
		加速度波形 II-II-1	
対象とする方向		橋軸方向及び橋軸直角方向に同時に作用	
地震動入力方法		基礎構造への絶対変位入力	
断層変位の諸元	変位量	3 m	
	角度	45 度	
	作動終了時刻	最大変位発生時	
	変位速度	2 m/s	

表-7.4.1 地震動及び断層変位の条件

図-7.4.3 断層変位波形(断層方向)

7.4.2 地震動及び断層変位の入力方向及び位置

地震動による変位と断層による変位は同時に作用するものとして、変位波形を足し合わせて作 用させることとした。図-7.4.4に示すように、地震動変位波形及び断層変位波形は、橋軸方向に 対して斜め 45 度方向で作用する状況を想定しており、橋軸方向と橋軸直角方向に元の波形を 1/√2倍した波形を入力した。また、P1 橋脚及び P2 橋脚間で断層変位が生じると仮定し、A1 橋 台及び P1 橋脚には地震動による変位のみを入力し、P2 橋脚~A2 橋台は地震動による変位と断層 による変位を入力した。A1 橋台及び P1 橋脚並びに P2 橋脚~A2 橋台に入力する変位波形を図-7.4.5 に示す。

入力位置	橋軸方向	橋軸直角方向
A1	地震動変位波形	地震動変位波形
P1	地震動変位波形	地震動変位波形
P2	地震動変位波形 + 断層変位波形	地震動変位波形 + 断層変位波形
Р3	地震動変位波形 + 断層変位波形	地震動変位波形 + 断層変位波形
P4	地震動変位波形 + 断層変位波形	地震動変位波形 + 断層変位波形
Р5	地震動変位波形 + 断層変位波形	地震動変位波形 + 断層変位波形
A2	地震動変位波形 + 断層変位波形	地震動変位波形 + 断層変位波形

図-7.4.4 変位波形の入力方法

(a) A1 橋台及び P1 橋脚に入力する変位波形(橋軸方向,橋軸直角方向共通)

(b) P2 橋脚~A2 橋台に入力する変位波形(橋軸方向,橋軸直角方向共通) 図-7.4.5 橋台及び橋脚に入力する変位波形

7.5 解析結果

7.5.1 解析結果の総括

解析結果について,断層変位の作用開始前,作用中及び作用終了後に分けて総括的に整理する。 詳細は次項以降に示す。なお,全ての橋脚において,全解析時間における最大応答変位量は,限 界状態2相当の変位を超えたものの,限界状態3相当の変位に達することはなかった。

(1) 断層変位作用開始前(0秒~4.09秒)

全ての橋脚について、橋軸方向及び橋軸直角方向で弾性応答を示した。

(2) 断層変位作用中(4.09 秒~5.59 秒)

橋軸方向については、P1橋脚では、断層変位量の増加につれて上部構造-橋脚天端間の相対変位 量が大きくなり、それに伴いゴム支承反力も増加し、アンカーボルトの破断に至った。P1橋脚で は、橋脚の限界状態2相当の耐力、支承アンカーボルトの破断耐力、耐力階層化鉄筋によって増 加した橋脚の耐力の順に階層化した耐力に従って、損傷を誘導できたと評価できる。また、P1橋 脚の変位はアンカーボルト破断時を最大として、それ以上大きな変位は生じなくなった。

P2~P4橋脚では、断層変位量の増加につれて上部構造-橋脚天端間の相対変位量が大きくなる が、その大きさは P1橋脚よりも小さく、ゴム支承に生じる反力も P1橋脚よりも小さかった。こ れは、断層変位を挟んだ支点の数の違い(起点側は A1, P1 の 2 支点、終点側は P2~A2 の 4 支 点)に起因すると考えられる。そのため、P2~P4橋脚はいずれも弾性応答を示し、水平荷重は橋 脚耐力には到達せず、よって耐力階層化鉄筋も作動せずにアンカーボルトの破断は生じない結果 となった。

橋軸直角方向については、断層位置を境に上部構造-橋脚天端間の相対変位方向が反転し、断層位置に近い橋脚ほど、上部構造-橋脚天端間の相対変位の絶対量が大きい傾向がみられた。特に、断層位置を跨ぐ P1 橋脚及び P2 橋脚では相対変位量が大きく、それに伴いゴム支承反力も大きくなり、アンカーボルトの破断が生じたが、耐力階層化鉄筋の作動とは独立したものであった。

(3) 断層変位作用終了後(5.59 秒~44 秒)

橋軸方向については、断層変位作用中にアンカーボルトが破断した P1 橋脚では、橋脚に作用す る荷重は、支承部の摩擦力のみとなり、降伏荷重に至ることはなかった。P2~P4 橋脚では、断層 変位終了直後の入力変位の反転により、橋脚及び上部構造の変位に位相差が生じたことで相対変 位量が大きくなり、ゴム支承反力も増大した。これに伴って橋脚に作用する水平荷重も増大し、 耐力階層化鉄筋が作動したことによって橋脚の耐力が上昇したが、支承アンカーボルトの破断に は至らなかった。

橋軸直角方向については、断層変位終了後から約 0.8 秒後に P3 橋脚の支承アンカーボルトが破断した。これは断層変位途中に P1 橋脚及び P2 橋脚のアンカーボルトが破断したことで、P3 橋脚の分担重量が増大したためと考えられる。

7.5.2 各部材の応答

(1) 橋脚の荷重変位関係

図-7.5.1 に, 全時刻歴 (0 秒~44 秒)の橋軸方向及び橋軸直角方向の各橋脚の荷重変位を示す。 また,図-7.5.2(a)~(c)に,断層変位作用前 (0.00 秒~4.09 秒),断層変位作用中 (4.09 秒~5.59 秒)及び断層変位作用終了後 (5.59 秒~44 秒)に分けた荷重変位関係を示す。

断層変位が作用する前では、橋軸方向及び橋軸直角方向ともに、全ての橋脚が弾性域であった。 断層変位が作用している間では、橋軸方向について、P1橋脚が正方向に降伏し、耐力の上昇が確認された。断層変位終了後では、橋軸方向について、P2~P4橋脚が正負両方向で降伏し、耐力の 上昇が確認された。

(2) 橋軸方向の最大変位と限界状態

P1~P4 橋脚の橋軸方向最大応答変位量 δ_{max} と,限界状態 2 及び限界状態 3 に相当する変位量 δ_{ls2} , δ_{ls3} の関係を表-7.5.1 に示す。全ての橋脚について,限界状態 2 に相当する変位量を上回る 変位が確認された。なお、全ての橋脚において、 δ_{ls2} は 180.4 mm、 δ_{ls3} は 235.6 mm である。

橋脚	δ_{max}	$\delta_{max}/\delta_{ls2}$	$\delta_{max}\!/\delta_{ls3}$
P1	205.9 mm	1.14	0.87
P2	197.1 mm	1.09	0.84
P3	197.6 mm	1.10	0.84
P4	196.2 mm	1.09	0.83

表-7.5.1 各橋脚の橋軸方向最大応答変位量と限界状態相当変位量の関係

図-7.5.1 各橋脚の荷重変位関係(全時刻歴)

(a) 各橋脚の荷重変位関係(0秒~4.09秒)図-7.5.2 各橋脚の荷重変位関係(3期間に分割)(その1)

図-7.5.2 各橋脚の荷重変位関係(3期間に分割)(その2)

(c) 各橋脚の荷重変位関係(断層変位作用完了後:5.59秒~44秒)
 図-7.5.2 各橋脚の荷重変位関係(3期間に分割)(その3)

(3) 断層変位による橋梁全体系の応答

断層変位の作用が完了した直後(5.59秒)時点での各橋台,橋脚の移動状況を図-7.5.3に示す。 なお,図-7.5.3は橋脚の質量及び塑性ヒンジの減衰を考慮したモデルの結果であるが,橋脚の質 量及び塑性ヒンジの減衰を考慮しないケースでも傾向は同様である。

図-7.5.3(a),(b)から,断層変位を含む入力を与えた P2 橋脚~A2 橋台では,断層変位終了直後においてそれらの基部が断層変位方向に移動している。上部構造-橋脚天端間の橋軸方向の相対変位は,図-7.5.3(a)及び(c)から,断層位置を境に,起点側のA1 橋台,P1 橋脚は終点側に,終点側のP2 橋脚~A2 橋台は起点側に相対変位が生じている。これは,断層変位の橋軸方向成分が,断層位置を中心に起点側(A1~P1)と終点側(P2~A2)を離す方向に入力されていることに対応した変形と解釈できる。また,上部構造-橋脚天端間の相対変位量は,起点側(A1~P1)に比較して終点側(P2~A2)が小さく,これは断層変位を挟んだ起点側と終点側の支点の数の差異,即ち上部構造を支持する剛性の差異に対応するものと考えることができる。即ち,断層変位に対して,起点側(A1,P1の2基)と終点側(P2~A2の4基)で抵抗し合い,合計の剛性の小さい起点側の変形が大きくなった結果と言える。橋脚の変形についても,断層位置を境に変形の向きが逆転している傾向や,断層位置より起点側のP1 橋脚の方が終点側のP2~P4 橋脚より変形が大きい傾向が確認できる。

橋軸直角方向についても,断層変位終了時の変形に着目すると(図-7.5.3(b),(c)),起点側(A1 ~P1)の橋脚天端に対する上部構造の相対変位(以下,支承変位)は,終点側を向いて右向きに,終点側(P2~A2)の支承変位は終点側を向いて左向きに生じている。これも,入力した断層変位

の橋軸直角方向成分に対応した変形と考えられる。支承変位の大きさを見ると、断層に近いほど 支承変位が大きい傾向が確認できる。これは、断層位置を境に断層変位が食い違うために、断層 近傍に変形が集中したものと解釈できる。同様に、橋脚の変形量も、断層変位に近いほど大きい 傾向が確認できる(図-7.5.2(b)において、橋軸直角方向の最大水平変位の全体値は、断層に隣接 する P1, P2 橋脚が最も大きく、P3, P4 橋脚の準に小さくなる)。なお、橋台位置については橋軸 直角方向の支承条件を固定としているため相対変位は生じていない。

(4) 上部構造-橋脚天端間の相対変位量の時刻歴応答

上部構造-橋脚天端間の相対変位量の時刻歴応答を図-7.5.4 に示す。橋軸方向の結果を示す図-7.5.4(a)において,橋脚天端を基準として上部構造がA2橋台側に移動した場合を正方向,A1橋

台側に移動した場合を負方向としている。また,橋軸直角方向の結果を示す図-7.5.4(b)において, A1橋台を基準として,上部構造が右側に移動した場合を正方向,左側に移動した場合を負方向と している。

断層変位が作用している 4.09 秒から 5.59 秒にかけて,橋軸方向の応答(図-7.5.4(a))は,断層 位置より起点側(A1, P1)が終点側に大きく移動している。一方,断層位置より終点側(P2~A2) は、4.09 秒までの応答波形から推測される過渡応答としては正側に変位が振れる時間帯であるが、 4.09 秒~5.59 秒の間はその様な応答波形を描かず,相対変位が負の領域(A1 側に変位した状態) に留まっている。以上の応答は,前項で整理したように,断層位置を挟んで P1-P2 間が離れる方 向の断層変位入力に対する橋全体系の変形に従ったものと理解することができる。

橋軸直角方向については、断層位置に近い程、相対変位量が大きい傾向と、断層位置を境に相 対変位の向きが逆となる傾向が確認できる(図-7.5.4(b))。これも、前項に示した橋全体系の変 形に従っている。

断層変位が終了した後,時刻 6.0 秒で橋軸方向及び橋軸直角方向の相対変位量が極大に達して いる。図-7.5.4 から,橋軸方向では上部構造が A2 橋台側に移動し,橋軸直角方向では上部構造 が終点側を見て右側に移動していることが分かる。この時間帯の入力変位波形(図-7.5.5)を確 認すると,断層変位が終了する 5.59 秒から 6.40 秒まで,断層位置の起点側(A1~P1),終点側(P2 ~A2)とも入力変位波形の勾配が負方向となっており,入力変位が断層変位の向きから反転して, 橋軸方向では A1 橋台側に,橋軸直角方向では終点側を見て左側に変位している。この入力変位

の反転に対して、上部構造の応答に生じた位相差(位相の遅れ)により 6.0 秒で相対変位量が極大 値に達したものと考えられる。

(5) ゴム支承反力の時刻歴応答

橋軸方向及び橋軸直角方向における支承反力の時刻歴応答を図-7.5.6 に示す。断層変位が作用 している 4.09 秒から 5.59 秒にかけて,橋軸方向については,断層変位開始と同時に A1 橋台及び P1 橋脚で支承反力が増加し, P1 橋脚では 4.57 秒に, A1 橋台では 4.56 秒にアンカーボルトの耐力 に到達した(図-7.5.6(a))。また,橋軸直角方向については, P1 橋脚及び P2 橋脚で断層変位途 中にアンカーボルトの耐力に達した(図-7.5.6(b))。

断層変位が作用している間に破断が確認された支承位置は、断層変位に伴う上部構造-橋脚天端間の相対変位量が大きい箇所であり、断層変位に伴ってゴム支承が大きく変形し、反力も上昇してアンカーボルトの破断に至ったと考えられる。なお、P1橋脚の橋軸方向のアンカーボルトの破断時刻が一致していないのは、7.3.5で記したとおり、橋軸方向と橋軸直角方向の支承ばねが独立しているためである。

断層変位終了後では、断層変位中に破断しなかった支承の反力が上昇するが、橋軸方向ではその他の支承(P2~P4, A2)のアンカーボルトの破断には至らなかった。一方、橋軸直角方向では、 P3 支承が 6.43 秒にアンカーボルトの耐力に達した。各支承とも、破断後の支承反力は、支承部の 動摩擦力によるものとなっており、橋脚への過大な反力の作用が抑えられていることが確認でき る。

なお、断層変位終了後に破断した支承は、前述(「(4)上部構造-橋脚天端間の相対変位量の時刻 歴応答」)の考察の通り、断層変位入力直後の入力変位の反転に対する上部構造の応答の位相差に 起因した相対変位の増大によるものと考えられる。また、断層変位終了後に P3 橋脚で橋軸直角方 向の変位によってアンカーボルトが破断したことは、P1、P2 橋脚の支承アンカーボルト破断によ り、P3 橋脚の分担荷重が増加したためと考えられる。

(6) 支承アンカーボルトの破断及び耐力階層化鉄筋の作動の関係性

図-7.5.7 に示す各橋脚の耐力階層化鉄筋のトリガー要素のうち,四隅に位置するトリガー要素の作動の有無と,作動したトリガー要素の最大反力発生時刻を整理した結果を表-7.5.2 に示す。

	耐力階層化鉄筋							アンカーボルト		
橋	①番		2番		③番		④番		破断時刻	
脚	作動 有無	作用荷重 最大時刻	作動 有無	作用荷重 最大時刻	作動 有無	作用荷重 最大時刻	作動 有無	作用荷重 最大時刻	橋軸 方向	橋軸直角 方向
P1	×	-	×	-	0	4.57 s	0	4.57 s	4.57 s	4.83 s
P2	×	-	×	-	0	6.15 s	0	6.06 s	-	4.98 s
P3	×	-	×	-	0	6.11 s	0	6.04 s	-	6.43 s
P4	0	6.76 s	×	-	\bigcirc	6.12 s	0	6.04 s	-	-

表-7.5.2 各橋脚の耐力階層化鉄筋の作用箇所とトリガー要素作用荷重最大時刻

図-7.5.7 耐力階層化鉄筋のトリガー要素(橋脚断面における要素配置図)

P1 橋脚の橋軸方向について,耐力階層化鉄筋の作動時刻にアンカーボルトの破断が生じること が確認でき、またこの時刻に橋脚耐力の上昇も確認できる(図-7.5.8)。一方、橋軸直角方向の応 答でアンカーボルトが破断した P1~P3 橋脚では、アンカーボルトの破断時刻と耐力階層化鉄筋 の作動開始時刻は一致しなかった。これは、橋軸直角方向については、アンカーボルトの耐力 (9,144 kN) よりも橋脚の耐力(16,182 kN)の方が大きいため,耐力階層化鉄筋の作動開始時刻 とは独立して支承アンカーボルトが破断したと考えられる。

P2, P3, P4 橋脚については, 図-7.5.8 に示すように, いずれも作動開始時刻とほぼ同じタイミ ングで橋脚の耐力は上昇しているが、アンカーボルトの耐力(9,144 kN)には達していないため、 アンカーボルトの破断には至らなかった。

以上の様に、いずれの橋脚においても、断層変位作用中及び断層変位終了後の大きな応答変位 に対して、耐力階層化鉄筋が作動し、支承部を破断させることで、橋脚に限界状態を超える応答 を生じさせない結果となっており、今回のモデル化による断層変位を含む地震動に対して耐力階 層化鉄筋は有効に機能したと評価できる。

P1 最大荷重時刻(4.57 秒)

図-7.5.8 各橋脚における橋軸方向水平荷重の時刻歴応答

7.6 本章の結論と今後の展望

本章では、断層変位に対して、道路橋が致命的な被害を受けにくくする対策として、耐力階層 化鉄筋を用いた構造に関する解析的検討を実施した。解析の結果、耐力階層化鉄筋を用いること で断層変位を含む地震動に対しても、支承アンカーボルトに損傷を誘導することが出来た。これ によって、橋脚の倒壊等、致命的な被害を回避することが可能になり、断層変位対策として、耐 力階層化鉄筋を使用することが有効であることが確認された。

本研究では、橋脚間に断層が存在する架橋位置を想定し、2016年熊本地震における観測データ を基に、入力値として使用する断層変位の諸元を設定した。しかしながら、実際の設計では、正 確な断層位置の推定や変位量、変位方向、変位速度の設定は困難であり、また下部構造間に断層 変位が生じる今回の仮定の様な場合の他、基礎の位置に断層変位が生じるなど、断層変位が橋に 影響する形態には様々な可能性が考えられる。そのため、今後は、第3章~第5章で得られた知 見もふまえて、入力値の設定及び断層変位が発生する位置等の不確実性を考慮した検討を行う必 要があると考えられる。

参考文献

- 1) (公社) 日本道路協会:道路橋示方書・同解説 V 耐震設計編, 2017.
- Bruneau, M., Chang, S., Eguchi, R., Lee, G., O'Rourke, T., Reinhorn, A., Shinozuka, M., Tierney, K., Wallace, W. and von Winterfeldt, D. : A framework to quantitatively assess and enhance the seismic resilience of communities, *Earthquake Spectra*, Vol. 19, No. 4, pp. 733–752, 2003.
- 本田利器,秋山充良,片岡正次郎,高橋良和,野津厚,室野剛隆:「危機耐性」を考慮した耐 震設計体系-試案構築にむけての考察-,土木学会論文集 A1 (構造・地震工学), Vol. 72, No.4 (地震工学論文集第 35 巻), pp.I 459-I 472, 2016.
- 4) 西村隆義,室野剛隆,豊岡亮洋,五十嵐晃:危機耐性を向上させる自重補償機構の提案と実験的検討,土木学会論文集 A1(構造・地震工学), Vol. 75, No.4(地震工学論文集第 38 巻),
 pp. I 569-I 578, 2019.
- 5) 豊岡亮洋,布川博一,小野寺周,室野剛隆:ブロック型倒壊方向制御構造を有するラーメン 高架橋柱の静的載荷試験,土木学会論文集 A1 (構造・地震工学), Vol. 75, No.4 (地震工学論 文集第 38 巻), pp.I 408-I 415, 2019.
- 6) 高橋良和,日高拳:不確定性の高い地震作用に対する構造技術戦略としての鈍構造の提案と その適用事例に関する一考察,土木学会論文集A1(構造・地震工学),Vol.70,No.4(地震工 学論文集第33巻),pp.I 535-I 544, 2014.
- 五島健斗,植村佳大,高橋良和:設計基準外事象に対する挙動が定性的に予測可能な埋め込みメナーゼヒンジ RC 構造の開発,土木学会論文集 A1 (構造・地震工学), Vol. 75, No.4 (地震工学論文集第 38 巻), pp.I 506-I 519, 2019.
- 8) 大住道生、中尾尚史、石崎覚史、庄司学:破壊尤度の制御による道路橋の崩壊シナリオデザイン設計法の提案、土木学会論文集 A1 (構造・地震工学)、Vol. 77, No.4 (地震工学論文集第40巻)、pp.I_360-I_372, 2021.

- 9) 大住道生,中尾尚史,横澤直人:シナリオデザイン設計法のすすめ,第34回日本道路会議, 論文番号 5031,2021.
- 10) 大住道生,石崎覚史,中尾尚史:極大地震動に対する道路橋の崩壊シナリオデザイン設計法の提案 一性能規定型設計法のエンパワーメントー,土木技術資料, Vol.62, No.12, pp.8-11, 2020.
- 11) 石崎覚史, 中尾尚史, 大住道生: 既設 RC 橋脚への崩壊シナリオデザイン設計法適用に向け た検討, 第 24 回橋梁等の耐震設計シンポジウム, pp.7-12, 2021.
- 12) 横澤直人,河原井耕介,中尾尚史,石崎覚史,大住 道生:崩壊シナリオデザイン設計法の実現に向けた耐力階層化鉄筋を用いたRC橋脚の載荷実験,土木学会論文集A1(構造・地震工学), Vol.78, No.4(地震工学論文集第41巻), pp.I_206-I_218, 2022.
- 13) (公社) 日本道路協会:道路橋の耐震設計に関する資料, 1997.
- 14) 国土交通省国土技術政策総合研究所:道路橋の設計状況設定法に関する研究,国土技術政策総合研究所資料 No.1031, 2018.
- 15) 国立研究開発法人土木研究所:コンクリート道路橋の性能規定及び部分係数設計法に関する 調査研究, 土木研究所資料 No.4401, 2020.
- 16) 堺淳一,川島一彦:部分的な除荷・再載荷を含む履歴を表す修正 Menegotto-Pinto モデルの提案,土木学会論文集,No.738/I-64, pp.159-169, 2003.
- 17) (公社)日本道路協会:道路橋示方書・同解説 III コンクリート橋・コンクリート部材編, 2017.
- 18) (一財)海洋架橋・橋梁調査会:既設橋梁の耐震補強工法事例集,2005.
- 19) 岩田知孝: 益城町宮園・西原村小森本震記録の解析, https://sms.dpri.kyoto-u.ac.jp/topics/masikinishihara0428ver2.pdf, 2016. (2021 年 12 月 27 日アクセス)
- 20) 福富将,岡崎太一郎,松井良太,麻里哲弘:粘性減衰モデルが弾塑性系の時刻歴応答解析に 与える影響(その1):減衰モデルの比較,日本建築学会構造系論文集,Vol.85, No.778, pp.1555-1563, 2020.

第8章 まとめ

本研究では、断層変位を考慮した耐震設計法の確立を大局的な目標として、2018年熊本地震におい て断層変位を含む地震動の影響を受けて被災した大切畑大橋を対象に、損傷状況の分析及び解析的検 討を行った。検討にあたっては、(1)断層変位の影響を受ける橋の応答に関する知見の拡充、(2)断層 変位を考慮した地震応答解析におけるモデル化手法に関する知見の拡充、(3)構造の有する不確実性 の影響に関する知見の拡充の3点に着目して考察を行った。本章では、報告書のまとめとして、本研 究で得られた知見、及び今後の課題と展望について整理する。以下では、上記の3つの着目点との対 応を**着目点(1)~着目点(3)**として付記する。

8.1 本研究で得られた知見

- 大切畑大橋の損傷状況及び損傷痕からの損傷メカニズムの推定(第2章)より得られた知見:支 承部の損傷痕から支点ごとの損傷時の挙動を確認することができ,さらに橋全体の損傷状況も踏 まえて、支承の損傷順序や上部構造の大まかな応答方向を推定することができた。着目点(1)
- 2) 地盤を含めた 3 次元 FE モデルを用いた断層変位及び強震動に対するピーク時応答の検討(第3 章)より得られた知見:国土地理院による震源断層モデル¹⁾を用いて Okada 式²⁾により推定した 地表断層変位を入力した静的解析によると、P1、P2、P4 橋脚に降伏を大きく超えるドリフトが生 じることが推定され、また支点間の上部構造の相対変位量から P2~P4 橋脚の間で上部構造にも 損傷が生じる可能性が示唆された。Asano and Iwata³⁾による震源モデルを用いて有限差分法⁴⁾に より推定した強震動(推定地震動のピーク前後 2.5 秒間)を入力した動的解析によると、全ての 橋脚に降伏を大きく超えるドリフトが生じることが推定され(最大で 3%、P4 橋脚)、また P4 橋 脚位置の地盤では1 MPa を超える応力が生じ、地盤の塑性化及び橋脚の傾斜が生じる可能性が示 唆された。以上の静的解析と動的解析の結果を比較すると、各構造の応答の傾向に差異が見られ、 解析方法によるばらつきが大きいと考えられる。また、静的解析と比較して、強震動に対する動 的解析の結果の方が、応答が大きい傾向が確認された。静的解析では断層変位の静的な影響のみ を考慮していることに対して、動的解析では断層変位の影響を含む動的作用を入力条件としてい るため、動的解析の応答が静的解析より大きくなったと考えられる。
- 3) <u>地盤を含めた3次元FEモデルを用いた主要動の作用による応答挙動の検討(第4章)より得られた知見</u>: Asano and Iwata³⁾による震源モデルを用いて有限差分法⁴⁾により推定した地震動と、 サイト特性置換法⁵⁾により推定した架橋位置の地震動の2種類の地震動に対して動的解析を行った。入力地震動の応答加速度スペクトルを比較すると、いずれも周期 0.6 秒付近にピークを持つ 類似の傾向が見られた。また応答変位スペクトルでは、有限差分法による地震動において、橋の

1 次固有周期である 1.2 秒付近にピークが確認された。これは震源由来の長周期パルスと考えられ、これが橋の応答に影響を与えたと考えられる。着目点(1)

上部構造の応答挙動を比較すると、有限差分法による地震動に対する変位方向は[北西→時計回 り回転・南東→反時計回り回転・北]と変化し、サイト特性置換法による地震動に対しては[北 →時計回り回転・南→反時計回り回転・北]と変化した。支承部の応答はいずれの地震動に対し ても、全ての支承がせん断ひずみ 250%を超える応答が生じた。支承の水平変位時刻歴は、有限 差分法による地震動とサイト特性置換法による地震動とで性状が異なる結果となった。サイト特 性置換法による地震動の変位応答スペクトルは短周期帯に卓越した成分を有し、そのために高次 モードが励起されたことが要因の一つと考えられる。

- 4) 3次元骨組みモデルを用いた断層変位の影響を考慮した応答解析方法の検討(第5章)より得ら れた知見:より簡便なモデル化として、現在の橋の設計に用いられている3次元骨組みモデルを 用いて、断層変位を模擬した入力を行うことで断層変位の影響を考慮した応答算出を行うことを 検討した。複数の入力条件を検討した結果、断層変位を強制変位として与えた状態を初期状態と して地震動加速度を入力する動的解析を行う方法により、実損傷との整合性が比較的高い応答が 得られたものの、支承の損傷を過小評価する等、部分的に不整合な点が見られた。着目点(2) 最も厳しいと考えられる入力条件として、地震動加速度がピークの時刻に断層変位を強制変位と して入力し動的解析を行う方法では、実損傷と比較して過大な応答が得られた。着目点(2) また、断層変位に対して材料強度などの物性値のばらつきが与える影響について、公称値と推定 の実値とを用いた解析結果の比較を行った結果、入力した作用や作用のタイミングと比較して影響は小さかった。
- 5) 第6章では、以上2)~4)の検討結果を比較してモデル化手法の違いの影響を考察した。橋のモデル化方法及び入力地震動や断層変位、さらに解析方法の違い(静的解析/動的解析)により、応答の計算結果は大きくばらつくことを確認した。着目点(2) 静的解析においては、断層変位として鉛直変位を考慮するか否かも一定の影響があると考えられ

る。着目点(2)

動的解析においては、地盤を含めてモデル化した FE モデルでは解析の中で地盤による地震動の 増幅が考慮され、これにより橋の応答も大きくなることが確認された。また支承の応答に着目す ると、A1~A2 の支承のうち、損傷が生じる順序はモデル化方法によらず類似性が見られたが、 損傷のタイミング(時刻)は解析モデルにより大きく異なった。支承の変位方向の時刻歴につい ても、モデル化方法により大きく異なり類似性は確認されなかった。 着目点(2)

6) 第7章では、断層変位を考慮した設計の具体的な検討事例として、断層変位の影響に対する対策 を施した橋梁を対象に、断層変位を含む地震動に対する応答評価の例を示した。具体的な対策方 法として、RC 橋脚に耐力階層化鉄筋^{0,7}を適用する場合を対象に、第5章の方法に準じて断層 変位と地震動を同時に入力した動的解析を実施した。なお、入力する断層変位は、地表断層の位 置と向きを仮定し、実際の地震(2016年熊本地震)における断層変位を参考に入力変位量と変位 速度を仮定して設定した。また、地震動加速度は道路橋示方書の標準加速度波とした。着目点(2) 耐力階層化鉄筋は、ここで考慮した大きな断層変位や、設計地震動を超える強度の地震動のよう な超過作用に対して、橋脚の応答が限界状態2を超えた後にその耐力を上昇させ、損傷部位を橋 脚基部から支承部に遷移させることで、終局までの橋梁の損傷シナリオを制御しようとする構造 である。解析の結果、断層変位を含む地震動の入力に対して、耐力階層化鉄筋により支承部に損 傷を誘導でき、橋脚に限界状態3を超える応答が生じることを防止することができることが確認 できた。着目点(1)

8.2 今後の課題と展望

前節に示したように、断層変位を考慮した橋の応答挙動の評価にあたっては、モデル化手法の差異 が結果に与える影響が非常に大きいことが確認された。本研究においては、実損傷、特に対象橋梁の 代表的な損傷である支承の破断状態を再現する解析条件は明らかとはなっていない。断層変位を考慮 して適切に設計を行うためのモデル化については引き続き検討が必要と考えられる。

断層変位を考慮したより精緻なモデル化である地盤を含む3次元FEモデルについて、本研究においては材料特性を線形弾性と仮定し、基礎構造と地盤の境界条件や、地盤の仮想境界条件を固定と仮定する等、一定の簡易化がなされているモデルとなっている。これらの仮定について、今後はより精緻なモデル化条件を検討し、断層変位を含む橋の地震時挙動の詳細なメカニズムを解明することが必要と考えられる。

3 次元骨組みモデルを用いた解析手法については,設計において断層変位を考慮する場合の断層変 位の入力方法について,断層変位を与えるタイミングや断層変位の速度,変位方向等の観点からの検 討が必要と考えられる。

なお、本研究で明らかなように、断層変位を含む地震動に対する橋の応答を解析的に評価しようと する場合、現時点ではモデル化の差異の影響も含めて評価結果の不確実性は極めて大きい。橋の設計 にあたって不測の事態として断層変位の影響を考慮する場合には、この不確実性に十分配慮する必要 がある。例えば、断層変位を含む地盤変状の不確実性に配慮し、路線計画・構造計画・構造設計の各 段階で多角的にリスク対応を盛り込んだ新阿蘇大橋の例[®]なども参考になる。このように、解析的検 討を確定的にとらえることなく、工学的に考え得るリスクシナリオを広く抽出し、多角的なリスク対 応を検討することが重要と考えられる。

参考文献

- Kobayashi, T., Yarai, H., Kawamoto, S., Morishita, Y., Fujiwara, S., and Hiyama, Y.: Crustal deformation and fault models of the 2016 Kumamoto earthquake sequence: foreshocks and main shocks, In: Freymueller J., Sanchez L. (eds), International Symposium on Advancing Geodesy in a Changing World, *International Association of Geodesy Symposia*, Vol.149. Springer, 2018. DOI 10.1007/1345 2018 37
- Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, *Bulletin of the Seismological Society of America*, Vol.75, No.4, pp.1135-1154, 1985.
- Asano, K., and Iwata, T.: Source Rupture Processes of the Foreshock and Mainshock in the 2016 Kumamoto Earthquake Sequence Estimated from the Kinematic Waveform Inversion of Strong Motion Data, *Earth, Planets and Space*, 68:147, 2016.
- 4) Aoi, S., and Fujiwara, H.: 3-D Finite Difference Method Using Discontinuous Grids, *Bulletin of the Seismological Society of America*, Vol.89, pp.918-930, 1999.
- 5) Y. Hata, A. Nozu, K. Ichii : A Practical Method to Estimate Strong Ground Motions after an Earthquake, Based on Site Amplification and Phase Characteristics, *Bulletin of the Seismological Society of America*, Vol.101, No.2, pp.688-700, 2011.
- 6) 大住道生、中尾尚史、石崎覚史、庄司学:破壊尤度の制御による道路橋の崩壊シナリオデザイン設計法の提案、土木学会論文集 A1 (構造・地震工学)、Vol. 77, No.4, pp.I_360-I_372, 2021.
- 7) 横澤直人,河原井耕介,中尾尚史,石崎覚史,大住 道生:崩壊シナリオデザイン設計法の実現に向 けた耐力階層化鉄筋を用いたRC橋脚の載荷実験,土木学会論文集A1(構造・地震工学), Vol.78, No.4(地震工学論文集第41巻), pp.I_206-I_218, 2022.
- 8) 星隈順一,今村隆浩,宮原史,西田秀明:新阿蘇大橋の性能に及ぼす地盤変状の影響を小さくするための構造的な配慮と工夫,土木学会論文集 A1 (構造・地震工学), Vol. 77, No. 2, pp. 339–355, 2021.

謝辞

本研究の実施にあたっては,以下に示す関係者より資料の提供,また助言等を頂きました。ここに 記して謝意を表します。

第2章の検討に際して、九州地方整備局 熊本復興事務所、及び国土技術政策総合研究所 社会資本 マネジメント研究センター 熊本地震復旧対策研究室より、大切畑大橋の被害写真等のデータを提供 頂きました。また、株式会社ビービーエムより積層ゴム支承の載荷実験に関する資料を提供頂きまし た。

第3章~第5章の検討にあたり、大切畑大橋の構造諸元及び周辺地盤の地盤特性に関して九州地方 整備局 熊本復興事務所、及び熊本県より情報をご提供頂きました。

第3章,第4章の検討にあたっては,筑波大学・森田直樹助教をはじめとする一般社団法人 FrontISTR Commonsの皆様より,FEM 解析についてのご助言を数多く頂きました。

第5章の検討で使用した地震動波形の推定において、熊本県より提供頂いた強震記録を使用しました。

巻末資料 大切畑大橋の設計資料

本研究で解析モデルの作成にあたり参照した大切畑大橋の設計資料を示す。資料はいずれも熊本県より提供頂いた以下の業務成果の抜粋である。表-巻1.1に大切畑大橋の橋梁諸元を示す。

○「熊本高森線橋梁整備(橋梁詳細設計)委託」(平成8年6月 中央技術コンサルタンツ)
 ○「熊本高森線単県道路調査(橋梁)委託」(平成9年5月 大日本コンサルタント)

	 我 它			
Ĵ	首路規格	第3種第2級 (V=50km/h)		
	活荷重	B 荷重		
	橋長	265.400m(道路中心曲線長)		
	支間長	44.900m+3@58.00+44.900m(道路中心曲線長)		
	全幅員	12.500m		
-	平面線形	R=∞~A=100 ~ R=250 (右曲がり) ~ A=100 ~R=∞~A=100 (左曲がり)		
ň	縦断勾配	5.3866%(直線左下下がり)		
1	黄断勾配	2.0%(拝み勾配) ~ 5.0%(片勾配右下がり) ~2.0%(拝み勾配)		
	斜角	$A1:90^{\circ} 0' 0", A2:59^{\circ} 58' 15"$		
	舗装	アスファルト舗装 (車道部) t=70mm、(歩道部) t=30mm		
上如構造形式	橋梁形式	鋼5径間連続非合成鈑桁橋		
上即悟垣形八	床版	鉄筋コンクリート床版 t=220mm		
	A1 橋台	逆T式橋台		
	P1 橋脚	張出式円形柱橋脚		
下如構造形式	P2 橋脚	張出式矩形柱橋脚(中空断面)		
上的供有问题的	P3 橋脚	張出式矩形柱橋脚(中空断面)		
	P4 橋脚	張出式円形柱橋脚(中空断面)		
	A2 橋台	逆T式橋台		
	A1 橋台	場所打ち杭 φ1200×8本		
	P1 橋脚	深礎杭 φ4500×1本(柱状態深礎基礎)		
甘林巷法武士	P2 橋脚	場所打ち杭 φ1500×10本		
苤 啶博坦///八	P3 橋脚	場所打ち杭 φ1500×12本		
	P4 橋脚	深礎杭 φ6000×1本(柱状態深礎基礎)		
	A2 橋台	深礎杭 φ2000×2本		
古承	A1、A2 橋台	分散支承(直角方向固定)		
又承	P1、P2、P3、P4 橋脚	分散支承		
地盤種別		Ⅱ 種地盤		
設調	計水平震度	k _h =0.20		
	竣工年	平成 13 年 3 月		
適用示方書		道路橋示方書・同解説,平成8年12月		

表-巻1.1 大切畑大橋の諸元

1 設計図面

大切畑大橋の設計図面から以下の図面を抜粋して添付する.

なお,主桁の断面構成については,設計計算書より断面構成図を抜粋して「2 上部構造モデル 化資料(上部工設計計算書抜粋)」に添付している.

対象構造	図面名称	備考
橋梁一般図	大切畑1号橋全体一般図	
上部構造	上部工構造一般図	
	「端横桁(その1)~(その2)	
	中間支点上横桁(その1)~(その2)	
	中間横桁(その1)~(その14)	
	中間対傾構(その1)~(その3)	
支承	支承詳細図(A1)	
	支承詳細図 (P1)	
	支承詳細図 (P2, P3)	
	支承詳細図 (P4)	
	支承詳細図(A2)	
落橋防止構造	落橋防止装置図(その1)(A1橋台)	
	落橋防止装置図(その2)(A2橋台)	(その3) ブラケット図は省略
下部構造	A1橋台下部工構造一般図(1)	
	A1橋台下部工構造一般図(2)	
	P1 橋脚構造図	
	P2橋脚構造図(その1)	(その2) 沓座詳細等は省略
	P3橋脚構造図(その1)	(その2) 沓座詳細等は省略
	P4橋脚構造図(その1)	(その2) 沓座詳細等は省略
	A2橋台下部工構造一般図(1)	
	A2橋台下部工構造一般図(2)	

表-卷1.2 添付設計図面一覧

				総計 図 全 校之内 1 一部 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
		2.8.6.k. [E] 64 65 0.3 6.4 65 239.64.2 229.712 229.562 70 70 70 70 70 260 800 260 260 810 260 260 80 263 34 42 42 42 43 80 80 260 260 80 263 36 36 34 34 34 34 42 43 36 36 36 353 363 36 36 36 363 363 36 36 36 363 363 36 36 36 353 363 36 36 36 353 363 36 36 36 363 363 36 36 36 363 363 36 36 36	238 450 254 431 421 431 <th>大切第1号 編 第 7 月 4 年 1 年 7 年 1 年 第 7 年 1 年 1 年 2 日 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1</th>	大切第1号 編 第 7 月 4 年 1 年 7 年 1 年 第 7 年 1 年 1 年 2 日 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1
भूष मृद		65 61 62 236.573 230.018 230.212 70 30 71 40 73 220 210 212 70 40 71 40 72 220 200 216 730 220 200 260 731 220 260 260 733 263 36 36 733 263 363 363 339 263 363 363 341 341 374 374 351 341 374 374 353 26.607 226.607 226.498 553 65 61 62 65 61 62 62	233.446 238.392 239.10 70 40 316 220 20 20 20 20 20 21 40 216 20 220 220 20 20 220 21 22 220 20 20 2 31 22 20 31 22 20 32 30 30 32 30 30 33 30 36 33 30 34 33 34 34 33 35 35	
搜 		P 1 # A L (E) 64 63 64 62 63 63 64 316 70 70 70 316 70 70 70 200 200 200 200 80 88 38 38 42 319 39 38 313 39 39 38 42 319 39 38 313 319 39 38 32 311 127 32 323 313 313 33 32 313 313 35 32 313 353 35 32 313 353 35 323 313 35 35 323 313 35 35 323 33 35 35 323 33 35 35 323 53 53 35	235208 235900 235945	
	 単 袋 袋 将 (道路中心曲線長) (道路中心曲線長) 44.900m(道路中心曲線長) 0m+8.000m+0.600m 250m 0) 0) 0) 0) 1) 0) 1) <	64 55 61 224 507 524.155 226.631 70 70 30 70 70 30 70 220 20 70 20 20 70 20 20 80 80 20 90 80 20 19 19 20 10 19 30 316 319 30 316 319 318 210 319 313 314 40 319 318 20.618 210.618 23.113 318 20.618 20.618 23.113 514	232. 835 232. 706 234. 014 70 70 20 90 71 70 20 90 71 70 20 90 80 80 80 80 72 220 220 20 80 80 80 80 74 34 34 38 74 34 34 36 74 34 34 36 75 25 25 32 74 34 34 41 74 34 34 44 55 43 34 44 55 32 34 34 55 32 34 35 35 563 329 329 323 323 32 259 328 229 239 232 32	
部 1 1 2	 ○ 译 問 連 統 非 合 成 1 (本) ○ 400m (本) ○ 265:400m ○ 4000m+58:000m×3+ ○ 0.400m+3.000m+0.50 直续 (R=∞) ~ R= ○ 1.3866x (直接本でが) ○ 1.3866x (直接本でが) ○ 1.3866x (直接本でが) ○ 2.03x (山形均成) ○ 2.03x (山形均成) ○ 2.03x (山形均成) ○ 2.03x (山形均位) ○ 2.03x (山市) ○ 2.03x	 第 満 満 表 15 (4) (2) 51 (4) (4) 61 (5) 52 (4) (7) 52 (5) 50 (5) 50 (7) 	233 142 233 55 232 56 30 - - - - - -	
	彩 活 檎 支幅 平線 镌刻設 主舗 床 適荷 荷 馬 甲酸糖 药 医甲酸糖 计要求用 网络 的 网络 医 化 医 化 化 医 医 医 化 医	開催 1000 100	第二部 (11) (11) (11) (11) (11) (11) (11) (11	

-302-

チンツ TEL. 096(383)5353

-320-

-324-

-325-

-326-

-327-

-328-

-329-

-330-

-331-

-

A1橋台下部工構造一般図(2)

杏座及び箱抜き図 S=1/30

 \mathbb{N} 围 비

 \mathbb{X}

固

側

P 1 # M

635 500

後打ちコンクリー

14 15

100

09 823 823

300 200. 500

					-
H5	105	67	126	142	105
H4	113	75	134	150	113
H3	109	71	130	146	109
EL.H2	220.734	220.720	220.705	220.691	220.676
EL.H1	220.843	220.791	220.835	220.837	220.785
7	с С	- 62	63	64	65

大切加1号	橋設計図	全83 枚之内 1	4
箇 所所	阿蘇帝西原	朝大字 小	様
年度工事名	平成 年度		北北
橋 種	5径間連続非合成鐵桁	橋 格 B活荷	衝
橋長	265.400m	的 战 11.5	0
図画内容	A1 箱台下書工業造一般則(2)	縮尺國	
設計年月日	平成 9 年 月	н	
黄任者	() () () () () () () () () () () () () (係 長談計者	
大日本コン	・サルタント(株) TEL.	(06)541-5601	
			1

.

-338-

2 上部構造モデル化資料(上部工設計計算書抜粋)

上部構造のモデル化根拠として,大切畑大橋設計時の上部工設計計算書より床版断面,上部構 造死荷重,主桁断面構成図を抜粋して添付する.

なお、横桁・中間対傾構については「1 設計図面」を参照のこと.

23

-341-

24

-342-

-343-

株式会社 中央技術コンサルタンツ

No. 25

tflu. t Gu W= 2,50 × (1,590+0,700) × /2,0,080 = 0,229 4/4 株式会社 中央技術コンサルタンツ W = 2,50 × (1,100 + 0.620) × /2 × 0.080 = 0,172 W = 2,50×(1,690+0,700)×1/2×0,080 = 0,239 08 08 240 700 650 750 700 240 240 620 240 42. 43, 44 #5 590 6/1 690 いこそ病重 ゆちだ 91 KF 50 D.161 tfmz thine t fru 株式会社 中央技術コンサルタンツ t fin 0,094 0110 0.480 0,503 D. 394 0,503 0,069 2/11/0 0,550 0.229 0,060 0.660 0.239 0.172 D.172 [] ||// ļį ļ/ ١i b // $\|$ // \I ļİ ţį ļĮ *II* İI 0.300 × 11.00 × 1/5 2,30 ,0,030 2.50 , 0,220 2,30 , 0.070 2,35,0,040 錦港(学) (参) (参) (か) (か) (か) v (fr2) v (fr3) v (fr4) " (45) 把藏(步) * (分) " (尊) 村しコンカート 高欄(法) " (項) (4-) 32.1 死的重 4 - All

-344-

No. 27

No. 28

株式会社 中央技術コンサルタンツ - 0,480 tfm No. 30 W= 7,50 × 0,600 × 0,320 \$28 200 中道 (則) = 0,480 fr 株式会社 中央技術コンサルタンツ No. 29 = 0,170 tfm W < 2,50x (0,320+0.310) × 1/2 10,500 = 0,394 ^t f_{ui} W= 7,50 × 0,600 - 0,320 W = 2,50 × 0,400 × 0,170 928 DZE ō/i 22 400fee 步道例 中有 (11) 也覆芯重 角糖带 OIE

-345-

カ 下フランジ (グ・4 度 1 81 /0 合或応力度 = = = 支点 ドフランジ

慶

-347-

и: 760 R = 666, 2 = 2 470 Стали вов. 133 - 12 Стали вов. 134 - 12 Стали вов. 134 - 12 Стали вов. 134 - 12	M-740 R: 407 L:2486	() () () () () () () () () () () () () (MIN.SF -128.043 D MIN.SF 133,1450 D 0			С С С С С С С М - 380 M 210 R - 257 L = 25H С S - 82 S - 82	(20)	M + 300 05 - 5 - 36 K = 32.1 L = 52/4 満 (21	、	G1	E S= -86 M=-270 R= 257 L= 254	M870 R-257 L-254	0715 25	MIN. SF -132. 938 P 11. 30 - 136. 34, 437 9 - 100 - 14	2 M 870 R-267 L-2514	(28)	62 6 6 6 7 6 8 7 6 8 7 6 8 7 6 7 8 7 8 7 8	(30)	C = 2563 L= 2503	M= 730 R=397 L=2487	12 M= 220 M=-170 R-640 L- 247	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	M820 R:/643 L.2464	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	$\frac{1}{2} M = -143.554 + \frac{1}{4} M = 157.672 + \frac{1}{2} M = -340 + \frac{1}$	911 = 5 (38)
15681	3509,	7000	4800	4000 4000	40003	3800	7000	4300	17320		4300	7000	3800	4000	1000	1000	4700	6700	4700	14034	4600		00	3000	3900 40		3900
				2000 20												,,, {		J18				! , 	21		22		
3 0		9 1251 40125	O	7 401154 40	8 23	257 4	9 29	257 4		9 29	57 4012	D 57 401257	401257		40	154_A0	1257	9 3	1	255. 191251 4012	47 401244	491240	13 401235	401232	401126	90 1125	D 101263
4957 4972	4988 9999	5004 5019	5028	4618 4	1618 30	1005	5028 30 7	1005	1028 5028	5028 502	10057	8 5028	5028	461	8 46		100	5028 5021	10048	21 5006 499 9992	0 4974	4958	4943	4927 6	4511	4591 58	5050
50761				, I					<u>59520</u> 27	1596										59034							
]	[]		[]					
(11) 450	(12)) (13)	(14)	(15) (16)) (17) (580	(18)	(19)	(20)	(21))	(22)	(23)	(24)	(25)	(26)	(27) 580	(28)	(29) 330	(30)	(31)	(32)) (3	33)	(34)	(35) (3 540 (6) (37) 860 550	(38)
25(3)	22(3)	16(3)	25(3)	32(3) 34(3)	32(3) 2	2500	19(3)	25(3)	28(3))	25(3)	19(3) 2600	25(3)	32(3) 2600	34(3) 2600	32(3) 2600	25(3) 2600	16(3) 2600	22(3)	25(3)	22(3)	18	(3) 600	22(3)	32(3) 34 2600 20	(3) 32(3) 300 2600	22(3)
11(3)	11(3)	11(3)	11(3)	11(3) 11(3)	11(3) 1	1(3)	11(3)	11(3)	11(3))	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11	(3)	450	550	(3) 11(3)	11(3)
450 25(3)	22(3)	16(3)	480 25(3)	32(3) 34(3)	32(3) 2	470	19(3)	25(3)	28(3))	25(3)	19(3)	25(3)	32(3)	34(3)	32(3)	25(3)	16(3)	22(3)	25(3)	22(3)	16	(3)	22(3)	32(3) 34	(3) 32(3)	22(3)
-2014 -2100	-2008	-2005 1776	2026	2050 2022 2100 2100	2034	2007 1 2100 2	667 -1695 100 -2100	-1804	-1849 -2100)	-1813	-2100 2100	2015	2035	2019	2042	2030	2100 -2100	-2034	-2032 -2100	-2006	-2017	2100	2030	2100 21	00 2100	2017
86	92	95 324	74	50 78	66	93	433 405	296	251)	287	386 421	85	65 -2015	81 -2019	58 -2021	70 -1942	340 93 -1780 2007	66 2034	68 2032	92	83	334 -1766	70	53 -2027 -20	68 57 32 -2023	-1964
2100	2100	2100 -1854	-2018	-2082 -2100	-2082 -	2012 -1	907 2100	2100	2100)	2100	2100 - 190	-2012	-2082	-2100	-2082	-2018	-1854 2100	2100	2100	2100	2100	-1862	-2000 -	-2074 -21	00 -2077	-2013
86 -182	92 -229	-325	-390	-421 466	436	403	360	267	203)	-206	-359	-403	-435	-465	427	395	329	235	169	-221		368	-412	-472 -!	02 451	392
-1200	-1200	-1200	-1200	-1200 1200	1200	1200	1200	1200	1200)	-1200	-1200	-1200	-1200	-1200	1200	1200	1200	1200	1200	-1200	-11	.85	- 1200 -	1.05 1	06 1.04	1200
				720						-					690 34		1				· · · ·				4	38	

. .

(\$4)

-349-

105

応

カ

庹

kat ca²

	T MAX. BN 740, 771 12 Se 34 R= 664 L= 4934	- M-715 R-405 L-4953	2172 M= -260 R= 272 L= 4972	TT M 890 R. 254 L. 4917	8/1-5 5-	$\frac{1}{1000} = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 =$	321 = S _ 13	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-	大切加1号種 ・・ 市 面 樽 成 「 132,87 132,87 (21)		C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	(24)	C 25- 122 L- 4977	14 - 143 OTT P HIM. BM - 1440 181 - 1440 181 - 1440 181 - 143 0TT P HIM. BM - 1440 181 - 144 - 1	2 M=- 880 R: 254	S- 110 L=4977	1192 M : 370 M 190 R : 254 L : 4917		$M_{*} = 800 \qquad R = 2.87 \qquad L_{*} = 4.957 \qquad M_{*} = 800 \qquad R = 2.87 \qquad L_{*} = 4.957 \qquad L_{*} = 4.957 \qquad M_{*} = 74.0 \qquad R_{*} = 37.0 \qquad L_{*} = 4.945 \qquad M_{*} = 740 \qquad R_{*} = 37.0 \qquad L_{*} = 4.945 \qquad M_{*} = 740 \qquad R_{*} = 37.0 \qquad L_{*} = 4.945 \qquad M_{*} = 740 \qquad K_{*} = 37.0 \qquad L_{*} = 4.945 \qquad M_{*} = 7.0 \qquad M$	(32	CE 5:-84 M-135 R-638 L-4926	(34) (34)	017 4 1.2 TIT = 0 22 Provide the state of th	10 R= 5,813
=[•	16159	310	0 B600	5400 - 40	000 40	000 4000	5000	6800	3300	. 16716			5100	4000	4000	4000	3500	5800	3900	16323	3800	7200	4200 35	00 4000	3900
I	37				2000			J12					ĦΠ	2 310	000 200			318 				J21		2000,20	
3				0	0	403	3	0 0				9 10	03	0	463			0 10		1 9 0 0			9	0 AC	<u> </u>
492	25 4934 9880	944 4953	4963 497	4977 8705	4571	4571	4977	4977 497	9955	9955	995	4977 4977	497	45	71 45 10386	71	995	4977 4977	9949	1243 401241 401239 1001 973 4964 4954 49 9916	235 40 45 4 9878	1234 101231 1935 4926	401229	4507 4	1125
	58459					<u></u>				58918 268856										58623					
-]]						[[]][]]
				r					· · · · ·																
0	480	430	0 380	500	640 ····	16) (17) 700 640	490	(19) 380	460	530	460	(23) 380	(24) 490	(25) 630	(26) 700	(27) 640	(28) 500	(29) 380	(30) 480	(31) 530	(32)	(33)	(34) (3 420	5) (36)) (37) 56
27	2600	2600	0 2600	25(3) 32 2600 2	600 2	600 2600	25(3)	2600	22(3)	25(3)	22(3)	19(3) 2600	25(3) 2600	32(3) 2600	36(3) 2600	32(3) 2600	25(3) 2600	19(3) 2600	22(3) 2600	25(3) 2600	22(3) 2600	16(3)	19(3) 28 2600 2	3) 32(3) 300 2600	2813
-	11(3) 480	480	0 360	11(3) 11 550	(3) 11 870	(3) 11(3) 760 670	540	11(3) 380	11(3) 460	11(8) 530	11(3) 460	11(3) 380	11(3) 540	11(3) 670	11(3) 750	11(3) 670	11(3) 550	11(3) 380	11(3) 480	11(3) 530	420	330	11(3) 11(470	3) 11(3)	11(3
1)		100/01	19(3)	28(3) 34	(3) 36	(3) 34(3)	28(3)	19(3)	22(3)	25(3)	22(8)	19(3)	28(3)	34(3)	36(3)	34(3)	28(3)	19(3)	22(3)	25(3)	22(3)	16(3)	25(3) 32	3) 32(3)	32(3
0 0 0 0 0	25(3) -2012	-2034	-2027 1570	2048 20	035 20	042 2029	2046	1560 -2008	-2011												1 2000			20 30.00	
0 2	25(3) -2012 -2100 88	-2034 -2100 55	-2027 1570 -2100 2100 73 530	2048 20 2100 21 52	035 20 100 21 65	042 2029 100 2100 58 71	2046 2100 54	1560 -2008 2100 -2100 540 92	-2100	-2100	-2100	-2100 2100	2100	2100	2100	2100	2100	2100 -2100	-2100	-2100	-2100	-2100 2100	2100 21	00 2100	2100
0 2 8	25(3) -2012 -2100 88 2012	-2034 -2100 68 2034	-2027 1570 -2100 2100 -3 530 2027 -1570 2027 -1570	2048 20 2100 2 52 -1809 -11	035 20 100 21 65 899 - 19	042 2029 100 2100 58 71 922 -1894	2046 2100 54 -1806	1560 -2008 2100 -2100 540 92 -1560 2008	-2100 89 2011	-2100 81 2019	-2100 74 2026	-2100 2100 87 551 2013 -1549	2100 60 -1800	2100 55 -1888	2100 65 -1934	2100 76 -1889	2100 66 -1797	2100 -2100 544 78 -1556 2023	-2100 67 2033	-2100 73 2027	-2100 61 2039	-2100 2100 50 680 2050 -1420	2100 21 67 -1721 -16	20 2021 00 2100 80 79 46 -1915	2100
1) 10 1) 8 0 2 8 0 2	25(3) -2012 -2100 88 2012 2100 88	- 2034 - 2100 88 2034 2100 . 66	-2027 1570 -2100 2100 -73 530 2027 -1570 2100 -1612 73 73	2048 20 2100 2 52 -1809 -10 -1856 -11 47	035 20 100 21 65 899 -16 954 -16 54	042 2029 100 2100 58 71 922 -1894 989 -1954 67 60	2046 2100 54 -1806 -1848 43	1560 -2008 2100 -2100 540 92 -1560 2008 -1611 2100 51 92	-2100 89 2011 2100 89	-2100 81 2019 2100 81	-2100 74 2026 2100 74	-2100 2100 87 551 2013 -1549 2100 -1611 87 62	2100 60 -1800 -1848 48	2100 55 -1888 -1954 66	2100 65 -1934 -1986 52	2100 76 -1889 -1954 65	2100 66 -1797 -1856 59	2100 -2100 544 78 -1556 2023 -1611 2100 55 78	-2100 67 2033 2100 67	-2100 73 2027 2100 73	-2100 61 2039 2100 61	-2100 2100 50 680 2050 -1420 2100 -1469 50 49	2100 21 67 -1721 -16 -1781 -19 61	200 2100 80 79 46 -1915 12 -1967 85 52	2100 82 -1840 -1913
0 2 8 0 2 8 0 2 8 0 2 8 0	25(3) -2012 -2100 86 2012 2100 88 -181 -1200	-2034 -2034 -2100 66 2034 2100 .66 -241 -1200	1 -2027 1570 2 -2100 2100 3 73 530 4 2027 -1570 0 2100 -1612 5 73 41 -336 -1200	2048 20 2100 2 52 -1809 -10 -1856 -11 47 -402 -4 -1200 -12	D35 20 100 21 65	042 2029 100 2100 58 71 922 -1894 989 -1954 67 60 501 477 200 1200	2046 2100 54 -1806 -1848 43 415 1200	1560 -2008 2100 -2100 540 92 -1580 2008 -1611 2100 51 92 343 1200	-2100 89 2011 2100 89 242 1200	-2100 81 2019 2100 81 185 1200	-2100 74 2026 2100 74 -242 -1200	-2100 2100 87 551 2013 -1549 2100 -1611 87 62 -342 -1200	2100 60 -1800 -1848 48 -412 -1200	2100 55 -1888 -1954 66 -475 -1200	2100 65 -1934 -1986 52 -500	2100 76 -1889 -1954 65 470	2100 66 -1797 -1856 59 404	2100 -2100 544 78 -1556 2023 -1611 2100 55 78 342 1200	-2100 67 2033 2100 67 256	-2100 73 2027 2100 73 107	-2100 61 2039 2100 61 -243	-2100 2100 50 680 2050 -1420 2100 -1489 50 49 -335	2033 21 2100 21 67 -1721 -16 -1781 -19 61 -393 -4	200 2021 00 2100 80 79 46 -1915 12 -1967 86 52 50 -475	2100 87 -1846 -1913 67 438
0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 0 2 8 0 0 2 8 0 0 2 8 0 0 2 8 0 0 2 8 0 0 0 2 8 0 0 0 0	25(3) -2012 -2100 86 2012 2100 88 -181 -1200 0.72	- 2034 - 2034 - 2100 - 68 2034 2100 - 68 - 241 - 1200 0.70	-2027 1570 -2100 2100 -3 73 50 -1570 2100 -1612 5 73 41 -338 -1200 0.63	2048 20 2100 2 52 - -1809 -11 -1856 -11 47 - -1200 -12 0.78 0	D35 20 100 21 65 99 954 -16 54 -16 200 12 .89 0.	042 2029 100 2100 58 71 922 -1894 969 -1954 67 60 501 477 200 1200 .93 0.89	2046 2100 54 -1806 -1848 43 415 1200 0.78	1560 -2008 2100 -2100 540 92 -1560 2008 -1611 2100 51 92 343 1200 0.59	-2100 89 2011 2100 89 242 1200 0.64	-2100 81 2019 2100 81 185 1200 0.87	-2100 74 2026 2100 74 -242 -1200 0.65	-2100 2100 87 551 2013 -1549 2100 -1611 87 62 -342 -1200 0.59	2100 60 -1800 -1848 48 -412 -1200 0.77	2100 55 -1888 -1954 68 -475 -1200 0.90	2100 65 -1934 -1986 52 -500 -1200 0.92	2100 76 -1889 -1954 65 470 1200 0.88	2100 66 -1797 -1856 59 404 1200 0.77	2100 -2100 544 78 -1556 2023 -1611 2100 55 78 342 1200 0.60	-2100 67 2033 2100 67 256 1200 0.67	-2100 73 2027 2100 73 187 1200 0.69	-2100 61 2039 2100 61 -243 -1200 0.72	-2100 2100 50 680 2050 -1420 2100 -1469 50 49 -335 -1200 0.71	2033 21 2100 21 67 -1721 -16 -1781 -15 61 -393 -4 -1200 -12 0.91 1.	20 2021 00 2100 80 79 146 -1915 12 -1967 86 52 50 -475 00 -1200 00 1.03	2010 2100 -1846 -1913 67 438 1200 1.01

•

650 22

85

(85)

			ATAL (1):SHA4	100 (3):SMA490 (4):SMA	1370																					
185			(1)	(2)	(3	3)	(4)	(5)	(6)	(7)	(8)	(9))	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(1	9)	(20)	(21)
	<u> </u>	-	330	400		330	330	520	810	510	330		330	400	480	390	350	470	560	650	560	470	1	340	390	440
	上フランジ		16(3)	19(3)	16	(3)	19(3)	25(3)	28(3)	25(3)	16(3)	16	(3)	19(3)	22(3)	22(3)	19(3)	22(3)	32(3)	34(3)	32(3)	22(3)	19/	(3)	22(3)	25(3)
-			2600	2600	21	2600		2600	2600 2600		2800	2	2600		2600 1		2600	2800	2600	2600	2600	2800	21	500	2600	2600
	筆 報	AL (77 M)	11(3)	11(3)	11	(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11	(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	111	(3)	11(3)	11(3)
		-	330	400		330	460	570	620	560	440		330	400	480	390	350	530	630	710	630	530	1	340	390	440
	下フランジ		16(3)	19(3)	16	(3)	22(3)	28(3)	32(3)	28(3)	22(3)	16	(3)	19(3)	22(3)	22(3)	19(3)	25(3)	32(3)	34(3)	32(3)	25(3)	19/	(3)	22(3)	25(3)
		σ.	-1968	-2010	-1963	1390	1981	2029	2036	2025	2028	1330	-2004	-2024	-2020	-2031	-2020 1467	2053	2045	2048	2041	2048	1468	-2047	-2044	-2031
	上フ ラン ジ	0	-2100	-2100	-2100	2100	2100	2100	2100	2100	2100	2100	-2100	-2100	-2100	-2100	-2100 2100	2100	2100	2100	2100	2100	2100	-2100	-2100	-2100
R5		***	132	90	137	710	119	71	64	75	77	770	96	76	80	89	80 633	47	55	52	80	52	632	53	56	69
		σ.	1968	2010	1963	-1390	-1874	-1835	-1877	-1832	-1653	-1330	2004	2024	2020	2031	2020 -1487	-1781	-1884	-1923	-1880	-1777	-1468	2047	2044	2031
カ	עכברד	0	2100	2100	2100	-1450	-1747	-1907	-1935	-1900	-1736	-1474	2100	2100	2100	2100	2100 -1552	-1841	-1938	-1974	-1938	-1841	-1526	2100	2100	2100
		***	132	90	137	80	72	71	58	69	83	143	96	76	80	69	80 84	60	54	51	58	64	58	53	56	69
		Tees	314	-192		323	-383	-451	485	450	373	3	32	204	-183	-220	-327	-400	-458	496	461	396	3	21	214	176
	.	Τ.	1200	-1200	-12	200	-1200	-1200	1200	1200	1200	12	00	1200	-1200	-1200	-1200	-1200	-1200	1200	1200	1200	12	00	1200	1200
ka1 .c.=2	合成応力	R	0.87	0.90	0.	. 87	0.97	1.04	1.07	1.04	0.99	0.	78	0.77	0.72	0.87	0.60	0.76	0.87	0.92	0.87	0.76	0.	57	0.61	0.63
		1	560						800				-							720						
支点. 1	マランジ	耳	16						38											34	L					
				-																						

	C (1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		E M: 230 M 200 R= 289 L: 4 925		41.41.41.41.41.41.41.41.41.41.41.41.41.4	$\frac{1}{1000} = \frac{1}{1000} = 1$		E H= 280 M=-150 R= 251 L= 4726	· · · · · · · · · · · · · · · · · · ·	· 大明月1号4 ··· 面構成 152 · Y 059 · W 1322 259 1322 259 (21)	C C C C C C C C C C C C C C C C C C C	2380 M190 R-251 L-4926	(1) MTPO R.25/ L.4926	SV1 - 25 52 52 - 141.200 - 141.201 - 141.0000 - 141.0000 - 141.000 - 141.000 - 141.000 - 141.000 - 141.000	22 M=- 770 R= 251 L=4926	(28)	66 67 78 78 78 78 78 78 78 78 78 78 750 7-750 7-7750 7-7726	301	С. HALLEN 732.199 66 5 3 39 R = 700 R = 2694 L = 4722	C 28-42 K-372 L-49/S	(33) (33) (33) (33) (33)	906 F=7 8E91-Y 059- = H 34	0// 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /
3 3 4 190	13457 	3000 3000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7499 39 1230, 19123 4921 4925	1800 1800 1928 1928 8620	2 310 2 4000 2 310 2 401 2 401 452	4000 - 4000 000 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 2000	0 5000)1 (4 1232 4925 985	7300 J12 J12 J12 J12 J12 J12 J12 J12	3000 3000 (8) 232_491 26_492 9853	15813 J13 J13 J13 J13 J13 J13 J13 J	3000 J14 J14 J14 J14 J14 J14 J14 J14	7390 , , , , , , , , , , , , ,	1900 31 31 31 31 31 31 31 31 31 31	6 6 6 6 6 6 6 6 6 6 6 6 6 6	1020 311 311 311 311 311 311 324 493		318 318 318 318 318 318 318 318 318 318	1600 1600 1900	15913 J19 4 59 69 69 69 69 69 69 69 69 69 6	3400 J20	B500 J21 A A B B B B B B B B B B B B B B B B B	3300 8900 200 322 322 491226 691120 4906 4302 388 11	A000, 3900, 34 10,2000 10,2000 10,2000 10,2000 12,20
_[.]]		286119							[]		
0) 3) 00 3)	(11) 480 22(3) 2600 11(3)	(12) 390 22(3) 2600 11(3)	(13) 350 19(3) 2600 11(3)	(14) 470 22(3) 2800 11(3)	(15) 560 32(3) 2600 11(3)	(16) (17 650 56 34(3) 32(2 2600 260 11(3) 11(3	7) (18) 60 470 3) 22(3) 00 2600 3) 11(3)	(19) 340 19(3) 2600 11(3)	(20) 390 22(3) 2500 11(3)	(21) 440 2513) 2500 11(3)	(22) 390 22(3) 2600 11(3)	(23) 340 19(3) 2600 11(3)	(24) (470 22(3) 3; 2600 11(3) 1	25) (26) 560 650 2(3) 34(3) 2600 2600 1(3) 11(3)	(27) 560 32(3) 2 2600 11(3) 1	(28) 470 (2(3) 2600 (1(3)	(29) 340 19(3) 2600 11(3)	(30) 420 22(3) 2600	(31) 460 25(3) 2600 11(3)	(32 380 22(3) 2600 11(3)	(33) 330 16(3) 2600 11(3)	(34) (35) 350 530 19(3) 25(3) 2 2600 2600 11(3) 11(3) 1	(36) (37) (610 520 (8(3) 25(3) 19 2600 2600 2 1(3) 11(3) 11
00 3) 24 00 78 24 00	480 2213) -2020 -2100 80 2020 2100	390 22(3) -2031 -2100 89 2031 2100	350 19(3) -2020 1467 -2100 2100 80 633 2020 -1467 2100 -1552	530 2513) 2053 2100 47 -1781 -1841	630 32(3) 2045 2100 55 -1884 -1938	710 63 34(3) 32(3) 2048 204 2100 210 52 6 -1923 -186 -1974 -193	30 530 31 25(3) 11 2048 20 2100 30 52 30 -1777 38 -1841	340 19(3) 1468 -204 2100 -210 632 5 -1468 204 -1526 210	390 22(3) 17 -2044 10 -2100 13 36 17 2044 10 2100	440 25(3) -2031 -2100 69 2031 2100	390 22(3) -2047 -2100 53 2047 2100	340 19(3) -2048 1465 -2100 2100 52 635 2048 -1465 2100 -1526	520 25(3) 3 2035 2 2100 2 65 -1708 -1 -1832 -1	630 710 2(3) 34(3) 2028 2035 2100 2100 72 65 1869 -1911 1938 -1974	630 32(3) 2030 2100 71 -1870 -1938	520 25(3) 2034 1/ 2100 2 66 / 1787 -1/ 1832 -1/	340 19(8) 2 492 -2054 - 100 -2100 - 610 46 402 2054 526 2100	420 22(3) 2031 2100 80 2031 2100	460 25(3) -2031 -2100 69 2031 2100	380 22(3) -2011 -2100 90 2011 2100	330 16(3) -2019 1430 -2100 2100 61 670 2019 -1430 2100 -1473	400 370 2213) 2813) 3 2031 2022 2100 2100 69 78 -1696 -1841 -1761 -1906	620 570 12(3) 28(3) 22 2021 2029 11 2100 2100 2 79 71 1863 -1834 -1 1934 -1907 -1
76 04 00 77	80 -183 -1200 0.72	69 -220 -1200 0.67	80 84 -327 -1200 0.60	60 -400 -1200 0.76	54 -458 -1200 0.87	51 5 496 40 1200 120 0.92 0.8 720 34	58 64 31 396 50 1200 37 0.76	58 5 321 1200 0.57	3 56 214 1200 0.61	69 176 1200 0.63	53 -215 -1200 0.61	52 61 -323 -1200 0.57	44 -397 -1200 - 0.75 (69 63 -459 -494 1200 -1200 0.86 0.91	68 458 1200 0.86	45 399 1200 0.75	44 46 327 1200 0.58	89 231 1200 0.63	69 184 1200 0.87	-211 -1200 0.00	81 43 -338 -1200 0.68	68 65 -377 -431 -1200 -1200 - 0.87 0.99	72 73 -466 429 1200 1200 1.03 1.02 870

.

(86)

.

86
			C =		E M680 R-00 L- 5050	min. sr -135.328 № mill. 8r -11.33.100 0 1 2 M = -640 R = 00 L = 4 900	S- 124	6 5= 74 5= 74 5= 74 5= 74 5= 74		Imax. Bin 722.120 M= 690 R = 658 L = 4.889 Imax. Bin 722.120 Z S = 36 R = 658 L = 4.889	S:-42 R:379 L:4883	E N.270 M.190 R.286 L:4817	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	22/-=S 15 Star 6621 - MB MM	NIN. SF -140.128 NAX. 5F 137.387	6// · S	ер И: 320 И:-КО R:247 L:4815	۲ ۲	大明祖1号碑 面 <u>54</u> 2 8 女 = 7 <u>8</u> <u>131 631 802 88 7 7 88</u> (21)	
	<u>上つうンジ7時状;</u> (私・単)]	E		<u>] </u>										·			
	<u> </u>	8750	18100 ,	J3	3800 3800	2000 2000		J6		J7	38	39	1000	2000 - 30	2000	3000	J12		J13	
	2600																			\ddagger
	· · · · · · · · · · · · · · · · · · ·	40 Ø				40		0 0	0	0 0	p		0	0	0	3 6	9 89	10	00	
	<u>補累材機構</u> 対係相関部	401263 4012	82 401263 401262 401263 4 0 5050 5050 5050	01262 401263	401262 401	125 401125	4900	4898 489	489	23 401222 40122 2 4889 4886	4883	1220 481215	4876	4478	4478	4875	4876 487	48	219 4875 44 76 4875 44	219
	70 - 25	9919	10100 10100	101	00	10244	9	798	9787	9775	9763		534	101	74	975		9751	9751	
	大同東 420 桁 長	b	44900			•le													263387	
	下りらンジがけり		r	}			<u> </u>					·]	}			
	(福-岸)		C						l-		L	LL	L			J	J	LL		
		村質 (1):SMA	400 (3):SMA490 (4):SMA57	0																
1		(1)	(2)	(3)	(4) (5)	(6) (7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15) (1	6) (17)	(18)	(19)	(20)	(21)	
I	上フランジ 庫(材質)	330	22(3)	18(3)	19(3) 25(3)	28(3) 25(3)	16(3)	16(3)	19(3)	22(3)	22(3)	19(3)	22(3)	32(3) 34	3) 32(3)	22(3)	19(3)	22(3)	450 25(3)	
	調 坂 ア	2600	2600	2600	2600 2600	2600 2600	2600	2600	2600	2600	2600	2600	2600	2600 20	3) 11(3)	2600	2600	2600	2600	
		330	410	330	460 560	610 560	450	330	410	470	400	340	520	620	700 830	530	350	410	450	
	19999 唐(封質)	16(3)	22(3)	16(3)	22(3) 28(3)	32(3) 28(3)	22(3)	16(3)	19(3)	22(3)	22(3)	19(3)	25(3)	32(3) 34	3) 32(3)	25(3)	19(3)	22(3)	25(3)	
	上フランジ グー	-2013	-2015	-2100 2100	2100 2100	2100 2100	2100	2100 -2100	-2100	-2100	-2018	-2100 2100	2100	2100 21	00 2100	2100	2100 -2100	-2100	-2100	
ю	余裕重	87	85	88 747	96 83	75 90	88	709 105	72	76	82	65 648	50	53	51 68	48	590 87	81	66	
+	σ.	2013	2015	2012 -1353	-1692 -1841	-1868 -1835	-1685	-1391 1995	2028	2024	2018	2035 -1452	-1977	-1884 -11	22 -1873	-1805	-1510 2013	2019	2034	-
~ ~	トフランジレグ・・	2100	2100	2100 -1450	-1747 - 1900	1-1929 -1900	-1749	-1474 2100	Z100	2100	2100	2100 -1533	-1836	1936 -16	73 -1941	1~1845	-1559 2100	Z100	2100	

55 59 62 85 64 83 105 72

.

344

0.77 0.78

1200

216

1200

-384 -443 -473 433 387

-1200 -1200 -1200 1200 1200

0.99 1.03 1.05 1.01 0.99

800

38

88

-327

-1200

0.93

85

-216

-1200

0.90

97

ĸ

10

夏点 下フランジ

kāt ka²) 合成応力度 == =

<u>格</u> 厚

板 Taax Ta

87

315

1200

0.92

560

19

0.67 0.60 0.76 0.87 0.92 0.86 0.77 0.57 0.62 720 34

82 65 81 60 52 51 69 41 49 87 81

 -227
 -337
 -411
 -460
 -490
 450
 403
 331
 227

 -1200
 -1200
 -1200
 -1200
 1200
 1200
 1200
 1200

66

177

1200

0.64

-353-

-1200

......

76

-174

-1200

0.75

		$\frac{1}{1} = \frac{1}{10000000000000000000000000000000000$	K-377 L-4883	E M.270 M.190 R.286 L:4817		2/01.7 12. 22/5 5	MIN. SF -140. 128 MIN. SF 137.397	5 - 1780 R+249 L+4875		СП И: 320 И:-КО R:249 L:4815	 ≝⊺	大明1 号目 ・・ 面 構 成 2 52 8 4 = 7 82 · S 131 638 (21)	64 518 >= 1 (22)	E M: 260 M: -200 R: 249 L: 4876	2437-120 R=242 (24)	CO CO CO CO CO CO CO CO CO CO CO CO CO C	3= 120 R-249 L- 4876	(28)	20 M:340 M=-140 R:249 L:4876	(30)	E MAX BH 721 427 5 C MAX BH 721 427 5 C MAX BH 721 427 5 C MAX BH 721 427 5 C M C M C M C M C M C M C M C M C M C M	989 F = 7 06 E - 3 (32)	E S- 80 M=- 130 F-633 L-4892	(34)	9/1	90 00 01 02 02 02 02 02 02 02 02 02 02
222	3300 3300 4 4 4 9787	15855 J7 A J3 J3 J3 J3 J3 J3 J3 J3 J3 J3	3800- 38 38 38 38 38 38 38 38 38 38		4800 69 4876 8534	4000 20 310 9 9 9 9 9 1476	4000 00 2000 4 2000 4 2000 9 4011 9 4011 1 4 477 10174	4000 	3000 3000 219 49 9751	6700)12)12)))))))))))))	3400	15510 15510 13 13 14 15 15 15 15 15 15 15 15 15 15	29 (3) 14 (3) 14 (4) 14	6900 	4800 4000 J16 J16 Q Q 491219 40 4878 4 4878 4 48532	4000 2000 200 2000 200 400 br>400 200 400 400 200 400 400 400 400 400 400 400 400 400		4700	6400)18)18 0 0 0 0 0 0 0 0 0 0 0 0 0	41100 - (9) 19 - 401 6 18 9753	15503 319 319 30 30 30 30 30 30 40122 40122 40122 40122 40122 40122 40122 40122 40122 40122 5763 57803	J20 J20 D 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7400 	3500 3500 401 22 4895 63	3900 200 322 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1000 10,200 10,200 4,4011 4,4011
				1								263387	11			1)	1						
	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24) (25) (26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)	(36)
+	19(3)	22(3)	22(3)	19(3)	22(3)	32(3)	34(3) 3	32(3)	22(3)	19(3)	22(3)	25(3)	22(3)	19(3)	22(3) 32(3) 34(3)	32(8) 2	2(3)	19(3)	22(3)	25(3)	22(3)	16(3)	19(3)	25(3) 2	8(3) 2
+	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3) 1	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3)	11(3) 11(3) 11(3)	11(3) 1	1(3)	11(3)	11(3)	11(3)	11(3)	11(3)	2600	11(3) 1	1(3)
	410	470	400	340	520 25(3)	820 32(3)	700 34(3) 3	630 32(3)	530 25(3)	350 19(3)	410	450 25(3)	410	350 19(3)	520 62 25(3) 32(3	0 700) 34(3)	620 32(3) 2	520 (5(3)	340	420	· 440 25(3)	400	330	460 22(3)	570 28(3) 3	610 (2(3) 2
Ţ	-2028	-2024	-2018 -	2035 1452	2050	2047	2049	2032	2052	1510 -2013	-2019	-2034	-2024 -	2020 1495	2041 2040	2032	2030	2030	1466 -2029	-2040	-2046	-2012	-2029 1412	2012	2022	2037
5	72	-2100	82	65 648	50	53	51	68	48	590 87	-2100	-2100	-2100 -	80 805	59 60	0 68	70	2100	634 71	60	-2100	-2100	71 688	2100 88	78	63
4	2028	2024	2018	2035 -1452	-1977	-1884 -	-1922 -	1873	-1805	-1510 2013	2019	2034	2024	2020 -1495	-1793 -1870	-1906	-1869 -	1760	-1468 2029	2040	2046	2012	2029 -1412	-1701	-1841 -	1879 -
5	72	2100	82	65 81	60	52	51	69	41	49 87	a1	86	76	80 64	43 5	67	88	77	87 71	80	54	2100	71 63	-1762	-1907 - 66	51
4	216	-174	-227	-337	-411	-460	-490	450	403	331	227	177	-225	-332	-403 -45	491	461	409	334 .	232	173	-229	-339	-389	-436	472
+	1200	-1200	-1200	-1200	-1200	-1200 -	0.92	1200	1200	1200	1200	1200	-1200	-1200	-1200 -1200	1200	1200	1200	1200	1200	1200	- 1200	-1200	-1200	-1200	1200
		0.75		v. vv			720		•	, , , , , , , , , , , , , , , , , , ,		V. UT			0.70 (0.81			<i>v.13</i>			0.09	1 0.89				220

(87)

0.83

650

22

MA (1),30X900 (3),008430 (4),008070

			MA (17.3	1400 (0).000490 (4).0000070	1		1 (4)	1 (5)	1 (6)	1/2)	(1 (0)	(10)	(11)	(12)	1 (1	3)	(14)	(15)	(16)	(17)	(18)	(1	9)	(20)	(21)
D			(1)	(2)			1 200	1 50	10,	570	40	, _ `	330	430	480	430		30	380	570	660	580	380		330	410	460
	よつうつジ		340	520		330	300	360	630	1 3/0		1		22(2)	25(3)	22/31	18	3)	2213)	28(3)	32(3)	28(3)	22(3)	16	(3)	19(3)	22(3)
			19(3)	25(3)	16	(3)	22(3)	28(3)	32(3)	28(3)	19(3		(3)	22(3)	25(3)	22131	100	3,	22137	20107	2800	2600	2800		100	2800	2600
1		*	2600	2600	51	600	2600	2600	2600	2600	2600	2	600	2600	2600	2000	21	00	2000	2000	2000	2000	2000			2000	7000
		篇(材質)	11(3)	11(3)	11	(3)	11(3)	11(3)	11(3)	11(3)	11(3	1 11	(3)	11(3)	11(3)	11(3)	111	3)	11(3)	11(3)	11(3)	11(3)	11(3)		(3)	11(3)	11(3)
			340	520		330	430	580	650	580	410		330	430	480	430		30	430	580	660	590	430		330	410	460
1	下フランジ		19(3)	25(3)	16	(3)	22(3)	28(3)	32(3)	28(3)	2213	10	5(3)	22(3)	25(3)	22(3)	16	3)	22(3)	28(3)	32(3)	28(3)	22(3)	16	(3)	19(3)	22(3)
	+	0.	-2031	-2048	-1979	1713	2000	2023	2039	2023	2027	1599	-2020	-2030	-2037	-2039	-2004	1743	2029	2044	2034	2036	2058	1755	-2019	-2051	-2019
			-2031	-2040	1.0100	2100	2100	2100	2100	2100	2100	2100	-2100	-2100	-2100	-2100	-2100	2100	2100	2100	2100	2100	2100	2100	-2100	-2100	-2100
威	127555		-2100	-2100	-2100	2100	2100	2100	2100	2100	1 21			70	63	R1	96	357	71	56	66	84	42	345	81	49	81
	L	* * *	69	52	121	367	100	+ "	01	+	1 /	501	00	10	0000	2030	2004	-1743	- 1017	2024	-2034	-2017	-1044	-1755	2010	2051	2019
		σ.	2031	2048	1979	-1713	-1908	-2023	-2039	-2005	-1908	-1599	2020	2030	2037	2038	2004	-1/43		-2024	-2004	2017		1100			
カ	エフランジ	0	2100	2100	2100	-1852	-1980	-2083	-2100	-2063	-1973	-1864	2100	2100	2100	2100	2100	-1870	-1992	-2086	-2100	-2089	-1992	-1870	2100	2100	2100
		***	69	52	121	139	72	60	61	78	6:	265	80	70	63	61	96	127	75	82	66	72	48	115	81	49	81
-		7	363	-301		390	-437	-499	554	522	441		393	258	-193	-258	-2	65	-414	-506	-537	495	399	3	35	219	175
K	ਡ 4	7.	1000	-1200	-11	200	-1200	-1200	1200	1200	1200	1	200	1200	-1200	-1200	-12	00	-1200	-1200	-1200	1200	1200	12	00	1200	1200
kat ca2			1200	-1200	t		1	1	1	1 00	1 0		01	0.80	0.87	0.87	0	81	0.92	1.04	1.05	1.02	0.93	0.	80	0.85	0.82
	合展於方	度 == 2	0.95	0.92		. 93	11.01	11.00		1.00	1	· · · ·		1 0.05	1	1 0.00	1				720	1					
1	7979	- 16	560						800			•									1	+		· ·			
1 × ··· 1		R.	19						38	1						. .		· · ·			T		· • ·	• - •			· · · · · · · · · · · · · · · · · · ·

E M: 410 M:-150 R:1862 L: 2443	C = 40 K + 37 L + 2433	S46 S46 M-330 M-230 R-284 L-2415	2152 8-246 L-2412	12 M-750 R-24/2 5- 120 R-24/2 10 M-360 M-200 R-24/2 10 M-340 M-200 R-24/2	··· 大切相1号章 ·· 断 面 構 成 942 · · · · · · · · · · · · · · · · · · ·	C C C C C C C C C C C C C C C C C C C	212 5-1 202	21 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2 - 2 -	(10) (10) (10) (10) (10) (10) (10) (10)	C C C C C C C C C C C C C C C C C C C	2442-1 15:30 R-16:30 R-16:31 1:2422	(40) (39) (40) (40)	222 017 222 017 221	2452-7 E89-2 SYSTEM 51511-1
7600 1600 J6 J6 J6 J6 J7 J6 J6 J7 J6 J7 J6 J6 J6 J6 J6 J6 J6 J6 J6 J6	15352 J7 J7 J7 J7 J7 J7 J7 J7 J7 J7	3000 7200 30 30 30 30 30 30 30 30 30	3100 3800 4000 4 200 2000 310 200 2000 310 200 2000 310 200 2000 4 200 2000 310 400 2000 4 200 200 4 0 200 4 200 200 200 200 200 200 200 200 200 200	000 3400 7900 31 31 31 3800 14907 2 J13 3 C 2 J13 3 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	3800 84 314 31 4 4 4 4 4 4 8 9 69 6 8 1205 481205 481205 1 14 2 4823 1 9549 2	00 3000 400 2002 15 J16 50 63 1205 401205 401105 4 4825 4825 4431 - 8443 1000	0 3800 3000 7500 200 J1 J18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4900 15092 319 319 205 491207 491209 49 205 4829 4838 4 9654 9687 57392	4700 7500 J20 J21 J21 J21 J21 J21 J21 J21 J21	3000 3900 4000 3 200 200 200 300 3 322 200 200 3 322 3 19 49 22 49 4 40 4 19 49 122 49 123 49 11 5 4884 4494 450 8539 10 235	3900 3000 5600 5600 723 724	2806 12906 125 125 125 125 125 125 125 10140 1805	4200 6219 J26 J26 J26 J26 J26 J26 J26 J26	
	. <u> </u>]
(9) (10) 330 430 18(3) 22(3) 2600 2800 11(3) 11(3) 330 430 16(3) 22(3) 99 -2020 -2030 00 -2100 -2100 101 80 70 99 2020 2030 864 2100 2100 265 80 70 393 258 258	(11) 480 25(3) 2600 · 11(3) 480 25(3) -2037 -2100 63 2037 2100 63 -193	(12) (13) 430 330 22(3) 16(3) 2600 2600 11(3) 11(3) 430 330 22(3) 16(3) -2039 -2004 -2100 -2100 61 96 2100 2100 -1743 -2100 2100 2004 -1870 61 96 127 -238 -385	(14) (15) (16) (380 570 660 22(3) 28(3) 52(3) 2 2800 2800 2800 2800 2 11(3) 11(3) 11(3) 11(3) 1 430 580 860 22(3) 28(3) 32(3) 2 22(3) 28(3) 32(3) 2 2 2 2 32(3) 2 22(3) 28(3) 32(3) 2 2 2 2 32(3) 2 2 2 32(3) 2 2 2 32(3) 2 3 3 3 3 3 3 3 3 3	(17) (18) (19) 580 380 330 8(3) 22(3) 18(3) 2600 2600 2600 1(3) 11(3) 11(3) 580 430 330 8(3) 22(3) 18(3) 2036 2058 1755 -20 2100 2100 2100 -21 64 42 345 20 2017 -1944 -1755 20 72 48 115 495 495 399 335 35	(20) (21) 410 460 19(3) 22(3) 2800 2600 11(3) 11(3) 410 460 19(3) 22(3) 019 2051 -2019 -2019 100 -2100 81 49 101 2019 100 2100 2100 2100 81 49 81 219 175 717	(22) (2 360 3 22(3) 16 2600 2(11(3) 11 360 3 22(3) 16 -2051 -2028 -2100 -2100 49 72 2051 2028 2100 2100 49 72 2051 2028	23) (24) (25) (26) 330 370 360 64 (3) 22(3) 28(3) 32(3) 600 2600 2600 2600 (3) 11(3) 11(3) 11(3) 330 420 570 64 (3) 22(3) 28(3) 32(3) 1794 2042 2026 202 2100 2100 2100 210 306 58 71 7 -1794 -1927 -2010 -201 -1870 -1985 -2083 -211 75 58 73 7 348 -398 -488 51	3) (27) (28) (29) 10 550 370 330 30 28(3) 22(3) 16(3) 30 28(3) 22(3) 16(3) 30 28(3) 22(3) 11(3) 30 560 420 330 31 28(3) 22(3) 18(3) 32 28(3) 22(3) 18(3) 32 2050 2031 1753 -2010 32 50 69 347 90 36 -2029 -1916 -1753 2010 30 -2020 -1916 -1753 2100 30 -2020 -1916 -1753 2100 30 -2020 -1916 -1753 2100 30 -2020 -1916 -1753 2100 30 -2080 -1985 -1870 2100 32 51 68 117 90 76 495 404 356 356	(30) (31) 420 480 22(3) 25(3) 2600 2800 11(3) 11(3) 420 460 22(3) 25(3) -2014 -2019 -2100 -2100 86 61 2014 2019 2100 2100 86 81 242 140	(32) (33) 410 330 22(3) 16(3) 2600 2600 11(3) 11(3) 410 380 22(3) 16(3) -2047 -2014 -2100 -2100 53 86 2047 2014 -1 2100 53 86 -241 -386	(34) (35) (36) (350 510 590 19(3) 28(3) 32(3) 2 2600 2600 2600 2600 11(3) 11(3) 11(3) 1 410 520 590 19(3) 28(3) 32(3) 2 439 2021 2028 2034 100 2100 2100 2100 661 79 72 66 439 -1909 -2008 -2034 685 -1968 -2064 -2086 -418 -482 -524	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(41) 460 25(3) 2600 11(3) 460 25(3) -2027 -2100 73 2027 2100 73 160	(42) (43) 400 330 22(3) 16(3) 2800 2800 11(3) 11(3) 400 330 22(3) 16(3) -2049 -2023 -2100 -51 51 77 2049 2023 2100 2100 51 77 -246 -416

-356-

•

1

(88)

3 下部構造モデル化資料(下部工設計計算書抜粋)

下部構造のモデル化設定根拠として,大切畑大橋設計時の下部工設計計算書より各橋脚躯体の 設計総括表を抜粋して添付する.

	梁 (鉛直方向, せん断力照査位置)	右 (則)(計1部63.85m)	2.371	S81	2	(1閱)D32 - 14本(2閱)D32 - 14本		4		292.8			9,4 out			Ź.Ż		鉄筋 SD2%を使用。	許容値は割増し係数を考慮した値とする。	オーバーしているので,	-6本, D19-2本を配置する)			•						
度照查	,曲げモーメント照查位置)	右侧	3500	As		本 (2預) D32 - 22本	治 時	1544.8			45	/ 737	-	0 QL	1800.0			τ , $t=2/N/{\rm mm}^2~(2/O{\rm kgf/{\rm cm}^2})$,	,せん断照査位置での値とし,	算でせん断応力度が許容値を、 ターラップ)の計算を行った。	2 < A, = 36.132cm ² (D25-	上必要なスターラップ 量)								
別期断面応力	梁 (鉛直方向,	左側		((2825 (2805)	(1預1) D32 - 227	治 時	1426.4		tons	41	1592	-	70	1000.0			※設計基準強度 。	※せん野応力度は	※梁の鉛直方向計 斜引張鉄筋(ス	A. =30,043 'cm	(A, : 計算]								-
P 1 橋		橋軸直角方向			100	2損1) D3Z — 80本(ctc119)	地震時	29/7 1	1259.0	264.4	85	1456	2,9	5a/	2/00	5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	右側	つ (左俐) つ (右俐)			₩6	地廢時	2/5.1		88.6 .	1000	6 0	105	oct7	1.0
	壮	橋軸方向	350			(1開)D3Z-80体(ctc127) (;	地震時	2353.9	1259.0	264.4	89	900/	2. 9	105	2/00		左 侧	301	007	100 3	- 910	地震時	207.9		88.7	4/	0, 9	102	0022	1.0
	 择			材 幣 面		筋量	重 CASE	M tf·m	N tf		σ c kgľ/g			0 cs Kg[/[]	ατ. "		¥.		村 断 面		筋 虽	重 CASE	M tf·m	N tf	S = = = = = = = = = = = = = = = = = = =	σ (Kg1/α π. //	1 1	o kgf/m²	σ //	ατ, ""
	1 Hereiter H			1 H		秡	疱	}	もして		もも			許突値	1	54 1	1 1 1		記		稵	絙	1	断面力		応力度	{	: : ;	許 谷 値	

Ð

ľ

	梁 (鉛直方向, せん断力照査位置)	右 侧 (肘肋心3.25m)	2507	As As As As As As As As As As As As As A	E/	(1 (11) 129 - 19本 (2代目) 225 - 19本	11 11 11 11 11 11 11 11 11 11 11 11 11	4.3		304.6				2/3/ (C)3/	74			, 鉄筋 SD345を使用。	・,許容値は割増し係数を考慮した値とする。	オーバーしているので,	52-4キナD16ー 5本を配置する)									
照查	Hげt-パ小照査位置)	右側	500	As 12/24	- 2	(2税1) D25 - / タ本	治 時	724,6			1214	1407	. 70	1800				$u = 2/N/m^2 (2Okgf/cm^2)$	せん断照査位置での値とし	:でせん断応力度が許容値を ーラップ)の計算を行った	$< A_{*} = /9.45b \text{ cm}^2$ (D)	必要なスターラップ量)								
脚断面応力度	梁 (鉛直方向,曲	左側	Ē.	641 814	2	(1観) D29 - /9本	約 時	575.4			LI KI		10	. 1800				※設計基準強度 σ。	※せん断応力度は,	※梁の鉛直方向計算 斜引張鉄筋(スタ	$A_w = 15.45 \text{ cm}^2$	(A " : 計算上 _必					•			
P 2橋		橋軸直角方向	470 266	952 q	200 220	引張(圧縮) 鉄筋 232-37本	地震時	8325.6	1857.6	408. 2 74	7,470	2.0	105	3000.0	3.0	平方向)	右 側	97 (左娘1) 43 (尓根1)			D19-815	地震時	95.7	. 0	46.4	- & .	/ 263	0.5	1050	v.vvv.
	++- - - - - -	橋 靶 万 回 5.1	265 5-	991 <i>8</i> 4 0058	351 - 751 -	引張(E箱) 鉄湖 3次 D32-110本	地震時	7250.1	1857.6	340. / 7.8	7102	21/2	105	3000.0	3.3	*) 送	左側	28	3400		×01- 10×	地震時	. 95.3	0	48.3	4	1008	0.5	20/ U	0.1
	3 村			3 材 断 面		5 筋 量	f 重 CASE	H tf·m		σ _c kgf/m²	度 0, 11	t II .	σ _c kgf/01 ²	値	ατ. "	++			2 技 幣 固		: 筋 量	f 重 CASE	M tf.m	カ N tf	S =	τ c kgf/g ²	ξ σ, "	T 1		
	聖		-	描		鉄	恒	H ¥			応力に			11年 谷一		1 THE	ά				敬	痯		新 画 ?		+	心 JJ E		₩ ☆	I

-359-

		※設計基準独度 σ。*=2/N/mm²(2/0kgf/cm²)	鉄筋 SD345を使用	※せん断応力度は、せん断照査位置での値とし、	許容値は割増し係数を考慮した値とする。	* #1 K 眼角 0 約 幅 4 全域 高劲 2 3 3										
角方向	右側	0 (下很)引我)	(上側)引張)	211 - 28	82	D35-51年(de 125mm×1段)	地震時(上側引張)	585.6		305.3	0/	453	0.1	105	3aD	2.3
橋軸直	左側	9 070	5856	587 S	512	D38-146年(ctol25m×2段)	地震時(下側引張)	4063.6		1680.3	37	995	5.7	105	3,000	9.6
方 向	後盟	14(下旗131强)	07(二県)引張)	<u>211 28</u>	87	D22-714 (de125mm×162)	地震時(上側引張)	563.2		340,6	0/	752	0,8	105	3000.0	1.7
橋軸	前趾	11 6	8	<u>508 5</u>	561 E	D29-1404 (dc 125 mm × 1.5f2)	地震時(下側引張)	4088.5		2254.9	39	1766	د. در	105	3000.0	8.6
**	r			材 断 面		筋量	重 CASE	M tf.m	N tf	S II	$\sigma c kgf/m^2$	σ, 11	τ 1	σ ei kgf/g²	σ 5 1 1	ατ _a 1
1 The	Ì			造		鉄	疱		断面力			応力度			許容値	

	梁 (鉛直方向, せん断力照査位置)	右侧(肘银からZ. 25m)	2676	-687	575A		(1限日) D29 — 12本 (2般日) D25 — 12本	は、	44		297.3			8.1 out	70	1800			,鉄筋 SD345を使用。		オーバーしているので, 。	℃-姊+D16-2本を配置する)			•						
照查	曲げモールト照査位置)	右側		481	6285		(2開) D25 − /9 本	御	715.7			28	/44/	1	200	2001			$_{\rm ei}=2/{\rm N/mm^2}$ (2/D kg f / cm 2)	J増し係数を考慮した値。	「でせん断応力度が許容値を パーラップ)の計算を行った	< A, = /% 456 cm ² (D.	必要なスターラップ量)					•			
脚断面応力度	梁 (鉛直方向, 1	左侧	4	-+87	£17.2		(1預1) D29 - /9 オ	部	582.9			20	1901	T	el el	29/			※設計基準強度 σ	※せん断応力度は害	※梁の鉛直方向計算 斜引張鉄筋(スタ	A. =/4.54/ cm ²	(A " :計算上							•	
P 3橋		橋軸直角方向	20 52 269		22.52	20 220	引張(圧着) 鉄道 2 段 D32 - 43 7	地震時	10291.7	2120.9	445.4	80	2936	1.7	CUD E.	2.9	z 方向)	右側	7(左傾小) 3(石傾小)	-		- DI9-84	地廠 時	96,3	ŀ	47.2	9	101	105	3000	10
	#	橋軸方向	269 54	- 82	198 778 004	754 450	張 (圧縮) 鉄箱 3 段 D3Z- 133年	地震時	97/8.2	2120.9	445,4	75	1997	200	3 000	3.2	「子」線	左側	289	0068		D19-10#	地震時	96, 1	-	49.3	ۍ د د	500	105	3000	07
				材 断			筋量	重 CASE	M tf·m	N tf	S = =	σ e kgť/a²	α ²	σ. kef/m ²		ατ. "		¥		林断面		筋量	重 CASE	M tf·m	N tf	S 1	$\sigma \in kgt/m^{2}$	11 1 1 1	σ c kgf/g ²	đ : a	ατ. "
	部	t		臣			鉄	疱		 断		4 + +	▶		許容値		4	in the second se		糖		锬	葩	· .	断面力		子 七 日	メンド		許容値	

-361-

%

			※設計基準強度 σ et= 2N/mm ² (210kgf/cm ²)	鉄筋 SD345を使用	•	※せん断応力度は、せん断照査位置での値とし、	許容値は割増し係教を考慮した値とする。		※北部殿室の道勤院は金橋底部には3。									
照査(2)	角方向	右側)(下側引張)	5(上側13月孫)	851	2+8	2	B32-834 (de 125mm × 1,583)	地震時(上側引張)	745.8		382.4		438	1.2	105	30D	Z.S
脚断面応力度	橋軸直	左側	262.6	6 785	580	23	sız	232 -154\$ (J. 125 mm x 25%)	地震時(不側引張)	3698.9		1520.5	36	1210	4.9	105	3000	8.5
日の精	方 向	後趾	十(万似)引張)	7 (上側 局張)	85/	248	2	225-107\$ (tu 125 mm × 1.5 ft)	地震時(上側引張)	620.2	-	368.1	80	435	0.9	105	3000.0	2.2
т. т.р 2	橋	前型	-19 //	8 80	La	87 E		D29-HO本(du/25mm×/5段)	地震時(下側引張)	4175.7		2096.2	40	1804	5,2	105	3000.0	8.1
	14	2			オ断面			筋量	重 CASE	M tf.m	N tf	S "	$\sigma c kgf/m^2$	σ s 11	τ 11	$\sigma_{ca} kgf/m^2$	0 sa 11	ατ _a 11
	لل ا اللا				部を			鉄	荷		断面力			応 力 庚]	許容値	

	梁 (鉛直方向,せん断力照査位置)	右 創 ((計製から3.45m)	2693		As	<u>\$587</u>	(1開) D29 - 15本 (2開) D29 - 15本	第一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	44		28a.7	· · ·		76 out	70	2.6	\$, 鉄筋 SD <i>1%</i> を使用。	、許容値は割増し係数を考慮した値とする。	オーバーしているので,	 1-6本, D16-2本を配置する)									
度照查	曲げモルト服査位置)	1 右側	4500		As 199	16L Z	★ (2發目) D29 - 25本	44 。	1,288.7		ł	EE	1563	-	0 081				$r_{v} = 2/N/mr^2 (2/Okgf/cm^2)$, せん断照査位置での値とし	算でせん断応力度が許容値を ター <i>ぃップ</i>) の計省な行 <i>っ</i> た	2 < A, = 34.374cm ² (D25	-必要なスターラップ量)								
脚断面应力	梁 (鉛直方向,	左側			561	6187	(1儀目) D29 - 25才	治時	1238.8			31	1487		70				※設計基準強度 。	※せん断応力度は、	※梁の鉛直方向計(谷引張幹部(ス	$A_{*} = Z_{6.3} / S_{CII}$	(A * :計算上								· -
P 4 橇		橋軸直角方向				88	(1) D29-80 \$ (at 159)	地震時	4824.9	15/6, 8	318.5	83	1868	ki	105	2.8	# 년 \	2月19月	- (元/1) 、(右/1)			o≱	地震時	187.6		86.9	9	/527	0.7	0016	0.1
	₩	橋軸方向	450	-((1 (1日) D29-80年(近し)(2)	地震時	4257.0	15/6.8	318.5	73	1512	4	28/ 2010	2.9	玉木) 公	<u>朱 (小十</u> 左 側	2 926			<u> </u>	地腹時	180.4		86.9	~~~	1469	0.7	Cal 4	1.0
	部	-			部材断面		鉄筋量	荷 重 CASE	M tf·m	新函力 N tf	S = = = = = = = = = = = = = = = = = = =	+ + # 0 € Kg1/0°		n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	许容值 0 181/11	α τ = 1		1 社		部 材 剤 画		鉄筋晶	荷重 CASE	M tf.m	所面力 N tf	۲ ۲	σ e kgf/ŋ²			午容值 0 11	

H IB-HIJ-YC 1 检查时间将后而 小

Ñ

4 基礎バネ設定根拠資料(動的解析計算書抜粋)

基礎バネ設定根拠として、大切畑大橋設計時の動的解析計算書より解析モデル設定を抜粋して 添付する.

1 - 2.解析モデル (1)解析モデル図 ・平面図

(2) 格点座標

上部構造

主桁		座標(m)	
	橋軸方向	直角方向	鉛直方向
1	0. 5825	0. 1438	0. 3000
2	22. 3800	5. 5248	0. 3000
3	44. 1740	10.9040	0. 3000
4	72.5300	16.8970	0.3000
5	100.8850	22.8900	0. 3000
6	115. 1150	24. 2760	0. 3000
7	129.8020	24.8520	0. 3000
8	144. 4970	24. 5630	0. 3000
9	158.7520	23. 4541	0. 3000
10	187.1060	17. 5340	0. 3000
11	215. 4590	11.6150	0. 3000
12	237.1630	5.8760	0.3000
13	258,8660	0, 1380	0, 3000

下部構造

P1橋脚				
	橋軸方向	直角方向	鉛直方向	
190	44. 1740	10.9040	-2.8000	
191	43. 9344	11.8749	0. 3000	
192	44. 4136	9.9331	0. 3000	
200	44. 1740	10.9040	-2.8000	
201	43. 9344	11.8749	-2.8000	
202	44. 4136	9.9331	-2.8000	
211	44. 1740	10.9040	-4.0680	
212	44. 1740	10.9040	-5. 8000	
213	44. 1740	10.9040	-9.3000	
214	44. 1740	10.9040	-12.8000	
220	44. 1740	10.9040	-17.3460	
221	43. 9344	11.8749	-17.3460	
223	45, 1449	11.1436	-17.3460	

AI橋台				
	橋軸方向	直角方向	鉛直方向	
90	0. 5825	0. 1438	-2.8000	
91	0. 3429	1. 1147	0. 3000	
92	0. 8221	-0.8271	0. 3000	
100	0. 5825	0.1438	-2.8000	
101	0. 3429	1. 1147	-2.8000	
102	0. 8221	0.8271	-2. 8000	
111	0. 5825	0. 1438	-4. 5540	
112	0. 5825	0.1438	-6. 3080	
113	0. 5825	0.1438	-7. 3080	
114	0. 5825	0.1438	-8. 3080	
120	0. 5825	0.1438	-9.9170	
121	0. 3429	1. 1147	-9. 9170	
100	1 5504	0 0004	0 0170	

1. 5534

0.3834

-9.9170

下部構造	
DO LT HLH	

123

下部構造

P2橋脚		座標(m)	
	橋軸方向	直角方向	鉛直方向
290	100.8850	22.8900	-2.8000
291	100.7596	23. 8821	0. 3000
292	101.0104	21.8979	0. 3000
300	100. 8850	22.8900	-2.8000
301	100.7596	23.8821	-2.8000
302	101.0104	21.8979	-2.8000
311	100.8850	22.8900	-4. 0620
312	100.8850	22.8900	-5. 5700
313	100.8850	22.8900	-14. 6850
330	100.8850	22.8900	-23.8000
331	100.8850	22.8900	-25.5500
314	100.8850	22.8900	-27.3000
315	100.8850	22.8900	-28. 8000
316	100.8850	22.8900	-30. 3000
320	100.8850	22.8900	-33.2500
321	100.7596	23. 8821	-33.2500
323	101.8771	23.0154	-33.2500

下部構造

P3橋脚				
	橋軸方向	直角方向	鉛直方向	
390	158. 7520	23. 4541	-2.8000	
391	158.8550	24. 4488	0.3000	
392	158.6490	22.4594	0. 3000	
400	158. 7520	23. 4541	-2.8000	
401	158.8550	24. 4488	-2.8000	
402	158.6490	22.4594	-2.8000	
411	158.7520	23. 4541	-4.0670	
412	158.7520	23. 4541	-5.5700	
413	158. 7520	23. 4541	-17. 4350	
430	158.7520	23. 4541	-29. 3000	
431	158.7520	23. 4541	-31.0500	
414	158.7520	23. 4541	-32.8000	
415	158. 7520	23. 4541	-34.3000	
416	158.7520	23. 4541	-35.8000	
420	158. 7520	23. 4541	-37.2430	
421	158.8550	24. 4488	-37.2430	
423	159.7467	23. 3511	-37.2430	

下部構造			
P4橋脚		座標(m)	
	橋軸方向	直角方向	鉛直方向
490	215. 4590	11.6150	-2.8000
491	215.7157	12. 5815	0.3000
492	215. 2023	10. 6485	0. 3000
500	215. 4590	11.6150	-2.8000
501	215.7157	12. 5815	-2.8000
502	215. 2023	10.6485	-2.8000
511	215. 4590	11.6150	-4. 1140
512	215. 4590	11.6150	-5. 8000
513	215. 4590	11.6150	-10.5500
530	215. 4590	11.6150	-15.3000
531	215. 4590	11.6150	-17.0500
514	215.4590	11.6150	-18. 8000
520	215. 4590	11.6150	-26.0780
521	215.7157	12. 5815	-26.0780
523	216. 4255	11. 3583	-26.0780

下部構造					
A2橋台					
	橋軸方向	直角方向	鉛直方向		
590	258.8660	0.1380	-2.8000		
591	259. 5516	0.8660	0. 3000		
592	258. 1804	-0. 5900	0. 3000		
600	258.8660	0. 1380	-2.8000		
601	259. 5516	0.8660	-2.8000		
602	258. 1804	-0. 5900	-2.8000		
611	258.8660	0.1380	-2.8520		
612	258.8660	0.1380	-2.9040		
613	258.8660	0.1380	-3. 9040		
614	258.8660	0.1380	-4. 9040		
620	258.8660	0.1380	-7. 2070		
621	259.5516	0.8660	-7. 2070		
623	259. 5940	-0. 5476	-7. 2070		

(3) 部材結合条件

上部構造

主桁	格点		部材	備考
	始点	終点		
1	1	2	KETA	
2	2	3	KETA	
3	3	4	KETA	
4	4	5	KETA	
5	5	6	KETA	
6	6	7	KETA	
7	7	8	KETA	
8	8	9	KETA	
9	9	10	KETA	
10	10	11	KETA	
11	11	12	KETA	
12	12	13	KETA	

	41	74#	14
ь - К	-14		144

티미미				111. 1.1
P1橋脚	格点		部材	備考
	始点	終点		
1	3	191	HARD1	剛域
2	3	192	HARD1	剛域
3	201	200	HARD1	剛域
4	202	200	HARD1	剛域
5	3	190	HARD1	剛域
6	200	211	HARD2	梁
7	211	212	HARD2	粱
8	212	213	P1	柱
9	213	231	P1A	柱
10	231	214	P1C	柱
11	214	220	HARD2	仮想部材

下即伸迫				
A1橋台	格	点	部材	備考
	始点	終点		
1	1	91	HARD1	剛域
2	1	92	HARD1	剛域
3	101	100	HARD1	剛域
4	102	100	HARD1	剛域
5	1	90	HARD1	剛域
6	100	111	A1A	壁
7	111	112	A1A	壁
8	112	113	HARD2	フーチング
9	113	114	HARD2	フーチング
10	114	120	HARD2	仮想部材

下部構造

下部構造				
P2橋脚	格	点	部材	備考
	始点	終点		
1	5	291	HARD1	剛域
2	5	292	HARD1	剛域
3	301	300	HARD1	剛域
4	302	300	HARD1	剛域
5	5	290	HARD1	剛域
6	300	311	HARD2	梁
7	311	312	HARD2	梁
8	312	313	P 2	柱
9	313	330	P2A	柱
10	330	331	P2B	柱
11	331	314	P2B	柱
12	314	315	HARD2	フーチング
13	315	316	HARD2	フーチング
14	316	320	HARD2	仮想部材

下部構造				
P4橋脚	格	点	部材	備考
	始点	終点		
1	11	491	HARD1	剛域
2	11	492	HARD1	剛域
3	501	500	HARD1	剛域
4	502	500	HARD1	剛域
5	11	490	HARD1	剛域
6	500	511	HARD2	梁
7	511	512	HARD2	梁
8	512	513	P 4	柱
9	513	530	P4A	柱
10	530	531	P4B	柱
11	531	514	P4B	柱
12	514	520	HARD2	仮想部材

下部構造

				111. 1.4
P3橋脚	格	点	部材	備考
	始点	終点		
1	9	391	HARD1	剛域
2	9	392	HARD1	剛域
3	401	400	HARD1	剛域
4	402	400	HARD1	剛域
5	9	390	HARD1	剛域
6	400	411	HARD2	梁
7	411	412	HARD2	梁
8	412	413	P 3	柱
9	413	430	P 3A	柱
10	430	431	P 3B	柱
11	431	414	P 3B	柱
12	414	415	HARD2	フーチンク・
13	415	416	HARD2	フーチング
14	416	420	HARD2	仮想部材

下部構造

	14	- Hr	→17+-+	世土
AZ橋台	俗		前例	1個 考
	始点	終点		
1	13	591	HARD1	剛域
2	13	592	HARD1	剛域
3	601	600	HARD1	剛域
4	602	600	HARD1	剛域
5	13	590	HARD1	剛域
6	600	611	A2A	壁
7	611	612	A2A	壁
8	612	613	HARD2	フーチング
9	613	614	HARD2	フーチング
10	614	620	HARD2	仮想部材

(4) 部材の断面性能(下部構造)

下部工	弾性係数	$(t f/cm^2)$	断面積	断面2次5	-メント(cm ⁴)	ねじり定数
1 11	直応力	せん断	(cm^2)			(cm ⁴)
	E	G	А	Ιу	Ιz	J
Al	235	102	20000	4. 27E+08	2. 60E+10	1.57E+09
PIA	235	102	96200	7.37E+08	7. 37E+08	1. 47E+09
P1C	235	102	96200	7.37E+08	7. 37E+08	1. 47E+09
P2A	235	102	120000	1.84E+09	4.78E+09	4.13E+09
P2B	235	102	210000	2.14E+09	6. 30E+09	5.45E+09
P3A	235	102	127500	2. 61E+09	5. 30E+09	5. 38E+09
P3B	235	102	240000	3. 20E+09	7. 20E+09	7. 51E+09
P4A	235	102	88400	1. 62E+09	1.62E+09	3. 23E+09
P4B	235	102	159000	2. 01E+09	2. 01E+09	4. 03E+09
A2	235	102	303600	1.12E+09	5. 29E+10	4. 05E+09

(5) 支承のバネ定数

(単位tf/m)_____

.

	A1	P1	P2	P3	P4	A2
バネ定数	844	1408	2485	2485	1509	1042

(6) 基礎のバネ定数

1) 橋軸方向 バネ定数

|--|

	鉛直バネ Kv	水平バネ KH	回転バネ KM	連成Niネ KHM
	(tf/m)	(tf/m)	(tfm/rad)	(tf/rad)
A1橋台	383572	244223	2186530	393027
P1橋脚	141372	280483	12047400	1275000
P2橋脚	471240	275031	8748470	811466
P3橋脚	565488	1241030	11976500	1790600
P4橋脚	188495	327262	28478200	2381880
A2橋台	125664	180998	1954130	416884

(b) バネ定数の変換

仮想部材長 L=KHM/KH (m)

仮想部における回転バネ KM=KM-KH・L² (tfm/rad)

	仮想部材長	鉛直バネ Kv	水平バネ KH	回転Niネ KM
	L (m)	(tf/m)	(tf/m)	(tfm/rad)
A1橋台	1.609	383572	244223	1554033
P1橋脚	4.546	141372	280483	6251594
P2橋脚	2.950	471240	275031	6354278
P3橋脚	1.443	565488	1241030	9392962
P4橋脚	7.278	188495	327262	11142389
A2橋台	2. 303	125664	180998	993941

2) 橋軸直角方向 バネ定数 (a) 地震時バネ定数

(a) 地)	長町/ハイ化奴 _			
	鉛直パネ Kv	水平バネ KH	回転N'ネ KM	連成Niネ KHM
	(tf/m)	(tf/m)	(tfm/rad)	(tf/rad)
A1橋台	383572	244223	5580180	393027
P1橋脚	424115	280483	12047400	1275000
P2橋脚	631124	275031	13313800	811466
P3橋脚	657543	1241030	15374100	1790600
P4橋脚	434990	327262	28478200	2381880
A2橋台	359039	180998	4762040	416884

(b) バネ定数の変換

仮想部材長 L=KHM/KH (m)

仮想部における回転バネ KM=KM-KH・L² (tfm/rad)

	仮想部材長	鉛直バネ Kv	水平バネ KH	回転Niネ KM	
	L (m)	(tf/m)	(tf/m)	(tfm/rad)	
A1橋台	1.609	383572	244223	4947683	
P1橋脚	4. 546	424115	280483	6251594	
P2橋脚	2.950	631124	275031	10919608	
P3橋脚	1.443	657543	1241030	12790562	
P4橋脚	7.278	434990	327262	11142389	
A2橋台	2.303	359039	180998	3801851	

(7) RC橋脚のM-4関係

	P1橋脚		橋軸方向			橋軸直角方向		
断面位	↓置(格点番号)	213	231	231 214 213		231	214	
ひび割れ時	曲げモーメント M (tf・m)	1412.98	1433. 24	1451.94	1412.98	1433. 24	1451.94	
	曲 率 ϕ (10 ⁻⁵ /m)	6. 98	7.08	7.18	6.98	7.08	7.18	
初降伏時	曲げモーメント M (tf・m)	4592.07	4631.32	4667.42	4592.06	4631.32	4667.42	
	曲 率 $\phi(10^{-5}/m)$	71.18	71.46	71.71	71.18	71.46	71.71	
終局時	曲げモーメント M (tf・m)	6804.73	6852.87	6897.13	6804.73	6852.87	6897.13	
(タイプI)	曲 率 $\phi(10^{-5}/m)$	1080.36	1070.87	1061.96	1080.36	1070.87	<u>1061.96</u>	
第2剛性倍率	(第2剛性/初期剛性)	0. 24475	0. 24552	0.24624	0. 24475	0. 24552	0. 24624	
第3剛性倍率	(第3剛性/初期剛性)	0.01084	0.01099	0.01113	0.01084	0.01099	0.01113	
終局時	曲げモ-メント M(tf・m)	6823.70	6872.19	6916.82	6823.70	6872.19	6916.82	
(タイプⅡ)	曲 率 $\phi(10^{-5}/m)$	1818.65	1802.27	1787.41	1818.65	1802.29	1787.41	
第2剛性倍率	(第2剛性/初期剛性)	0. 24475	0. 24552	0.24624	0. 24475	0.24552	0.24624	
第3剛性倍率	(第3剛性/初期剛性)	0.00631	0.00640	0.00648	0.00631	0.00640	0.00648	

	P2橋脚			橋軸方向		
断面位置(格点番号)		313	330<1>	330<2>	331	314
ひび割れ時	曲げモーメント M(tf・m)	3455.37	3700.95	3537.31	3594.22	3651.13
	曲 率 φ (10 ⁻⁵ /m)	6.75	7.23	6.08	6.17	6.27
初降伏時	曲げモーメント M (tf・m)	11709.38	12038.71	11930. 21	12035.47	12140.41
	曲 率 φ (10 ⁻⁵ /m)	75.81	76.82	75.03	75.33	75.63
終局時	曲げモーメント M(tf・m)	14344.83	14681.83	14671.39	14784.33	14897.08
(タイプI)	曲 率 ϕ (10 ⁻⁵ /m)	1214.26	1168.21	1119.31	1104.67	1090.29
第2剛性倍率	(第2剛性/初期剛性)	0. 23364	0. 23420	0. 20910	0. 20967	0. 21026
第3剛性倍率	(第3剛性/初期剛性)	0.00452	0.00473	0.00451	0.00459	0.00467
終局時	曲げモーメント M (tf・m)	14377.05	14719.64	14706.90	14816.69	14926.35
(タイプⅡ)	曲 率 ϕ (10 ⁻⁵ /m)	2451.00	2324.09	2194.73	2173.31	<u>2152.10</u>
第2剛性倍率	(第2剛性/初期剛性)	0. 23364	0. 23420	0. 20910	0.20967	0. 21026
第3剛性倍率	(第3剛性/初期剛性)	0.00220	0. 00233	0.00225	0. 00228	0.00230

	P2橋脚		椿	軸直角方向	1	
断面位	位置(格点番号)	313	330<1>	330<2>	331	314
ひび割れ時	曲げモーメント M(tf・m)	5103.82	5466.56	5857.19	5951.42	6045.65
	曲 率 φ (10 ⁻⁵ /m)	3.94	4.22	3.55	3.60	3.66
初降伏時	曲げモ-メント M (tf・m)	16773.26	17261.87	17121.96	17287.73	17452.96
	曲 率 $\phi(10^{-5}/m)$	44.10	44.90	43.21	43.39	43.56
終局時	曲 げモーメント M (tf・m)	24132.22	24657.53	24931.41	25123.59	25315.21
(タイプI)	曲 率 φ (10 ⁻⁵ /m)	424.68	401.38	610.60	603.31	596.16
第2剛性倍率	(第2剛性/初期剛性)	0. 22432	0. 22383	0.17188	0.17245	0.17301
第3剛性倍率	(第3剛性/初期剛性)	0. 01493	0.01602	0.00833	0.00847	0.00861
終局時	曲げモーメント M(tf・m)	24096.81	24633.61	24928.03	25120.58	25312.45
(タイプⅡ)	曲 率 ϕ (10 ⁻⁵ /m)	822.00	781.32	1369.19	1353.06	1337.23
第2剛性倍率	(第2剛性/初期剛性)	0. 22432	0. 22383	0.17188	0. 17245	0.17301
第3剛性倍率	(第3剛性/初期剛性)	0.00727	0.00773	0.00356	0.00362	0.00368

	P3橋脚			橋軸方向		
新面布	大置(格占番号)	413	430<1>	430<2>	431	414
アトアド割わ時	曲げチーソント $M(ff \cdot m)$	4431 18	4831, 15	4696, 93	4772, 16	4847, 39
0.0.404 040	$\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$ $\mu_{\rm H}$	E 02	C 16	E 91	5 20	E 10
	田 $ \Psi \varphi (10 / II) $	0.90	17904 05	1,000 00	17107 01	17944 74
创降仄時	田 (J t - X / N (11·m)	10001. 31	17204.00	10908. 88	1/10/. 01	11244.14
	曲 率 φ (10 ^{-s} /m)	67.05	68.40	65.68	65.94	66.19
終局時	曲げモ-メント_M(tf・m)	20199.68	20755.54	20744.69	20897.56	21050.15
(タイプI)	曲 率 φ (10 ⁻⁵ /m)	1126.31	1068.93	1022.80	1008.46	994.39
第2 剛性倍率	(第2剛性/初期剛性)	0.26760	0. 26717	0. 22957	0. 23011	0. 23064
第3剛性倍率	(第3剛性/初期剛性)	0.00447	0.00475	0.00446	0.00454	0.00463
終局時	曲げモ-メント M(tf・m)	20228.45	20771.13	20758.75	20909.07	21059.20
$(\neg \gamma T)$	曲 密 $d(10^{-5}/m)$	2262.34	2179,02	2054, 39	2032, 52	2010.90
第2副性 / 一		0 26760	0.26717	0. 22957	0, 23011	0,23064
<u>第2</u> 例止但平	(第3副性/初期副性)	0.00217	0 00226	0.00215	0.00218	0.00222
		0.00211	0.000110	0.00110	00 00 10	0, 00
	P 3 橋脚		杠	軸直角方向	1	
胀而為	☆置(格占悉号)	413	430(1)	430<2>	431	414
717(割わ時)	世げモ-メント M (†f・m)	5752 36	6271.58	6726.87	6834.62	6942.36
0.0.9.14 144	$H_{\rm H} = \frac{1}{26} + \frac{1}{10} +$	2 05	/ 21	2 51	2 50	3 65
加欧谷旺	田 华 Ψ (10 / III) 曲 子 Ψ (10 / III)	0. 30 20027 01	90717 11	20576 72	20762 50	20040 67
19月年1八时		44 00	40141.11	40.010.10	40100.00	40,01,01
	<u> </u>	44.80	45. 56	43.56	43. 13	43.90
終局時	囲けモーメント M (tf・m)	29073.13	29791. ZO	30225.15	30438.14	30049.98
(タイプ I)	<u>曲</u> 率 φ (10 ⁻⁵ /m)	394.27	374.34	587.71	581.54	575.56
第2剛性倍率	(第2剛性/初期剛性)	0. 24021	0. 24105	0. 18195	0. 18243	0. 18295
第3剛性倍率	(第3剛性/初期剛性)	0.01776	0.01890	0. 00932	0. 00946	0.00959
終局時	曲げモ-メント M(tf・m)	29039.07	29705.52	30222.07	30434.60	30646.51
(タイプⅡ)	曲 率 ϕ (10 ⁻⁵ /m)	766.60	715.96	1320.95	1306.84	1292.95
第2剛性倍率	(第2剛性/初期剛性)	0. 24021	0. 24105	0. 18195	0. 18243	0.18295
AS 0 121111- 1-1	(今 2 图44 /加田图44)	0 00857	0 00018	0 00307	0 00403	0 00408
用 3 剛性 倍 単	(弗3剛性/初期剛性)	0.00001	0.00910	0.00001	0.00100	0.00100
用3 则性倍率	(第3啊性/初期啊性)	0.00001	0.00918	0.00001	0. 00100	0.00100
第3剛性倍率	(第3 酮性/初期酮性/	0.00001	0. 00918	橋軸方向	0.00100	5.00100
第3 则性倍率	(第3 剛性/初期剛性) P4橋脚 立置(格点番号)	513	530<1>	6.00331 橋軸方向 530<2>	531	514
第3 剛性倍率 断面 ひび割れ時	(第3 両性/初期両性) P4橋脚 立置(格点番号) 曲げモーメントM(tf·m)	513 2511.54	530<1> 2595. 22	 橋軸方向 530<2> 2583.47 	531 2626.95	514 2664.99
第3 剛性倍率	(第3 両性/初期両性) P4橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m)	513 2511.54 5.73	530<1> 2595. 22 5. 92	橋軸方向 530<2> 2583.47 4.86	531 2626.95 4.94	514 5.01 5.01
第3 剛性倍率 断面(ひび割れ時 初降伏時	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメントM(tf・m)	513 511.54 5.73 7254.64	$ \begin{array}{r} 530 < 1 \\ 2595. 22 \\ 5. 92 \\ 7383. 33 \end{array} $	橋軸方向 530<2> 2583.47 4.86 7350.81		$ 514 \\ 564.99 \\ 5.01 \\ 7519.09 75000 75000 7500 7500 7500 7500 7500 75$
第3 両 任倍率 断面(ひび割れ時 初降伏時	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモ-メントM(tf·m) 曲でモ-メントM(tf·m) 曲げモ-メントM(tf·m) 曲でモ-メントM(tf·m) 曲 率 φ(10 ⁻⁵ /m)	$ \begin{array}{r} 513 \\ 5511.54 \\ 5.73 \\ 7254.64 \\ 53.13 \\ \end{array} $	$ \begin{array}{r} 530 < 1 \\ \hline 530 < 1 \\ \hline 2595.22 \\ \overline{5.92} \\ 7383.33 \\ 53.58 \\ \overline{53.58} \\ \end{array} $	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61	$ \begin{array}{r} 531 \\ 2626.95 \\ 4.94 \\ 7440.75 \\ 51.85 \\ 10000 \\ 4000 \\ 4000 \\ 75 \\ 5100 \\ 5$	514 2664.99 5.01 7519.09 52.07
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモ-メント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモ-メント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモ-メント M(tf・m)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\end{array}$	$\begin{array}{r} 530 <1 \\ \hline 530 <1 \\ 2595.\ 22 \\ \hline 5.\ 92 \\ \hline 7383.\ 33 \\ \hline 53.\ 58 \\ 10782.\ 40 \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50	$\begin{array}{r} 531\\ \hline 531\\ 2626.95\\ \hline 4.94\\ 7440.75\\ \hline 51.85\\ 10886.49\end{array}$	514 2664.99 5.01 7519.09 52.07 10978.06
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時 (タイプI)	P4橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m)	$\begin{array}{r} 513\\ \hline 513\\ 2511.54\\ \hline 5.73\\ 7254.64\\ \hline 53.13\\ 10637.56\\ \hline 507.45\end{array}$	$\begin{array}{r} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54	$\begin{array}{r} 531\\ \hline 531\\ 2626.95\\ \hline 4.94\\ 7440.75\\ \hline 51.85\\ 10886.49\\ \hline 502.71\\ \hline \end{array}$	514 2664.99 5.01 7519.09 52.07 10978.06 497.70
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時 (タイプI) 第2 剛性倍率	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf·m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメントM(tf·m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメントM(tf·m) 由 率 φ(10 ⁻⁵ /m) (第2剛性/初期剛性)	$\begin{array}{r} 513\\ \hline 513\\ 2511.54\\ \hline 5.73\\ 7254.64\\ \hline 53.13\\ 10637.56\\ \hline 507.45\\ \hline 0.22836\end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 22927 \\ \hline $	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180	$\begin{array}{r} 531\\ \hline 531\\ 2626.95\\ \hline 4.94\\ 7440.75\\ \hline 51.85\\ 10886.49\\ \hline 502.71\\ 0.19300\\ \hline 0.19300\\ \hline \end{array}$	514 2664.99 5.01 7519.09 52.07 10978.06 497.70 0.19401
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時 (タイプI) 第2 剛性倍率 第3 剛性倍率	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメントM(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメントM(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメントM(tf・m) (第2剛性/初期剛性) (第3剛性/初期剛性)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 400754 \\ \hline 0.01745 \\$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438	$\begin{array}{r} 514\\ \hline 514\\ 2664. \ 99\\ \hline 5. \ 01\\ 7519. \ 09\\ \hline 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ \hline 0. \ 19401\\ \hline 0. \ 01460\\ \hline \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時 (タイプI) 第2 剛性倍率 第3 剛性倍率 終局時	P 4 橋脚 立置(格点番号) 曲げモメント M(tf·m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf·m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf·m) 曲 率 φ(10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) 曲げモメント M(tf·m)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ \end{array}$	530<1> 2595. 22 5. 92 7383. 33 53. 58 10782. 40 497. 94 0. 22927 0. 01745 10835. 42	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20	$\begin{array}{r} 531\\ \hline 531\\ 2626.95\\ 4.94\\ 7440.75\\ 51.85\\ 10886.49\\ 502.71\\ 0.19300\\ 0.01438\\ 10942.31\\ \hline 9042.31\\ \end{array}$	$\begin{array}{r} 514\\ \hline 514\\ 2664. 99\\ \hline 5. 01\\ 7519. 09\\ \hline 52. 07\\ 10978. 06\\ 497. 70\\ 0. 19401\\ 0. 01460\\ 11034. 84\\ \hline 774 10\\ \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時 (タイプI) 第2 剛性倍率 終局時 (タイプII)	P 4 橋脚 立置(格点番号) 曲げモ-メント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモ-メント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモ-メント M(tf・m) 曲 マ φ(10 ⁻⁵ /m) 値でものののののののののののののののののののののののののののののののののののの	$\begin{array}{r} 513\\ 511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 981.93 \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 01401\\ \end{array}$
 第3 剛性倍率 断面(ひび割れ時 初降伏時 終局時(タイプI) 第2 剛性倍率 終局プII) 第2 剛性倍率 (タイプII) 第2 剛性倍率 	P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ (第2 剛性/初期剛性) ・(第3 剛性/初期剛性) 曲げモメント M(tf・m) 曲 率 $\phi(10^{-5}/m)$ (第2 剛性/初期剛性) (第2 剛性/初期剛性) (第2 剛性/初期剛性)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.2286\\ 0.28$	530<1> 2595. 22 5. 92 7383. 33 53. 58 10782. 40 497. 94 0. 22927 0. 01745 10835. 42 981. 93 0. 22927	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180	$\begin{array}{r} 531\\ \hline 531\\ 2626.95\\ \hline 4.94\\ 7440.75\\ \hline 51.85\\ 10886.49\\ \hline 502.71\\ \hline 0.19300\\ \hline 0.01438\\ 10942.31\\ \hline 983.64\\ \hline 0.19300\\ \hline 0.019300\\ \hline \end{array}$	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 19401\\ 0. \ 02717\end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局プI) 第2 剛性倍率 終月プII) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率	P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲びモメント M(tf・m) 値びモメント M(tf・m) (第3剛性/初期剛性) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 0.22927 \\ \hline 0.00849 \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695	$\begin{array}{r} 531\\ \hline 531\\ 2626.\ 95\\ \hline 4.\ 94\\ 7440.\ 75\\ \hline 51.\ 85\\ 10886.\ 49\\ \hline 502.\ 71\\ 0.\ 19300\\ 0.\ 01438\\ 10942.\ 31\\ 983.\ 64\\ 0.\ 19300\\ 0.\ 00707\\ \end{array}$	$\begin{array}{r} 514\\ \hline 514\\ 2664. \ 99\\ \hline 5. \ 01\\ 7519. \ 09\\ \hline 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ \hline 0. \ 19401\\ \hline 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ \hline 0. \ 19401\\ \hline 0. \ 19401\\ \hline 0. \ 09717\\ \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局プI) 第2剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率	P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 値ビモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモ・メントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) 曲げモ・メントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性)	$\begin{array}{r} 513\\ 5511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 0.22927 \\ \hline 0.00849 \\ \hline 0.00849 \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 約降伏時 (タイプI) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率	P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) 日 由 中 1 (第2 剛性/初期剛性) (第3 剛性/初期剛性)	$\begin{array}{c} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ 0.00828\\ \hline \end{array}$	530<1> 2595.22 5.92 7383.33 53.58 10782.40 497.94 0.22927 0.01745 10835.42 981.93 0.22927 0.00849	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 58軸直角方	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707	514 2664. 99 5. 01 7519. 09 52. 07 10978. 06 497. 70 0. 19401 0. 01460 11034. 84 974. 10 0. 19401 0. 09717 514
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局プI) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率	(第3 両性/初期両性) P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) 日 第3 剛性/初期剛性) (第3 剛性/初期剛性) 日 第3 剛性/初期剛性) (第2 剛性/初期剛性)	$\begin{array}{r} 513\\ \hline 513\\ \hline 2511.54\\ \hline 5.73\\ \hline 7254.64\\ \hline 53.13\\ \hline 10637.56\\ \hline 507.45\\ \hline 0.22836\\ \hline 0.01699\\ \hline 10689.33\\ \hline 999.75\\ \hline 0.22836\\ \hline 0.00828\\ \hline \\ \hline \\ 0.00828\\ \hline \\ \hline \\ 513\\ \hline \\ 2511.54\\ \hline \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595. 22 \\ \hline 5. 92 \\ \hline 7383. 33 \\ \hline 53. 58 \\ 10782. 40 \\ \hline 497. 94 \\ \hline 0. 22927 \\ \hline 0. 01745 \\ 10835. 42 \\ \hline 981. 93 \\ \hline 0. 22927 \\ \hline 0. 00849 \\ \hline \\ \hline 530 <1 \\ \hline \\ 2505. 92 \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 530<2> 2552.47	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95	$\begin{array}{r} 514\\ \hline 514\\ 2664. 99\\ \hline 5. 01\\ 7519. 09\\ \hline 52. 07\\ 10978. 06\\ 497. 70\\ \hline 0. 19401\\ \hline 0. 01460\\ 11034. 84\\ 974. 10\\ \hline 0. 19401\\ \hline 0. 09717\\ \hline 514\\ 2664. 00\\ \end{array}$
第3 剛性倍率 断面 ひび割れ時 初降伏時 約局プI) 第2 剛性倍率 第3 剛性倍率 終月プII) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率	(第3 両性/初期両性) P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 アント M(tf・m) 曲 アント M(tf・m) 曲 アク(10 ⁻⁵ /m) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第2 剛性/初期剛性) (第2 剛性/初期剛性) (第3 剛性/初期剛性) 日時モメント M(tf・m) 曲 アク(10 ⁻⁵ /m) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) 日時モメント M(tf・m) 曲げモッシト M(tf・m) 曲げモッシト M(tf・m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ \hline \\ 572\\ \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595. 22 \\ \hline 5. 92 \\ \hline 7383. 33 \\ \hline 53. 58 \\ 10782. 40 \\ \hline 497. 94 \\ \hline 0. 22927 \\ \hline 0. 01745 \\ \hline 10835. 42 \\ \hline 981. 93 \\ \hline 0. 22927 \\ \hline 0. 00849 \\ \hline \\ \hline 530 <1 \\ \hline \\ 2595. 22 \\ \hline \\ \hline \\ \hline \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 530<2> 530<2> 2583.47	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局プI) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率	(第3 両性/初期両性) P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 アレーシント M(tf・m) 曲 アレーシント M(tf・m) 面 アレーシント M(tf・m) 曲 アレーシント M(tf・m) (第2 剛性/初期剛性) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) 中げモメント M(tf・m) 曲 アリント M(tf・m) 曲 アリント M(tf・m) 曲 アリント M(tf・m) 曲 アリント M(tf・m) 一日 アリント M(tf・m) 一日 アリント M(tf・m) 一日 アリント M(tf・m) 曲 アリント M(tf・m) 曲 アリント M(tf・m) 曲 アリント M(tf・m) 一日 アリント M(tf・m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595. 22 \\ \hline 5. 92 \\ \hline 7383. 33 \\ \hline 53. 58 \\ 10782. 40 \\ 497. 94 \\ \hline 0. 22927 \\ \hline 0. 01745 \\ 10835. 42 \\ \hline 981. 93 \\ \hline 0. 22927 \\ \hline 0. 00849 \\ \hline \\ \hline 530 <1 \\ \hline \\ 530 <1 \\ \hline \\ 2595. 22 \\ \hline \\ 5. 92 \\ \hline \\ 7282 \\ 982 \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 新軸直角方 530<2> 2583.47 4.86 7250.81	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 00\\ \hline \end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局ポー (タイプI) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率	P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲びモメント M(tf・m) 曲びモメント M(tf・m) 曲びモメント M(tf・m) 曲びモメント M(tf・m) 曲びモメント M(tf・m) 曲びモメント M(tf・m) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 日ばモメント M(tf・m) 曲 中ばモメント M(tf・m) 曲 (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 φ(10 ⁻⁵ /m)	$\begin{array}{c} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ \hline \\ 52.12\\ \hline \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 0.22927 \\ \hline 0.00849 \\ \hline \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 52.59 \\ \hline \end{array}$	1 橋軸方向 530 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 零軸直角方 530<2> 2583.47 4.86 7350.81 530<1	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51 85	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ \hline\end{array}$
第3 剛性倍率 断面(ひび割れ時 初降伏時 終局ポゴー) 第2 剛性倍率 第3 剛性倍率 終月プロ) 第2 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率 第3 剛性倍率	(第3 両性/初期両性) P 4 橋脚 立置(格点番号) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 値げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) (第3 剛性/初期剛性) 回 本 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメント M(tf・m) 曲 率 ϕ (10 ⁻⁵ /m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10627.56\\ \hline \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 0.22927 \\ \hline 0.00849 \\ \hline \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782 40 \end{array}$	10.000331 橋軸方向 530 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 零軸直角方 530 530 0.19180 0.00695 530 530 530 0.19180 0.00695	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85	$\begin{array}{c} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ \hline \end{array}$
 第3剛性倍率 第3剛性倍率 新面(ひび割れ時 初降伏時 線局プ目(倍率 第3剛性倍率 (タイ剛性倍率 (タイ剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率 第6, 5 	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 値げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回信(第3剛性/初期剛性) (第3剛性/初期剛性) 回信(第2剛性/初期剛性) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモ・メントM(tf・m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 50.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ \hline \\ 50.55\\ \hline \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ 10782.40 \\ \hline 497.94 \\ \hline 0.22927 \\ \hline 0.01745 \\ \hline 10835.42 \\ \hline 981.93 \\ \hline 0.22927 \\ \hline 0.00849 \\ \hline \hline 530 <1 \\ \hline 2595.22 \\ \hline 5.92 \\ \hline 7383.33 \\ \hline 53.58 \\ \hline 10782.40 \\ \hline 407.2 \\ \hline \end{array}$	10.000331 橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 530 530 0.19180 0.00695 530 994.75 0.19180 0.00695 530 530 530 <t< td=""><td>531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85 10886.49</td><td>$\begin{array}{c} 514\\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 407. \ 72\\ \hline \end{array}$</td></t<>	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85 10886.49	$\begin{array}{c} 514\\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 407. \ 72\\ \hline \end{array}$
第3 剛性倍率	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモ・メントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモ・メントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 507.45\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ \hline \end{array}$	0.00313 530<1> 2595.22 5.92 7383.33 53.58 10782.40 497.94 0.22927 0.01745 10835.42 981.93 0.22927 0.00849 530<1> 2595.22 5.92 7383.33 53.58 10782.40 497.94	6.000331 橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 5軸直角方 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85 10886.49 502.71	$\begin{array}{c} 514\\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 10421\\ \hline \end{array}$
 第3剛性倍率 第3剛性倍率 断面(ひび割れ時 初降伏時 線6,7剛性倍率 第2剛性倍率 第3剛性倍率 第2剛性倍率 第3剛性倍率 第3剛性倍率 第4日 第3剛性倍率 第4日 第1) 第2剛性倍率 	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回性/初期剛性) 日げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由 率 ϕ (10 ⁻⁵ /m) (第2 剛性/初期間性)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 507.45\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.22836\\ \hline \end{array}$	$\begin{array}{c c} 530 <1 \\ \hline \\ 530 <1 \\ \hline \\ 2595. 22 \\ \hline \\ 5. 92 \\ \hline \\ 7383. 33 \\ \hline \\ 53. 58 \\ 10782. 40 \\ \hline \\ 497. 94 \\ \hline \\ 0. 22927 \\ \hline \\ 0. 01745 \\ 10835. 42 \\ \hline \\ 981. 93 \\ \hline \\ 0. 22927 \\ \hline \\ 0. 00849 \\ \hline \\ \hline \\ 530 <1 \\ \hline \\ 2595. 22 \\ \hline \\ 5. 92 \\ \hline \\ 7383. 33 \\ \hline \\ 53. 58 \\ 10782. 40 \\ \hline \\ 497. 94 \\ \hline \\ 0. 22927 \\ \hline \\ \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 5軸直角方 530<2> 2583.47 4.86 7350.81 51.61 10781.50 51.61 10781.50 508.54	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300	$\begin{array}{c} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ \hline \end{array}$
 第3剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率 初降 保時 初降 局プ性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 (夕イ剛性倍率 	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 中げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由 率 ϕ (10 ⁻⁵ /m) はげモメントM(tf・m)	$\begin{array}{c} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 507.45\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ \hline \\ 90.058\\ \hline \\ 507.45\\ \hline \\ 507.45\\ \hline \\ 0.22836\\ \hline \\ 0.01699\\ \hline \\ 0.01699\\ \hline \\ \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.\ 22 \\ \hline 5.\ 92 \\ \hline 7383.\ 33 \\ \hline 53.\ 58 \\ 10782.\ 40 \\ \hline 497.\ 94 \\ \hline 0.\ 22927 \\ \hline 0.\ 01745 \\ \hline 10835.\ 42 \\ \hline 981.\ 93 \\ \hline 0.\ 22927 \\ \hline 0.\ 00849 \\ \hline \hline 530 <1 \\ \hline 2595.\ 22 \\ \hline 5.\ 92 \\ \hline 7383.\ 33 \\ \hline 53.\ 58 \\ \hline 10782.\ 40 \\ \hline 497.\ 94 \\ \hline 0.\ 22927 \\ \hline 0.\ 01782.\ 40 \\ \hline 497.\ 94 \\ \hline 0.\ 22927 \\ \hline 0.\ 01745 \\ \hline \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 等軸直角方 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.00695	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438	$\begin{array}{c} 514\\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ \hline \\ 11024. \ 24\\ \end{array}$
 第3剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率 初降(時) 第40000 第1) 第2剛剛性倍 第2剛性倍 第3剛性倍率 (夕イ剛性倍 第3剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率 第3剛性倍率 第40000 第3副間 	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 値げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回性/初期剛性) 回性/初期剛性) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲げモメントM(tf・m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ \hline \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595.\ 22 \\ \hline 5.\ 92 \\ \hline 7383.\ 33 \\ \hline 53.\ 58 \\ 10782.\ 40 \\ \hline 497.\ 94 \\ \hline 0.\ 22927 \\ \hline 0.\ 01745 \\ \hline 10835.\ 42 \\ \hline 981.\ 93 \\ \hline 0.\ 22927 \\ \hline 0.\ 00849 \\ \hline \\ \hline 530 <1 \\ \hline \\ 2595.\ 22 \\ \hline 5.\ 92 \\ \hline 7383.\ 33 \\ \hline 53.\ 58 \\ 10782.\ 40 \\ \hline 497.\ 94 \\ \hline 0.\ 22927 \\ \hline 0.\ 01745 \\ \hline 10835.\ 42 \\ \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 Smical field 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 5 5 5 10886.49 5 02.71 2626.95 4.94 7440.75 5 1.85 10886.49 502.71 0.19300 0.01438 10942.31	$\begin{array}{r} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ \end{array}$
第3両性倍率 第3両性倍率 がび割れ時 初降局プ性倍 約1 第3両性倍 が面 のび割れ時 高プ性倍 第3両局プ性倍 第3両局プ性倍 第3両局プ性倍 第3両 のび割れ時 第3両 ので 割れ時 の 第3両 の の の の の の の の の の の の の	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) (第3剛性/初期剛性) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 由デモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 回げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf・m) 曲 率 ϕ (10 ⁻⁵ /m)	$\begin{array}{r} 513\\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ 0.22836\\ 0.00828\\ \hline \\ 513\\ 2511.54\\ 5.73\\ 7254.64\\ 53.13\\ 10637.56\\ 507.45\\ 0.22836\\ 0.01699\\ 10689.33\\ 999.75\\ \hline \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595. 22 \\ \hline 5. 92 \\ \hline 7383. 33 \\ \hline 53. 58 \\ 10782. 40 \\ 497. 94 \\ \hline 0. 22927 \\ \hline 0. 01745 \\ 10835. 42 \\ \hline 981. 93 \\ \hline 0. 22927 \\ \hline 0. 00849 \\ \hline \\ 530 <1 \\ \hline \\ 2595. 22 \\ \hline \\ 5. 92 \\ \hline \\ 7383. 33 \\ \hline \\ 53. 58 \\ 10782. 40 \\ \hline \\ 497. 94 \\ \hline \\ 0. 22927 \\ \hline \\ 0. 01745 \\ \hline \\ 10835. 42 \\ \hline \\ 981. 93 \\ \end{array}$	橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 Smace Smace 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 4 1 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64	$\begin{array}{c} 514\\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 0978. \ 06\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ \end{array}$
第3剛性倍率 第3剛性倍率 第3剛性倍率 小び割れ時 初降局プ性倍 第11時 第20回り第3回 第3副性倍率 (夕2)第10日 第3回性倍率 (夕2)第10日 第3回性倍 (夕2)第10日 第3回性 (夕2)第3回 (夕2)第3回 (夕2)第3回 (夕2)第3回 (夕2)第3回 (夕2)第3回 (夕2)第3回 (夕2)第10日 第20回 第10日 第20回 第11日 第20回 第11日 第20回 第11日 第20回 第20回 第20回 第11日 第20回 第11日 第2回 第2回	(第3両性/初期両性) P4橋脚 立置(格点番号) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第2剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) (第3剛性/初期剛性) 回げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) 由げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) はげモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) はげモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) 曲げモメントM(tf·m) 曲 率 ϕ (10 ⁻⁵ /m) (第2剛性/初期剛性) 曲 (第2)	$\begin{array}{r} 513\\ \hline 513\\ \hline 2511.54\\ \hline 5.73\\ \hline 7254.64\\ \hline 53.13\\ \hline 10637.56\\ \hline 507.45\\ \hline 0.22836\\ \hline 0.01699\\ \hline 10689.33\\ \hline 999.75\\ \hline 0.22836\\ \hline 0.00828\\ \hline \\ \hline 513\\ \hline 2511.54\\ \hline 5.73\\ \hline 7254.64\\ \hline 53.13\\ \hline 10637.56\\ \hline 507.45\\ \hline 0.22836\\ \hline 0.01699\\ \hline 10689.33\\ \hline 999.75\\ \hline 0.22836\\ \hline 0.01699\\ \hline 10689.33\\ \hline 999.75\\ \hline 0.22836\\ \hline \end{array}$	$\begin{array}{c} 530 <1 \\ \hline 530 <1 \\ \hline 2595. 22 \\ \hline 5. 92 \\ \hline 7383. 33 \\ \hline 53. 58 \\ 10782. 40 \\ 497. 94 \\ \hline 0. 22927 \\ \hline 0. 01745 \\ 10835. 42 \\ \hline 981. 93 \\ \hline 0. 22927 \\ \hline 0. 00849 \\ \hline \\ \hline 530 <1 \\ \hline \\ 530 <1 \\ \hline \\ 530 <1 \\ \hline \\ 530 <1 \\ \hline \\ 61 \\ \hline \\ 981. 93 \\ \hline \\ 0. 22927 \\ \hline \\ 0. 00849 \\ \hline \\ \hline \\ 530 <1 \\ \hline \\ 10835. 42 \\ \hline \\ 981. 93 \\ \hline \\ 0. 22927 \\ \hline \\ 0. 01745 \\ \hline \\ 10835. 42 \\ \hline \\ 981. 93 \\ \hline \\ 0. 22927 \\ \hline \end{array}$	10.000331 橋軸方向 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.00695 5mic角方川 530<2> 2583.47 4.86 7350.81 51.61 10781.50 508.54 0.19180 0.01412 10836.20 994.75 0.19180 0.01412 10836.20 994.75 0.19180 0.01412 10836.20 994.75 0.19180	531 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300 0.00707 FI 2626.95 4.94 7440.75 51.85 10886.49 502.71 0.19300 0.01438 10942.31 983.64 0.19300	$\begin{array}{c} 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 00717\\ \hline \\ 514\\ 2664. \ 99\\ 5. \ 01\\ 7519. \ 09\\ 52. \ 07\\ 10978. \ 06\\ 497. \ 70\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 01460\\ 11034. \ 84\\ 974. \ 10\\ 0. \ 19401\\ 0. \ 19$

(8) 格 点 質 量

A1橋台

格点番号	面積	部材高	重量	格点質量
	(m^2)	(m)	(tf)	(t)
111	_		200. 431	0. 2045
113	68.750	2.000	343.750	0.3508

14-

P1橋脚

T T 1160 Ved.				
格点番号	面積	部材高	重量	格点貨重
	(m^2)	(m)	(tf)	(t)
211			225.562	0. 2302
213	9.621	7.000	168.370	0.1718

P 2 橋脚

格点番号	面積	部材高	重量	格点質量
	(m^2)	(m)	(tf)	(t)
311			243.047	0. 2480
313	12.000	18.230	546.900	0. 5581
331	21.000	3. 500	183.750	0.1875
315	152.250	3. 000	1141.875	1.1652

P3橋脚

格点番号	面積	部材高	重量	格点質量
	(m^2)	(m)	(tf)	(t)
411			273.470	0. 2791
413	12.750	23. 730	756.394	0.7718
431	24.000	3. 500	210.000	0. 2143
415	166.750	3. 000	1250.625	1.2761

P4橋脚

格点番号	面積	部材高	重量	格点質量
	(m^2)	(m)	(tf)	(t)
511			295. 397	0. 3014
513	8.836	9. 500	209.849	0. 2141
531	15.904	3. 500	139.163	0. 1420

A 2 橋台

格点番号	面積	部材高	重量	格点質量
	(m^2)	(m)	(tf)	(t)
611	30. 362	0.104	7.894	0. 0081
613	43. 374	2.000	216.870	0. 2213

5 支承及び落橋防止構造設計資料(支承及び落橋防止構造計算書抜粋)

支承及び落橋防止構造のモデル化根拠として,大切畑大橋設計時の支承及び落橋防止構造設計 計算書を添付する.

		<u>_</u> 个「	-	A 2	(tf/m)	K P	P 2	4, 789	4, 789	2,646	7,872	4, 302	K _P	A 2	39, 893	39, 893	39, 893	84, 858
° (1) °		00 44, 900		P 4		11日の11日日	P 1	17,901	17,601	12, 337	10,572	6,357	角脚の剛性	P 4	12, 628	12, 628	7,649	8,918
○ 分 散 設 計 る		00 58,0		ЪЗ		12=	A 1	25, 749	25, 749	25, 749	39, 382	39, 382		P 3	4,419	4,419	2, 394	6,043
鋼5主桁橋0		000 58,0		P 2	の剛性	-		(常時)	(地震時)	(保耐時)	(地震時)	(保耐時)			(常時)	(地震時)	(保耐時)	(地震時)
t · A 2) 5 径間連続	: の構造諸元	44,900 58,		A1 P1	表(2.1) 橋脚				橋軸方向		械 彗 村 行 ①	高地圧カンド				橋軸方向		
· 設計対象 (A1~	。 設計条件 (1)																	

ŧ

84,858

4,934

3, 118

(保耐時)

橋軸直角方向

٩

η

6

ŧ

1. 設計対象

4

4

2. 設計条件

٥

۲

§ 2. 支承設計計算

(2) 設計反力							(4) 設計水平震度
1) 反力条件							* 1) 農度法に用いる設計水平農度
表 (2.2)	反力条件					(tf)	「」「「」」「」」「」」「」」「」」「」」」「」」」「」」」」」「」」」」」」
	A 1	P 1	P 2	P 3	P 4	A 2	$\mathbf{k}_{\mathbf{h}} = \mathbf{c} \mathbf{z} \cdot \mathbf{k}_{\mathbf{h}0}$
支 承数	2	ى	5	ى ى	2	5	とこに、 c z : 地域別補正係数(=0.85 地域区分B)
最大反力	103.7	284.9	296.3	290.2	272.0	119.7	・
死荷重反力	57.6	195.8	193.0	192.6	193. 2	58.9	- (道示V耐震設計編 表-4.1.1 による)
2) 上揚力							2) 地震時保有水平耐力洗(タイプ1)に用いる築価水平震度
支承に作用す	・る上場力!	は, 地震	ていはごす	- 死荷重反	カの30%	とする。	地震時保有水平耐力洗に用いる支承の等価水平震度は次式で算出する。
表 (2.3)	上揚力					(tf)	$k_{hc} = c_z \cdot k_{hc0}$
	A 1	P 1	P 2	P 3	P 4	A 2	k hc
上揚力	17.3	58.7	57.9	57.8	58.0	17.7	$\mathbf{k}_{\mathbf{h}\mathbf{e}} = \frac{1}{\sqrt{2} (2 \times \mu - 1)}$
							ここに、 k hco :地震時保有水平耐力法に用いるタイプ I の設計設計水平震度(
(3) 温度変化等常	時による	行の伸縮					標準値(道示Ⅴ耐震設計編 表-5.3.1 による)
温度変化等常	時による	行の伸縮重	まは、 次 対	こにて算定	₫ ã °		・ k h c : 地震時保有水平耐力法に用いるタイプ I の設計水平震度
ôt =	ά Τ • α	γ.					- : ゴム支承の設計に用いる許容塑性率 (=3)
II	50×12	;×10-6 >	< l				
	: 0.60 <i>L</i>						3) 地震時保有水平耐力法(タイブⅡ) に用いる等価水平震度
にてた、るも	: 温度変1	とによる枚	うの伸縮量	ł (mm)			地震時保有水平耐力法に用いる支承の等価水平震度は次式で算出する。
ΔΤ	:温度変1	. (°C) 그	鋼橋の場	身合、一10	$^{\circ}\mathrm{C} \sim + 40$	СよりΔΤ	T = 50 °C k h c 0
Ø	:線膨張(系数鋼棉	毛の場合、	$\alpha = 12 \times$	10-6		k hc
J	:桁の伸	循長 (m)					$\mathbf{k}_{\mathbf{h}\mathbf{a}} = \frac{1}{\sqrt{2}} \left(2 \times \mu - 1 \right)$
各径間の伸縮	量は以下の	りとおりて	きある。				、 ここに、 k hco : 地震時保有水平耐力法に用いるタイプ Πの設計設計水平震度
••	26.94 34	l. 80 34	. 80 34	.80 26.	94 (mm)		標準値(道示Ⅴ耐震設計編 表-2.3.2 による)
A1 (E)	• P1 (E)	▲ P2(E)	► P3(E)	▲ P4(E)	▲ A1 (E)		k № t k t k k k k k k k k k k k k k k k
							и : ゴム支承の設計に用いる許容塑性率 (=3)

-379-

9

 \sim

4. 支承形状	、全て ま(4.1) 支承形状の選定	. A1, A2 P1 P2, P3 P4	もに 支承の設計 小法 450mm 650mm 650mm 650mm × 650mm × 650mm × 650mm	Gで - ゴム層;t ε×n 12 mm 15 mm 17 mm 14 mm ×10層 ×10層 ×5層 ×10層	尚束 、 ゴム総厚;Σt s 120 mm 150 mm 85 mm 140 mm	ゴムのせん断 10 10 10 10 10 10 10 10 10 10 10 10 10		5. 常時の照査(P 1橋脚上支承を代表して行い、他の橋脚上の支承については、計算 ^{要以}	■ v> 結果のみを示す。)	(1) 分散支承の静的特性	 1) せん断ばね定数 	温度変化等常時荷重に対する分散支承のせん断ばね定数は、次式で算定する。	$K_{R} = A_{R} \cdot G / \Sigma t_{e}$	ここに、Kr:温度変化等常時荷重に対する分散ゴム支承のせん断ばね定数	AR:ゴムの純面積	A_{R} (P1) = 65.0×65.0 = 4225.0 cm ²	2 t ª : ゴムの総厚	K_R (P1) = 4225.0×10.0×10 ⁻³ /0.150 = 281.7 tf/m	P1 橋脚部 2 K n = 281.7×5 = 1409 tf/m	2) 圧縮 ばね 定数	$K_{V} = (6.58 \times S^{2} + 3) \cdot G \cdot A_{R} / \Sigma t_{e}$	ここに、 K v : 圧縮 ばね 定数	- S :形状係数で次式で算定する。	$S = A_R \swarrow 2 (a + b) \cdot t_e$, S(P1) = $4225.0/$ 2×($65.0+$ 65.0) ×1.5 = 10.833	K _v (P1) = (6.58×10.833 ² +3)×10.0×4225.0×10 ⁻³ \angle 0.150	= 218358 tf/m
	の分散ゴム支承(RB)を用いて、全て		とし、橋軸方向、橋軸直角方向ともに、、こしょはイット、また町田津油・	イントノコアンダー,変位制政策道を	とし、橋軸方向にはゴムの変形を拘束	ジョイントプロアクターを設ける。 チャィキメ ドルロック) 啓華 キロセ	♪ > 、> 1 - 1 - 2 - 2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5	マンマナト ノトクレック 市営 加速	よりにする。(このとさは中格波庫か																τ		3

6

3. 設計方針

- (1) 本橋支承には、反力分散ゴム支承としての分散=
- の橋脚(橋台)分散をする。
- (2)中間橋脚の反力分散ゴム支承はタイプBとし、橋軸方向、橋軸直角方向とも ゴムの変形を拘束しない構造とする(ジョイントプロテクター,変位制限構道 設けない構造とする)。
- (3) 端支点部の反力分散ゴム支承はタイプ B とし、橋軸方向にはゴムの変形を拓しない構造とするが、橋軸直角方向には、ジョイントプロテクターを設ける。

ジョイントプロテクターは、支承と兼用する(サイドブロック)。設計水平力は、震度法地震時のみをみるものとし、震度法地震時以上の水平力が作用するとノックオフして、ゴムの変形が自由となるようにする。(このときは伸縮装置が破壊してもよい)

-380-

δ_{B} (P4) = 49.98 × 1348 / 1509 = 44.65 mm	δ_{B} (A2) = 76.92 × 1015 / 1042 = 74.97 mm	。 (3) 支圧応力度の照査	1) 最大支圧応力度	К Поот	$\sigma_{\mathbf{b}} = \frac{1}{\mathbf{b} \cdot (\mathbf{a} - \delta_{\mathbf{B}})} \ge \sigma_{\mathbf{b}\mathbf{a}} = 80 \text{ kgt/cm}^2$	284,900	$\sigma_{\mathbf{b}}$ (P1) =		(4)回暫に凶する既宜・、下将ませよ。	$\int \Gamma R R C R \partial \sigma$ $\delta V = R / K v$	δ v (P1) = 284,900/218,358 = 1.305 mm	 方で匠門フェル匠門ももち 	7) 白 2 回転により回転にから	$0_{\mathbf{R}} = \Sigma \boldsymbol{\alpha}_{\mathbf{e}} \cdot \mathbf{a} / \mathbf{Z} = 0 \mathbf{V}$	δ _R (PI) = 1∕300 × 650∕2 = 1.083 mm ≦ 1.305 mm (δ v)	(5) 局部せん断ひずみの照査	1) 鉛直力による局部せん断ひずみ: ッ。	ôv a	$\gamma_c = 8.5 \cdot S \cdot \frac{1}{\Sigma t_e} \cdot (a - \delta_B) \times 100$	0.1305 65.0	γ (P1) = 8.5×10.833× × × × 100 = 86.8 % 15.0 (65.0-5.045)		2)回転による局部せん断ひずみ: ッ.	$\gamma_{r} = 2 \cdot (1 + \frac{a}{2})^{2} \cdot S^{2} \cdot \Sigma_{\alpha e} / n \times 100$	Q	$ \begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $
			1	1	1	1	1			1																
		A 1 橋台の桁の伸び を 0とした時の変形	0 mm	26.94 mm	61.74 mm	96.54 mm	131.34 mm	158.28 mm					13													
		 合成ばね定数 A 1 橋台の桁の伸び (tf/m) を 0 とした時の変形 	817 0 mm	1306 26.94 mm	1636 61.74 mm	1591 96.54 mm	1348 131.34 mm	1015 158.28 mm	7713			$4 + 1591 \times 96.54$	$15 \times 158.28) \times 7713$			42 mm	62 mm	18 mm	98 mm	92 mm	٥		ね定数	のげね定数).45 mm
	ل ل عظير.	下部工剛性 合成ばね定数 A 1 橋台の桁の伸び (tf/m) (tf/m) を 0 とした時の変形	25749 817 0 mm	17901 1306 26.94 mm	4789 1636 61.74 mm	4419 1591 96.54 mm	12628 1348 131.34 mm	39893 1015 158.28 mm	+ 7713		つ釣り合いより、	$4 + 1636 \times 61$. $74 + 1591 \times 96$. 54	$8 \times 131.34 + 1015 \times 158.28) \times 7713$		- 算定される。	26.94 = 54.42 mm	61.74 = 19.62 mm	96.54 = -15.18 mm	31.34 = -49.98 mm	58.28 = -76.92 mm	たで算定される。	$\zeta \diagup K_{R}$	5 橋脚の直列ばね定数	5 橋脚上の支承のばね定数	17 / 844 = 78.78 mm	06 / 1409 = 50.45 mm
量)常時の変形量	支承の水平ばね 下部工剛性 合成ばね定数 A 1 橋台の桁の伸び (tf/m) (tf/m) (tf/m) を 0 とした時の変形	844 25749 817 0 mm	1409 17901 1306 26.94 mm	2486 4789 1636 61.74 mm	2486 4419 1591 96.54 mm	1509 12628 1348 131.34 mm	1042 39893 1015 158.28 mm	合 計 7713	日本	上の桁の伸縮は力の釣り合いより、	$(A1) = (1306 \times 26.94 + 1636 \times 61.74 + 1591 \times 96.54$	+ 1348 × 131. 34 + 1015 × 158. 28) \nearrow 7713	= 81.36 mm	て、以下次のように算定される。	(P1) = 81.36 - 26.94 = 54.42 mm	(P2) = 81.36 - 61.74 = 19.62 mm	(P3) = 81.36 - 96.54 = -15.18 mm	(P4) = 81, 36 - 131, 34 = -49, 98 mm	(A2) = 81.36 - 158.28 = -76.92 mm	ん断変形 量は, 次式で算定される。	$\delta_{B} = \delta_{G} \cdot K \nearrow K_{R}$, K :着目する橋脚の直列ばね定数	K.k. :着目する橋脚上の支承のばね定数	$(A1) = 81.36 \times 817 / 844 = 78.78 \text{ mm}$	$(PI) = 54.42 \times 1306 / 1409 = 50.45 \text{ mm}$

-381-

(2)常時の移動

9

< 70
< 200
(NR) G=10
kgf/cm² $\Delta l = 0.6$ σ ba=80 < 20 50 備考 σ ba=80 78.1 2125.2 56.3 1812.1 76.92 74.97 1.96 66. 1 7. 1 54. 7 (/150 119. 16. 17. 0 5.34 67.4 3934.8 69.1 0 0 151.7 193.2 58.0 1/300 5 650 650 $\begin{array}{c} 71.6\\ 13.7\\ 66.5\\ 35.9\\ 335.9\\ 30.6\\ 64.4\\ 1.013\\ 1.013\\ 1.083\end{array}$ 76.7 35.9 650 <u>21.</u> $\begin{array}{c} 0.\ 000\\ 9.\ 559\\ 9.\ 559\\ 4257.1\\ 300334\\ 24257.1\\ 300334\\ 24257.1\\ 300334\\ 2425844\\ 244191\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 1591\\ 168.7\\ 72.6\\ 68.7\\ 72.6\\ 68.7\\ 72.6\\ 68.7\\ 72.6\\ 10.966\\ 1.0.96\\ 1.0.96\\$ 290. 2 50. 1 92. 6 57. 8 /300 53.6 650 650 10 17 5 85 85 93. 48. 296.3 149.6 1193.0 57.9 1/300 987 96. 2 15. 5 60. 遺層ゴム支承の諸元(常時) $\begin{array}{c} 3897. \ 1 \\ 73. \ 1 \\ 4328. \ 8 \end{array}$ 140.8 195.8 58.7 1/300 54.42 50.45 3.97 71.0 $13.9 \\ 67.4$ 31.3 33.6 151.8 305 083 650 550 X 33. 34. 67. 85. 1 46. 9 65. 6 197. 6 39.1 57.6 17.3 17.3 500 . 05 450 nn tf cm² kgf/cm² cm² kgf/cm² kgf/cm² kgf/cm² kgf/cm² kgf/cm² kgf/cm² kgf/cm² kgf/cm^2 kgf/cm² cm² tř/m tř/m tř/m tř/m tř/m 単位 □本□暦 □% в II II 目目時間はtf mm 目間%%%% 大切她1号橋(端部分散ゴム支承) 支承位置 はだけきの評価 有= $O(\frac{1}{2})$ ユー文王応力度(4.27+3-348) σ b2 ゴー3]残り応力度 σ t ゴー4最小文王応力度 σ max ゴーム最小文王応力度 σ max ゴーム支工応力度振幅 Δlt Rmax Rmin Rd φpb nb te n Σte 5 6 4 2 2 2 3 Å 73 ۵1 ゴム支圧応力度 ab ゴム有効支圧面積(はボデき) AR02 σc cRa γ (c+R+s) AR0 δ R уc УR Ν a .a 3 」限の鉛直剛性(有効面積時) 給直荷重(1支承当たり) 鉛直荷重(1支承当たり) 死荷重反力(1支承当たり) 同時 たんあひずみ (鉛直) 1 (回転) 1 (水平) 温度変化時の支承変形量 温度変化時の橋脚変形量 有効設計寸洗(橋軸直角) 見かけのゴムの弾性係数 合成バネ 上部工の支間長 温度変化時の桁伸縮量 上部工の桁移動量 ゴムのせん断弾性係数 僑脚当たりの支承数 鉛プラグの面積比率 有効設計寸法(橋軸) ゴム平均圧縮応力度 ゴム許容圧縮応力度 ゴム有効支圧面積 上部工の回転角 局部ひずみ合計 鉛プラグ径 鉛プラグ本数 ゴム層一層厚 LRBの鉛直剛性 ゴム支圧面積 滴脚水平剛件 ゴム水平剛体 ゴム層層数 沿直ひずみ 回転ひずみ ゴム総厚 形状係数 大平力 上揚力

2

.

2

2

せん断による局部せん断ひずみ: ッ。

3)

$$\gamma_{s} = \frac{\delta_{B}}{\Sigma t_{e}} \times 100$$
$$\gamma_{s} (P1) = \frac{5.045}{15.0} \times 100 = 33.6 \%$$

局部ひずみの合計値

 $\Sigma \gamma = \gamma_{c} + \gamma_{r} + \gamma_{s}$

 $\Sigma \gamma$ (P1) = 86.8 + 31.3 + 33.6 = 151.8 % $\leq \Sigma \gamma a = 200 \%$

許容局部せん断ひずみ : 2 シ ª

 $\Sigma \gamma_{a} = 500 / 2.5 = 200 \%$

計算結果を次項に示す。

-382-

<u>大切畑1号橋(端部分散ゴム支承</u> 支函位置	り道位	積層ゴム支	(承の諸元)	康度法地是 P9	寒時)[橋軸 ^{p3}	<u>[方向]</u> P4	A9	描述
人的名称	H H		* *			E 1	771	C: #1
又行吧強種別	揮	=						
上部工総死商重反力 Wu	tf	3997.5						
橋の減衰定数 h	%							
橋の固有周期 T	Sec	1.447						
影計太平鶴府 Nh		0 21						
「包丁是十步形依存 114	1	100 01						
	11111		10 001	~ ~	t	00.00		
文承载大水十泼祉 UB	an .	105. 34	10.01	/1.00	10.60	91.23	100.08	
橋町水斗割在 Kp	tf/m	25749	10671	4/89	4419	12628	39893	
LRBの概表定数 hB	%	ŀ	ŀ	ı	1	t	1	
TRBの−次剛性(1橋脚あたり) X1	tf/m	,	1	t	1	1	ł	
TKBの二次剛性(1橋脚あたり) K2	tf/m	4	ł	j.	¥	1	1	
TKBの等価剛性(1橋脚あたり) KB	tf/m	844	1408	2485	2485	1509	1042	
合成 (大 R R	tf/m	817	1305	1636	1591	1.348	1015	
大同七令苗枝 "		0 1060	0 1692	0 9191	0 2062	0 1748	0 1317	
			7707.0	1010.0	1007 .0		1101.0	
水 +力 F	tt	88. 9	142.1	1/8.1	1/3.1	140.7	110.5	
局部ひずみ(鉛直) yc	%	50.9	65.2	69.0	68.7	59.6	46.1	
" (大平) ³ 2	%	87.8	67.3	84.3	82.0	69.5	88.4	< 150
局部ひずみ合計 v (c+s)	%	138.7	132.4	153.3	150.6	129.1	134.5	< 278
								(NR) G=10
								kgf/cm ²
大切畑1号橋(端部分散ゴム支承	9	積層ゴム支	(承の諸元(保有水平画	计力地震時	[タイプ]]) [橋軸方	7向]
支承位置	単位	AI	PI	P2	P3	P4	A2	編考
支持地盤種別	邇	II						
上部工総死荷重反力 Wu	tf	3997.5						
たの減速に数	%) } }						
属に変化に多く ままま おうしん 日本国語	2	1 595						
	Sec	L. 300						
設計水+- 課度 kne		0. 34						
上部工最大水平変位 UT	mm	198.20						
支承最大水平変位 UB	mm	· 191. 91	177.89	102.20	97, 25	165.54	193.16	
橋脚水平剛性 Kp	tf/m	25749	12337	2646	2394	7649	39893	
TRBの減衰定数 hB	%		1	1	ł	ł		
1BBの	+f/m		1	1	4	1	1	
1000 ~ August 2011 ~ mage	45/m	,	,))		
Times — Marin (1) 御子の (1) / 1/2 1 DD 例 預価調子 (1 歳 聖 や や) / ND		644	1408	9495	2010	1500	GPUL	
Trimer 14 (Talaite (Talaite ex) し / 10	/ /	017	1924	1001	1010	0301	101F	
ロ灰ンイ ナボナ へわめ	rr/m	0110	1049	1071	C171	0071 000		
水十刀が担率 μ ・ - ・		0. 1192	U. 1843	0.1809	0. 1/ /8	0. 1838	0. 1461	
	t1	107.0	c .0cz	254.0	241.1	249.8	201.3	
局部ひずみ(鉛直) ッc	%	68.0	8.c)	12.9	1.2.1	68. I	59.1	
" (水平) ys	%	159. y	118.6	120.2	114.4	118.2	161.0	< 250
局部ひずみ合計 y (c+s)	%	227.9	194. 4	193.1	186.5	186.3	220.1	< 417
								(NK) 6=10
								kgf/cm ²
大切畑1号橋(端部分散ゴム支承	(積層ゴム支	(承の諸元(保有水平會	计力地震時	[A171]]) [橋軸方	ī向]
支承位置	単位	AI	Pl	P2	P3	P4	A2	備考
支持地盤種別	種	I						
上部工総死荷重反力Wu	ťf	3997.5						
桶の减衰定数 h	%							
橋の固有周期 I	sec	L. 535						
設計水平震度 khe		0.48						
上部工最大水平変位 UT	шш	279.82						
支承最大水平変位 UB	шш	270.94	251.14	144.29	137.29	233.71	272.69	
橋即水平剛性 Kp	tf/m	25749	12337	2646	2394	7649	39893	
LRBの 減衰定数 hB	%	1	ŀ.	ł	1	1		
LKBの一次剛性(1橋脚あたり) K1	tf/m	ł	ł	ţ	ł	ı	4	
TKBの二次剛性(1橋脚あたり) K2	tf/m	1	l.	1	1	1		
TKBの等価剛性(1橋脚あたり) KB	tf/m	844	1408	2485	2485	1509	1042	
合成//ネ DL DL DL DL DL DL DL DL DL DL DL DL DL	tf/m	817	1264	1281	1219	1260	1015	
水平力分担率 μ		0.1192	0.1843	0.1869	0.1778	0.1838	0.1481	
<u>水平力</u> F	tf	228.7	353.6	358.6	341.2	352.7	284.1	
局部ひずみ(鉛直) yc	%	98.0	89.7	79.0	77.7	79.2	79.8	
" (水平) ys	%	225.8	167.4	169.8	161.5	166.9	227.2	< 250
局部ひずみ合計 y (c+s)	%	323.8	257.1	248.7	239.2	246.1	307.1	< 417
								(NR) G=10
								kgf/cm ²

ι

4

4

.

6. 地震時の検討

2

(1) 反力分散計算の方法

5 1

4

,

7. 細部構造の設計

\$

9

٥

(1) 1 支承当たりの設計反力

1支承当たりの設計反力

(tf)

A 2	58.9	22.1	40.3	56.8	21.5	39.3	56.6	17.7
P4	193.2	29.3	50.0	70.5	27.0	44.1	63.6	58.0
P2, P3	193.0	35.6	50.8	71.7	39.4	60.1	86.6	57.9
ΡΙ	195.8	28.4	50.1	70.7	26.0	44.0	63.4	58.7
Al	57.6	17.8	32.4	45.7	17.3	31.5	45.5	17.3
	Rd	RHL 1	RHL2	RHL3	RHT 1	RHT2	RHT3	٧
			I	н		I	Ħ	
		丧	417	417	讫	417	417	€時)
	死荷重反力	麖	保有水平	耐力法	震度	保有水平	耐力法	と揚力(地 夏
		14 14	緒 甘 王	E C	橋軸	直角	方向	

(2) キープレート(SM490A)の照査(ソールプレートはSM490を想定)

方向] 『考

1) 支圧応力度

 $\leq 4200 \text{ kgf/cm}^2$ (2800×1.5) HL or HT σþ

 $d \cdot (t1 - 0.2) \cdot n$

< 250 417 NR)G=10 kgf/cm²

< 150
< 278
< 278
(NR)G=10
kgf/cm² < 250
< 417
< MR)G=10
kgf/cm² 補層ゴム支承の諸元(保有水平耐力地撰時[タイプ1])[橋軸直角方向] A1 P1 P2 P3 P4 A2 備考 徧考 188.53 84858 --1042 1029 0.1445 196.4 58.2 58.2 215.4 103.17 84858 84858 --1042 1029 0.1281 107.5 45.7 45.7 131.7 A2 89.32 8918 $\begin{array}{c} 1509\\ 1291\\ 0.\ 1606\\ 134.\ 8\\ 58.\ 8\\ 63.\ 8\\ 122.\ 6\end{array}$ 146. 15 4934 1509 1156 0.1623 220.5 65.4 104.4 169.8 r r i 106.20 3118 74.00 6043 120.96 4302 $\begin{array}{c} 2485\\ 1889\\ 0.2350\\ 197.2\\ 70.0\\ 93.4\\ 163.3\end{array}$ $\begin{array}{c} 2485\\ 1575\\ 0.\ 2212\\ 300.\ 6\\ 75.\ 5\\ 142.\ 3\\ 217.\ 8\end{array}$ 79.37 7872 t t t 4 . . t. . t 156. 23 6357 $\begin{array}{c} 1408\\ 1243\\ 0.1546\\ 129.8\\ 64.1\\ 61.4\\ 125.6\end{array}$ $\begin{array}{c} 1408\\ 1153\\ 0.\ 1618\\ 220.\ 0\\ 72.\ 5\\ 104.\ 2\\ 176.\ 6\end{array}$ 92.16 10572 i. i. i $\begin{array}{c} -\frac{7}{2}\\ 844\\ 826\\ 0.\ 1028\\ 86.\ 3\\ 50.\ 5\\ 85.\ 2\\ 135.\ 7\\ 135.\ 7\end{array}$ 3997.5 3997.5 -1.506 0.34 190.85 186.84 39382 -1.417 0.21 104.43 102.24 39382 un ttf/m ttf/m ttf/n ttf/n ttf/n ttf/n mm mu tf/m tf/m tf/m tf/n tf/n 和 Sec Sec tf %sec 单位 7% % K % % % tt 大切加1号橋(端部分散ゴム支承) 支承位置 大切加1号橋(端部分散ゴム支承) 設計:水平震度 kh 上部工泉大水平変位 UT 支東長大水平変位 UB 橋即太平卿HE Kp 1188の支東内住橋開あたり)K1 1188の一次朝性(1橋開あたり)K1 1188の二次朝性(1橋開あたり)K1 1188の二次朝住(1橋開あたり)K2 1188の雪太朝住(1橋開あたり)K3 1188の三次朝住(1橋開あたり)K3 上部工総汚荷重反力 Fu 備の波波改戦 h 備の波波之戦 h 備の国有周期 T 設計水平環境 khe 上部工最大水平変位 UT 上部の決定が在 UB 施設大平変位 B 加加の減高性(振興あたり) K1 LIBの一次側性(1振興あたり) K1 LIBのの一次側性(1飛騨あたり) K1 LIBのの一次側性(1飛騨あたり) K1 LIBのの一次側性(1飛騨あたり) K1 LIBのの一次側性(1飛騨あたり) K1 $\begin{array}{c} \mu \\ F \\ \gamma c \\ \gamma c + s \end{array}$ $\begin{array}{c} \mu \\ F \\ \gamma c \\ \gamma c + s \end{array}$ 上部工業光荷重反力 橋の減衰定数 橋の固有周期 設計水平震度 上部工最大水平変位 支承最大水平変位 上部工総死荷重反力 橋の減衰定数 橋の固有周期 設計水平環度 上部工最大水平変位 支承最大水平変位 " (水平) 局部ひずみ合計 <u>水平力</u> 局部ひずみ(鉛直) 1 (水平) 局部ひずみ合計 <u>水平力</u> 局部ひずみ(鉛直) 持地盤種別 水平力分担率 支持地盤種別 水平力分担率

大切如1 呆稀(端部分散:	チム支承)		積層ゴム支	5承の諸元((保有水平)	射力地 農時	[タイブⅡ]) [橋軸値	偠
友承位置		单位	A1	PI -	P2	P3	P4	A2	\$5
支持地盤種別		種	Π						
上部工総死荷重反力	Wu	tf	3997.5						
番の減衰定数	Ч	%	1						
番の固有周期	Т	sec	1.506						
設計水平震度	khe		0.49						
上部工最大水平変位	UT	mm	275.04						
友承最大水平変位	UB	ШШ	269.27	225.16	174.33	153.05	210.63	271.71	
蜜脚水平剛性	Kp	tf/m	39382	6357	4302	3118	4934	84858	
JBの減衰定数	hB	%	E.	1	ş	Ŧ	ł	ł	
,昭の一次剛性(1橋脚あたり)) K1	tf/m		1	4	ł	4	I.	
JBの二次剛性(1橋脚あたり) K2	tf/m	k	1	ł	1	4	ł	
JBの等価剛性(1橋脚あたり)) KB	tf/m	844	1408	2485	2485	1509	1042	
合成バネ	ĸ	tf/m	826	1153	1575	1383	1156	1029	
水平力分担率	π		0.1160	0.1618	0.2212	0.1942	0.1623	0.1445	
水平力	ц	tf	227.3	317.0	433.2	380.3	317.8	283.1	
肩部ひずみ(鉛直)	70	%	97.1	84.2	83.9	80.2	75.0	79.5	
(大子) "	s/s	%	224.4	150.1	205.1	180.1	150.5	226.4	\sim
同部ひずみ合計 ッ((+s)	%	321.5	234.3	289.0	260.2	225.5	305.9	~
•									0

2) せん断応力度

 \leq 1650 kgf/cm² (1100×1.5) $\pi/4 \cdot d^2 \cdot n$ HL or HT 11 ч

₹
結
簿
111111
ДJ
R
臣
¥
査
照

 (kgf/cm^2)

		Al	Γd	P2, P3	P4	A2
	照查水平力	17.8 tf	28.4 tf	39.4 tf	29.3 tf	22.1 tf
震度洗	支正応力度	1483	1680	1894	1734	1545
	せん断応力度	227	214	196	221	233
保有水平	照查水平力	32.4 tf	50.1 tf	60.1 tf	50.0 tf	40.3 tf
耐力法	支圧応力度	2700	2964	2889	2959	2818
417 I	せん断応力度	413	377	299	377	424
保有水平	照查水平力	45.7 tf	70.7 tf	86.6 tf	70.5 tf	56.8 tf
耐力法	支正応力度	3808	4183	4163	4172	3972
417 II	せん断応力度	, 582	533	431	531	598

(3) 上フランジ取付ボルト(強度区分 10.9)の照査

上揚力による引張応力度

≤ 7200 kgf/cm ² (4800×1.5)
$\pi/4 \times d_0^2 \times n$
1
د.
Ð
ر 張 応 力 度

照査上揚力と計算結果

(Kgf/cm^2)	A2	17.7 tf	1309
-	P4	58.0 tf	1841
	P2, P3	57.9 tf	1838
	Id	58.7 tf	1863
算結果	IV	17.3 tf	1279
発査上揚力と計算		照查上揚力	引張応力度
用		出着	地质时

(4) アンカーボルト, アンカーバー(SS400)の照査

4

%

P4 P2, P3 Ρl Al 寸法表

φD	48	60	65	60	55
KH	48	60	64	60	52
do	42.59	54.05	57.51	54.05	46.59
u	4	4	4	4	4
み長さ; ℓ	527	622	667	622	570

1) 水平力によるせん断応力度

$ au_{a}$ (600×1.5)	
900 kgf/cm ²	
VII	
$\tau = \frac{\text{HL or HT}}{\pi/4 \cdot \text{do}^2 \cdot \text{n}}$	

ш ²)		tf	4	tf		tf	
(Kgf/c	A2	22.1	32	40.3	59	56.8	
	P4	29.3 tf	319	50.0 tf	545	70.5 tf	
	P2, P3	39.4 tf	379	60.1 tf	578	86.6 tf	
	ΡI	28.4 tf	309	50.1 tf	546	70.7 tf	
〔 結果	. A1	17.8 tf	312	32.4 tf	569	45.7 tf	
見査水平力と計算		照查水平力	せん断応力度	照查水平力	せん断応力度	照查水平力	
照		御	東 立	保 者 永 平 4 十 4 十 4	タイプ I	保有水平	1 227 1 7 1 7 2 2 2 2 2 2 2 2 2 2 2 2 2

2) 上揚力による付着応力度

$^{\tau 0a}$ (6.5×1.5)	(13.0×1.5)
9.75 kgf/cm^2	19.50 kgf/cm ²
VII	VII
Λ	$\pi \cdot \mathbf{D} \cdot \boldsymbol{\ell} \cdot \mathbf{n}$
	0

照査上場力と計算結果

P2, P3 Ρl Al

17.7 tf

58.0 tf 12.37

57.9 tf

58.7 tf 12.52

17.3 tf 5.44

照查上揚力 付着応力度

地震時

10.63

A2

P4

4.49

 (Kgf/cm^2)

6

(mm) A2

(2) 溶接部の応力度(SM490)

6

ନ୍ନ

1) 水平力によるせん断応力度

 $\leq 1485 \text{ kgf/cm}^2$ (1100×1.5×0.9) $2(a+b) \cdot S$ HL or HT 1 = 1

果
祰
簿
11110
ЪJ
R
計
¥
渣
照

		ц.		4.1		4-1	
(Kgf/cm ^z	A2	22.1 t	96	40.3 t	175	56.8 t	247
	$P1 \sim P4$	39.4 tf	160	60.1 tf	244	86.6 tf	351
	Al	17.8 tf	84	32.4 tf	152	45.7 tf	215
⊬力と計算結果		照查水平力	せん新応力度	照查水平力	せん断応力度	照查水平力	せん断応力度
照		生産	反反反	保 者 永 平 章 士 洋	JAY I	保有水平	

.

1

2) 上揚力によるせん断応力度

照査上揚力と計算結果

結果 Al P 島力 17.3 tf 51
結 12 +

6

.

§ 3. 落橋防止構造設計計算

page 23	2. 土けた~の注着街に観いクテレト 1. 土けた~の注着街に観いろカイトとし、周囲に力の低減 8. (0.7 - ブルク注けた~の注着街に観いされているデビニーターを扱けるこ、 5. (7.4)、ガーブル注意に通敏なテルーに行れれいにこれでなり付ち。 5. (7.4)、ガーブル注意に通敏なテルーに方井・小小開にされたいちデビニーターを設けることとした。 (7.4)、ゲーブル注意に通敏ななかしてあるか、最低的 7. (7.4)、ゲーブルジェンの経営に通敏なテレーシードは、+小小開にを対えたもちため、最低的 (1.5) (7.4)、ゲーブルジェンクテレードは、+小小開にを対えたもちため、最低的 7. (7.4)、ゲーブルジェンの福田市に用いられているデビニーターを設けることした。 (1.5) (7.4)、ゲーブルジェンク協同 7. (7.4)、ゲーブルジェンの福田 (1.5) (7.4) 7. (7.4)、ゲーブルジェンの第日にた。また、ブラケットのリブは抗咳の12倍 (1.5) (7.4) 第. (7.6) (1.5) (7.6) 7. (7.4)、「1.4)、	大日本コンサルタント株式会社
page 22	1. $P C V - J \wedge k C W ((A M A A A A A A A A A A A A A A A A$	大日本コンサルタント株式会社

-387-

page 22

lage - 20 3) ブラケット取り付け部の設計 (後図参照)	取り付けボルトは高力ボルトN73 (S101)とし、ボルト群の中立軸の両側に 2 列以上配置した。このとき、ボルトの許容力としては割増し係数 1.5を考 慮した。	 1) 摩擦接合に対する原査 ボルト1本に作用するカ ρ アト1本に作用するカ ρ ア(HF÷n) ÷ nb = 37665 × 13 = 2897 kgf ≤ ρa= 7200 kgf ρa: 摩擦接合用高力ボルト1本あたりの許容力 ρa= 1.5× 4800 = 7200 kgf 	nb:ホルト本致 ii)ボルトの引張力の照査 ボルト群の中立軸に対する2次モーメントを求め、最遠ボルト位置の 1 本あたりのボルト引張力ヮtを照査する。	曲げモーメント(kgf・cm) M = 1372889 kgf・cm ・ボルトの図心 列番号 本数 離れ $n \cdot y$ $y \in n \times ye^2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 50.0 100.0 -22.0 968.0 7 0 0.0 0.0 -22.0 968.0 7 0 0.0 0.0 0.0 0.0 8 0 0.0 0.0 0.0 0.0 9 0 0.0 0.0 0.0 0.0 10 0 0.0 0.0 0.0 0.0 11 0 0.0 0.0 0.0 0.0 12 0 0.0 0.0 0.0 0.0	 □ □ □ □ □ □ □ 04.0 □ 12/2.0 e = ny÷n = 28.00 cm p = M×e÷Σy²2 = 5286 ≤ ρta=1.5×11750 = 17625kgf/cm2 OK ρ ta:鋼道路橋設計便覧6.3.1による引張接合用高力ボルトの許容力
2) デビエーター取り付け部の設計 (後図参照)	i) 鉛直方向 ここでは、後図に示すようにケーブルが鉛直方向に30°傾いたと仮定する。 鉛直分力(kgf) Hv =(HF+n) × cin30° -	<pre>Arr = / Arr =</pre>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	図心位置(cm) y = 25.2 cm 力度(kgf/cm2) $\sigma = M + I \times y = 824 \leq \sigma a = 1.5 \times 1400 = 2100 kgf/cm2 OK$ $\tau = S + A (Rib) = 629 \leq \sigma a = 1.5 \times 800 = 1200 kgf/cm2 OK$	ii) 水平方向 ここでは、後図に示すようにケーブルが水平方向に15°傾いたと仮定する。 水平分力(kgf) Hh =(HF+n) × sin15° =	$\begin{array}{rcl} 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.$	諸元 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>

大日本コンサルタント株式会社

page 24

ſ
page 26	
4) 補適板	* 形状寸法図
補強板を介して主げた腹板にブラケットを取り付ける。 補強板の寸法はブラケット底板寸法の約 1.5倍以上、板厚は主げた腹板と同じ t =11 muとした。	1.3)橋台陶壁部のコンクリートの支圧応力度
5) 主げた腹板の照査 (後図参照)	AD AD
務禰防止構造に設計地震力HF が作用する場合の主げた腹板の照査をおこなう。 ここでは、主げた腹板がA-A断面で引張力により破断するケース、および破 断面の断面積が最小となるようなB-B断面でせん断により破断するケースを考 えた。	
A-A断面における引張応力度の照査 腹板の両側に配置された蔡橋防止構造の設計地鍵力HF は、補強板の幅 にぬ等に分布するものと仮定した。	
せん断応力(kgf) HF = 376.7 tf ns = 主げた太数 = 3 土げた	729
S = HF÷ns = 125550 kgf 補強板幅(mm) t1= 620 mm 補強板厚(mm)	- 2. 1) ブラケットの設計
t2= 11 mm 応力度(kgf/cm2) τ = S÷(t1×t2) = 1841 ≦ σa = 1.5×2100=3150kgf/cm2 OK	(a) 平面図 (a) 平面図
B-B断面における引張応力度の照査	
	(b) 断面区 (b) 断面区
応力度(kgf/cm2) τ =S÷(2t1×t2)= 892 ≤ σa = 1.5×1400=2100kgf/cm2 OK	
	ブラケット断面
人日本コンサルタント株式会社	大日本コンサルタント株式会社

1 X H & J /

-390-

大日本コンサルタント株式会社

参考資料2 FEM 解析における前処理並びに境界条件の影響

参2.1 本参考資料の位置づけ

3章,4章では大規模橋梁である大切畑大橋を解析対象にしていることに加え、地盤を含めた橋 梁-地盤連成系の 3 次元 FE モデルを作成し連成応答を解析している。その連成系の解析モデル において、適切な解析領域、境界を設定する必要がある。また、動的解析において、計算時間を 削減するために,様々な解析手法の中から計算効率の良好なものを選択する必要がある。しかし, 上記に述べたモデルは大規模であり、複雑な形状をしているため計算し難い。そこで、本参考資 料では比較的単純に作成されたモデルによって適切な動的解析手法を選定することを目的とし、 それらから得られた知見を示す。

参2.2 解析対象とする系

解析対象としては熊本地震で甚大な被害を受けた益城町に位置する橋梁---添架管路---地盤連成 系の構造システム(A 橋と定義する)である。A 橋は橋長 33.3m, 幅員 5.5m の橋梁である。上部 構造は PC ポステン T 桁橋で,床版には鉄筋コンクリートが用いられている。下部構造は逆 T 式 橋台,壁式小判型 RC 橋脚で,杭基礎は鋼管 φ 600mm,肉厚 12mm のものが 15 本ずつ用いられて おり,長さが A1 側で 14.50m,中央で 13.50m, A2 側で 15.50m である。

これらの上部構造及び下部構造を図-参 2.2.1 と図-参 2.2.2 に示し橋梁―添架管路系を図-参 2.2.3に示す。管路と橋梁の設置個所については一般橋梁図を参考にした。

また、地盤に関しては図-参 2.2.4 に示す A 橋の極近傍での下水道敷設時のボーリングデータ を参考にした。第6層以深の層に関しては、文献[1]より KMMH16 における工学的基盤相当の地 盤と仮定した。地盤深さ方向には工学的基盤面に到達する 50m として設定した。以上より,文献 [2]と文献[3]を参考に図-参2.2.5のように8層の成層地盤とした。なお、図-参2.2.5では地盤を 橋台より側方方向に 20m までモデル化したものを示している。

図-参2.2.1 上部構造

図-参2.2.2 下部構造

図-参2.2.3 橋梁─添架管路系

図-参2.2.4 A 橋付近の柱状図

図-参2.2.5 地盤概略図

参2.3 解析モデル

参2.3.1 3次元有限要素モデル

A橋についての橋梁一添架管路一地盤連成系3次元FEMモデルを以下の要領で作成する。橋梁 を構成する各要素の構造諸元を示す。橋桁は2m×0.2m×0.3m,床版は2m×0.5m×0.2mの6面体 ソリッド要素でモデル化した。橋桁及び床版の側面図を図-参2.3.1に示す。

橋脚及び橋台は 0.8m×0.5m×1m, フーチングは 0.5m×0.5m、0.5m, 杭基礎は 0.6m×0.6m× 3mの6面体ソリッド要素でモデル化した。添架管路は, 断面が正16角形, 直径が 0.5m となるようにシェル要素でモデル化した。管路は橋台背面盛土に 20m ずつ埋められるように管路長を設定した。要素長は,橋台背面盛土の部分では 5m,橋梁に添架されている部分では 2m を基本とし,橋脚と橋台との近傍では下部の要素サイズに従い細分化した。

留め具は床版及び管路にそれぞれ接触するようにシェル要素によりモデル化した。ここで管路 と留め具の厚さは 0.1m と設定している。これらの概略図を図-参 2.3.2 に示す。また,留め具は 床版に対して 2m ずつの等間隔で添架される形で図-参 2.3.3 に示すようにモデル化した。以上, 橋梁一添架管路系の FE モデルを図-参 2.3.4 に示す。

図-参2.3.1 上部構造の側面図

図-参2.3.2 管路と留め具の詳細図

	要素
橋桁	8節点ソリッド
床版	8節点ソリッド
橋台	8節点ソリッド
橋脚	8節点ソリッド
フーチング	8節点ソリッド
杭基礎	8節点ソリッド
管路	4節点シェル
留め具	3節点シェル及び
	4節点シェル

表-参2.3.1 橋梁及び管路の要素形状

図-参2.3.5 橋梁-添架管路-地盤系 FE モデル (小-モデル)

周辺地盤については橋梁一添架管路系 FE モデルの要素を側面及び底面方向に長さ 5m を取り, 基本的な格子サイズが 5m×5m×5m になるように設定し,4面体ソリッド要素および6面体ソリ ッド要素でモデル化した。解析モデル領域には橋台より側方方向に 20m ずつ,杭基礎より鉛直下 方向に 30m 取っている。

以上の構造要素の形状について表-参2.3.1に示し,橋梁--添架管路--地盤連成系を図-参2.3.5 に示す。図-参2.3.5に示すモデルは小-モデルと定義する。

参2.3.2 物性値の設定

床版,橋台,橋脚及びフーチングは RC 材料,橋桁は PC 材料,杭基礎,管路及び留め具は鋼材の材料であるため文献[4]と文献[5]を参考にそれらの物性値を設定した。設定した橋梁及び管路の

	密度	ヤング率	ポアソン
	[kg/m ³]	$[N/m^2]$	比
橋桁	2.50×10^{3}	$2.5 imes 10^{10}$	0.2
床版	2.50×10^{3}	$2.5 imes 10^{10}$	0.2
橋台	2.50×10^{3}	$2.5 imes 10^{10}$	0.2
橋脚	2.50×10^{3}	$2.5 imes 10^{10}$	0.2
フーチング	2.50×10^{3}	$2.5 imes 10^{10}$	0.2
杭基礎	7.85×10^{3}	$2.0 imes 10^{11}$	0.3
管路	7.85×10^{3}	2.0×10^{11}	0.3
留め具	7.85×10^{4}	2.0×10^{11}	0.3

表-参2.3.2 橋梁及び管路の物性値

周辺地盤は A 橋の極近傍でのボーリングデータと文献[1]を基に水平延長することで設定した。 当該地盤における土質に対しては土質試験による詳細なデータが得られておらず,物性値が不明 であるため文献[6],文献[1],文献[7]から同質な地盤物性値を解析モデルの地盤にそれぞれ適用し た。

第1層の盛土,第4層の粘土質シルト対しては,文献[7]の益城町役場の敷地内において実施さ れたボーリング調査と PS 検層から作成された地盤モデルの第1層における表土,第5層におけ るシルトの値を用いた。また,第2層の砂質粘土,第5層の砂,第6層の砂礫に対しては,文献 [6]の益城町庁舎建設地点のボーリング調査結果を基にモデル化された地盤定数の第1層における 粘土,第2層における砂,第3層における砂礫の値を用いた。第3層の礫混り砂,第7層の火山 灰質粘土,第8層の砂に対しては,文献[1]の KiK-net 益城における地盤物性値の第2層における 砂,第4層における火山灰質粘土,第5層による砂の値を用いた。

以上から設定した地盤の物性値を表-参2.3.3に示し,その物性値の出所を表-参2.3.4に示す。

層	土質	上層	下層	層厚	密度	ヤング率	ポアソン	$V_s[m/s]$
		[m]	[m]	[m]	[kg/m ³]	$[N/m^2]$	比	
1	盛土	0	3	3	1.50×10^3	1.41×10 ⁸	0.3	190
2	砂質粘土	3	4	1	1.60×10^{3}	9.36× 10 ⁷	0.3	150
3	礫混り砂	4	5	1	1.60×10^{3}	2.40×10^{8}	0.3	240
4	粘土質シルト	5	10.9	5.9	1.75×10^3	1.47×10^{8}	0.3	180
5	砂	10.9	13.9	3	1.90×10^{3}	6.05×10^{8}	0.3	350
6	砂礫	13.9	25.9	12	1.90×10^{3}	9.56× 10 ⁸	0.3	440
7	火山灰質粘土	25.9	35.9	10	1.35×10^{3}	5.62×10^{8}	0.3	400

表-参2.3.3 地盤物性值

$\begin{vmatrix} 8 \\ \psi \end{vmatrix} \qquad \begin{vmatrix} 35.9 \\ 50.9 \\ \end{vmatrix} \qquad \begin{vmatrix} 50.9 \\ 15 \\ 1.90 \times 10^3 \\ 2.85 \times 10^9 \\ 0.3 \end{vmatrix} \qquad 0.3$	8	.3 7	760
--	---	------	-----

層	土質	用いた資料と土質		
1	盛土	片岡・石井	表土(第1層)	
2	砂質粘土	中野	粘土(第1層)	
3	礫混り砂	KiK-net 益城	砂(第2層)	
4	粘土質シルト	片岡・石井	シルト(第5層)	
5	砂	中野	砂(第2層)	
6	砂礫	中野	砂礫(第3層)	
7	火山灰質粘土	KiK-net 益城	火山灰質粘土(第4層)	
8	砂	KiK-net 益城	砂(第5層)	

表-参2.3.4 地盤物性値の引用元

参 2. 3. 3 境界面

橋梁一添架管路一地盤連成系を解析するにあたり、半無限に続く地盤のモデル化に工夫が必要 である。境界面による反射波や境界面外側の地盤震動の寄与などを考慮しなければならない。本 研究では、解析領域を側方に延長したモデルと、文献[8]を参考にし、側面及び底面の境界面につ いて反射波の影響を減少させるための粘性境界を設けたモデルを作成した。粘性境界を設けたモ デルは側面に自由地盤要素を配置した。

粘性境界の物性値については,文献[9]並びに文献[10]を参考にし,以下の式により粘性係数を 設定した。

$$\mu_S = \rho V_S \tag{1}$$

$$\mu_N = \rho V_P = \rho \cdot \sqrt{\frac{2(1-\nu)}{1-2\nu}} V_S \tag{2}$$

ここで、 μ_S はせん断方向の粘性係数、 μ_N は鉛直方向の粘性係数、 ρ は単位体積質量、 ν はポアソン 比、 V_s はせん断波速度、 V_p は疎密波速度である。

また、本研究で用いる解析コード FrontISTR[11]では粘性要素を定義することができないことから粘弾性要素で代替する。要素形状は図-参2.3.6 に示すような2 要素 Maxwell 要素として、せん断成分のみを緩和する。

図-参2.3.6 本研究における粘弾性要素の形状

Gはせん断弾性係数,τは緩和時間であり,緩和時間は以下の式のように表せる。

$$\tau = \frac{\mu}{G} \tag{3}$$

よって, せん断方向の粘性係数を式(1)より与えることで粘性境界とする。以下の表-参2.3.5に 深さ毎に導出したせん断粘性係数を示す。

層	土質	粘性係数[kg/m ² ・s]
1	盛土	2.79×10^{6}
2	砂質粘土	2.36× 10 ⁶
3	礫混り砂	3.77×10^{6}
4	粘土質シルト	3.10×10^{6}
5	砂	6.51× 10 ⁶
6	砂礫	8.18× 10 ⁶
7	火山灰質粘土	5.28×10^{6}
8	砂	1.41× 10 ⁷

表-参2.3.5 粘性境界の粘性係数

粘弾性要素の要素サイズについては幅を 1m と仮想的に設定した。側面粘弾性要素の外側に配置した自由地盤モデルについては、粘弾性要素を挟み、対となる地盤要素に従うように要素サイズを設定し、ヤング率と密度を 1000 倍とすることで無限遠に続く地盤を模擬した。側方境界の詳細図を図-参2.3.7 に示す。

図-参2.3.7 側方粘性境界詳細図

参 2. 3. 4 解析領域

解析領域について,境界面からの影響が無視できる程度に拡幅する必要がある。本研究では橋 台より側方地盤の広さを 20m, 50m, 100m に設定した 3 種類のモデルを作成した。20m は A 橋の 杭長相当の長さ領域を橋台背面盛土に設定したものである。50m 及び 100m はその 2.5 倍及び 5 倍 とした。以上より,表-参 2.3.6 のように領域の大きさと粘性境界の有無でモデル分けした。図-参 2.3.5 に示したモデルが小-モデルであり,中-モデルは図-参 2.3.8 に,大-モデルは図-参 2.3.9 にそれぞれ示す。粘性境界を含んだモデルについては,粘-小-モデルは図-参 2.3.10 に,粘-中-モ デルは図-参 2.3.11 に,粘-大-モデルは図-参 2.3.12 に示す。

		X 9 2.0.0	117 DI C / / 1	
			側方地盤領域	
		20m	50m	100m
粘性境界	無	小-モデル	中-モデル	大-モデル
	有	粘-小-モデル	粘-中-モデル	粘-大モデル

表_参	€ 2	3	6	解析エデル
──────────────────	ΣL.	. J.	U	一 円生 竹 一 亡 ノ ノレ

図-参2.3.8 中-モデル

図-参2.3.9 大-モデル

図-参2.3.10 粘-小-モデル

図-参2.3.11 粘-中-モデル

51m

図-参2.3.12 粘-大-モデル

参2.4 入力地震動

文献[12]は解析対象地点近傍の KiK-net 観測点 KMMH16 の地表において観測された加速度波形 を DYNEQ[13]を用いた等価線形化法により工学的基盤相当(V_s = 760 m/s)まで引き下げ、基盤加 速度を導出している。等価線形化法によるサイト波の推定は幅広く研究されており、精度も担保 されていることから本研究でも用いることとした。計算における地盤各層の物性値は文献[1]の PS 検層結果による地盤特性を元に設定した。設定したパラメータを表-参 2.4.1 に示す。また、材料 モデルには文献[14]のσ-γ関係を適用した。以上より算出した波形を、主要動を含むように 25 秒間 に切り取ったサイト波を図-参 2.4.1 に示す。

土質区分	S 波速度	密度	深さ
	[m/s]	[g/cm ³]	[m]
火山質粘土	110	1.65	3
火山質粘土	240	1.65	9
砂	240	1.7	15
軽石凝灰岩	500	1.8	33
火山質粘土	400	1.8	41
砂	760	2.05	51
砂礫	760	2.05	69

表-参2.4.1 KMMH16における地盤物性値

図-参2.4.1 入力サイト波

参 2.5 解析方法

参 2. 5. 1 解析条件

解析時間は主要動を含むように 25 秒間とし,時間刻みは 0.01 秒とした。運動方程式は陰解法 により求解した。時間積分法には Newmark - β 法を用い,パラメータは $\gamma = 1/2$, $\beta = 1/4$ と設定 した。Rayleigh 減衰のパラメータは $R_m = 0$, $R_k = 0.01$ と設定し,質量マトリックスによる減衰は 考慮せず,剛性マトリックスによる減衰のみを考慮した。ソルバーには共役勾配法(CG法)を用 い,収束判定閾値は1.0×10⁻⁶とした。モデルに対する入力方法としてはサイト波を等価な慣性力 として入力した。この際,粘性境界を持つモデルに関しては,粘弾性要素と自由地盤要素には慣 性力入力をしない。境界条件は側面底面を完全固定した。以上の解析条件を**表-参 2.5.1** に示す。

解析の種類	線形動解析
時間刻み	0.01 秒
継続時間	25 秒
解析ステップ	2500
運動方程式の解法	陰解法
時間積分法	Newmark $-\beta \not\equiv (\gamma = \frac{1}{2}, \beta = \frac{1}{4})$
減衰	Rayleigh 減衰($R_m = 0$, $R_k = 0.01$)
ソルバー	CG 法
収束判定	1.0×10^{-6}
境界条件	底面側面完全固定
入力方法	慣性力入力

表-参2.5.1 解析条件

参2.5.2 解析ソルバー[15][16]

連立一次方程式の解法には直接法と反復法があり,前者は係数となるマトリックスを直接変形 し解を導くものであるのに対し,後者は計算を反復することで解に近づけていくものである。大 規模な解析では係数行列が大きくなるため,直接法より反復法の方が効率よく計算できる。また, 反復法には定常反復法と非定常反復法があるが,後者の方が明らかに計算効率が良いと知られて いる。

非定常反復法の代表的なものには、係数行列が対称であるとき有効な収束性を示す共役勾配法 (CG法)がある。それに対して、非対称行列にも使用できるようにした BiCG 法と、さらに残差の 減少を安定化させた安定化双共役勾配法(BiCGSTAB 法)があり、他にも比較的演算量が多いもの の非対称行列にも適応できる一般化最小残差法(GMRES 法)などがある。

反復法においては反復回数を減らすために,係数行列に対する前処理が行われる。代表的なものに対称逐次過緩和前処理(SSOR),対角スケーリング,代数マルチグリッド法(AMG)や不完全LU分解(ILU)などがある。

本研究で対象とする解析モデルに対して適当な反復法と前処理法を選定するために事前解析を 行った。解析対象には図-参2.3.12の粘-大-モデルを用いた。解析条件は表-参2.5.1に従い,継 続時間を5秒とした。入力波には図-参2.4.1のEW方向波形を解析モデルに対し,橋軸方向に慣 性力入力した。結果の応答について図-参2.5.1に示す床版の端部を出力点とし,橋軸方向の加速 度と変位の応答をソルバーと前処理でそれぞれ比較した。得られた応答を図-参2.5.2~図-参 2.5.6に示す。以上,結果として示された通り,発散した解析法以外での応答の差異は見られなか った。このことから本解析では発散せず,計算性能の良い解析法を選択するのが妥当である。

図-参2.5.1 出力点

図-参2.5.3 解析ソルバーの違いにおける変位応答

図-参2.5.5 前処理法の違いにおける変位応答

また結果から反復法,前処理法の違いによる計算時間の比を表-参2.5.2,表-参2.5.3に示す。

21 2 21	
反復法	計算時間の CG 法との比
CG 法	1
BiCGSTAB 法	0.94
GMRES 法	2.9

表-参2.5.2 反復法による解析時間の違い

前処理法	計算時間の SSOR との比
SSOR	1
AMG	0.68
ILU(0)	0.64
ILU(2)	発散
Diagonal Scaling	発散

表-参2.5.3 前処理法による解析時間の違い

以上の結果より、反復法の計算性能では CG 法と BiCGSTAB 法が良好であり、前処理法の計算 性能では AMG と IKU(0)が良好であった。

参2.6 粘性境界と解析領域における応答の相違

参 2. 6. 1 解析条件

表-参2.3.6 に示される粘性境界の有無と解析領域が異なるモデルに対して,表-参2.5.1 に示 される条件による解析を行った。入力波には表層波由来のサイト波を用いて,橋軸方向のみに入 力した。出力点には応答を比較することを目的とし,橋台部分の地盤,管路,床版の代表的な地 点を選定した。それらを図-参2.6.1 に示す。

図-参2.6.1 出力点

参2. 6. 2 解析結果

橋軸方向の加速度波形を図-参2.6.2 に,変位波形を図-参2.6.3 に,法線応力波形を図-参2.6.4 に,法線ひずみ波形図-参2.6.5 をそれぞれ出力点ごとに示す。ここでは粘性境界を含まないモデルと含むモデルに分けて示している。

図-参 2. 6. 2 加速度波形

図-参2.6.3 変位波形

(c)Slab 図-参 2. 6. 4 法線応力波形

図-参2.6.5 法線ひずみ波形

橋軸方向加速度の応答では地盤,管路,床版のどの出力点においても解析領域を大きくすると 加速度が増大し,粘性境界を持つモデルでは,小-モデルは加速度が増大しており,中-モデル,大 -モデルでは加速度を抑制されている。

橋軸方向変位の応答では、地盤、管路、床版のいずれの出力点においても解析領域が大きくな ると変位が大きく増大した。粘性境界を持つモデルでは小-モデルでは変位が増幅、中-モデルはわ ずかではあるが抑制され、大-モデルでは大きく抑制されている。特に大-モデルでは粘性境界を導 入することで変位が増幅した後、なだらかに減少している。

橋軸方向法線応力の応答では、地盤と管路の出力点において解析領域が大きくなると応力が抑 制されている。また、粘性境界を導入したモデルでも、粘性境界のないモデルと比較して応力を 抑制している。特に小-モデルでは粘性境界を導入することで大きく応力が抑制されている。床版 の出力点においては解析領域を大きくすると応力は増大した。また、粘性境界を導入したモデル を比較すると粘性境界のないモデルと大きな応答の差はなかった。しかし、大-モデルでは粘性境 界を導入することで応力が増大した後、なだらかに減少している。

橋軸法線方向ひずみの応答では、解析領域の大きさ、粘性境界の有無による応答の違いは橋軸 方向法線応力の応答と同様の傾向が見られた。これは線形解析であるためと考えられる。

以上より、小-モデルではひずみや応力の応答が境界面での反射波などの影響が無視できないほ ど表れており、粘性境界を導入した粘-小-モデルでも妥当ではないと考えられる。中-モデル、大-モデルでは変位応答に相違が見られるものの、今回の解析条件では等価な慣性力として入力して いるので、応力とひずみの応答に相違がほとんど生じていないため解析領域を中-モデル〜大-モ デル程度拡大することで境界面の影響を減少させられると考えられる。しかし、中-モデルでは 2 秒から 5 秒での応答が過剰に増幅してしまっている。また、粘性境界を導入することで粘-中-モデ ルと粘-大-モデルの応答の差は粘性境界がないモデルに比べて減少していることから、粘性境界 は境界面から受ける影響を減少させ、過大に解析領域を拡幅する必要はないということがわかる。

参2.7 本参考資料で得られた結論

本参考資料における動的解析手法や解析モデルを変化させ,3次元 FEM 解析を行って得られた 知見を以下に示す。

- (1). 動的解析手法について, 手法を変化させたとき, 良好な応答を示すか, 計算が発散するか のどちらかの計算結果が得られ, 計算が発散しない手法の内から計算時間を短縮できる ものを選択すればよいことが示された。また, 解析法について, 解析モデルに依存する部 分はあるが, CG 法と BiCGSTAB 法は計算性能が良いことが示された。前処理法につい ては計算が発散してしまうものがいくつか見られたが, AMG と ILU(0)は比較的短い計算 時間で良好な結果が得られることが示された。
- (2). 解析領域と境界条件について、6 つの異なるモデルを比較したが応答の差異がいたるところに見られたが、評価したい部分が適切に応答するモデルを設定すれば良い。解析領域について、設定した領域が小さいと、境界面からの影響を評価したい部分が受けてしまい、過剰なひずみ、応力が生まれてしまう。よって、領域を拡幅していき、過剰に出現

していたひずみや応力が抑えられる大きさに領域を設定すれば良い。粘性境界について は、最大値相当の応答後に境界面からの反射波による影響を明らかに減少させているこ とから、粘性境界の必要性が示された。

参考文献

- 1) 防災科学技術研究所, 強振観測網, http://www.kyoshin.bosai.go.jp/kyoushin/
- 原昌弘, 庄司学:2016年熊本地震における下水道埋設管路被害に係る表層地盤特性,第15回日本地震工学シンポジウム,pp.1824-1833,2018.
- 3) 梶田幸秀,丹藤修平,宇野州彦,松田泰治:惣領端の中間橋脚沈下被害に対する不整形地盤 モデルを用いた検討,第39回土木学会地震工学研究発表会講演論文集(USB),2019.
- 4) 日本道路協会:道路橋示方書・同解説 V 共通編, 2012.
- 5) 日本建築学会:鉄筋コンクリート構造設計基準,2010.
- 6) 中野尊治,宮本裕司,川辺秀憲:2016年熊本地震における益城町庁舎1階の応答シミュレーション,日本地震工学会・大会-2017梗概集,p2-17,2017,11.
- 方岡正次郎,石井洋輔:余震観測による益城町役場地点のサイト増幅特性の分析,第21回性能に基づく橋梁等の耐震設計に関するシンポジウム講演論文集,pp.287-290,2018,7.
- 8) 土屋智史,千々和伸浩,原田光男,三島徹也,前川宏一:近接する LNG 地下タンク群と地盤 で構成されるタンクヤード全体の3次元動的応答解析,土木学会論文集 A1(構造・地震工学), Vol.71, No.3, pp429-448, 2015.
- Lysmer, J. and Kuhlemeyer, R.L. : Finite dynamic model for infinite media, Journal of Engineering Mechanics, ASCE, Vol.95, pp.859-877, 1969.
- 10) 牧剛史, 土屋智史, 渡辺忠朋, 前川宏一: 3 次元非線形有限要素法を用いた RC 杭基礎一地盤 系の連成地震応答解析, 土木学会論文集 A1, Vol64, No.2, pp192-207, 2008. 4
- 11) FrontISTR: https://www.frontistr.com/(2021.9.10閲覧)
- 12) 寺嶌幹裕: 2016 年熊本地震における通信用橋梁被害メカニズムの解明, 筑波大学大学院シス テム情報工学研究科修士論文, 2020, 3.
- 13) 吉田望: DYNEQ A computer program for DYNamic response analysis of level ground by Equivalent linear method, 東北学院大学工学部, 2008.
- 14) 安田進,山口勇:種々の不撹乱土における動的変形特性,第20回土質工学研究発表会,pp.539-542,1985.
- 15) 連立1次方程式I-明治大学, http://nalab.mind.meiji.ac.jp/~mk/labo/text/linear-eq-1.pdf (2021/6/10 閲覧)
- 16) 連 立 1 次 方 程 式 の 基 礎 知 識 九 州 大 学 , http://ri2t.kyushuu.ac.jp/~watanabe/RESERCH/MANUSCRIPT/TUTORIAL/leq.pdf (2021/6/10 閲覧)

共同研究報告書 Cooperative Research Report of PWRI No.576 June 2023

編集·発行 ©国立研究開発法人土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原1-6 電話029-879-6754