Partnership with Other Organizations

1. Partnerships with domestic organizations etc.

In order to maximize all research and development achievements of Japan including a product of research and development by universities, private companies and other organizations, we form appropriate partnerships with domestic public research organizations, universities, private research institutes and so on by actively conducting periodical information exchanges, joint research, research cooperation and personnel exchanges according to the characteristics of research and development, and promote research and development while incorporating technological knowledge of other fields. We also actively accept researchers from within Japan based on the exchange researcher system.

2. Partnerships with overseas organizations etc.

We undertake joint research and cooperative research with overseas research organizations based on science and technology cooperation agreements. In addition, we actively exchange researchers and hold international conferences. Also, by aggressively using fellowship systems, we accept superior researchers from outside Japan at the same time as we actively dispatch PWRI researchers overseas.

3. Obtaining competitive funding

We make efforts to aggressively obtain external sources of funds such as competitive research funds etc., by submitting strategic applications in cooperation with other research organizations, to boost the potential of the PWRI and the capabilities of our researchers. We also aggressively obtain funds through Grants-in-aid for Scientific Research (Kakenhi) projects, the Ministry of Land, Infrastructure, Transport, and Tourism’s River Sediment Prevention Technology Development System, and the Cabinet Office’s Strategic Innovation Creation Program (SIP) Second Phase.

Example: SIP Phase 2 “Strengthening National Resilience”
Research performed by the Public Works Research Institute

<table>
<thead>
<tr>
<th>R&D items</th>
<th>Person responsible for the research</th>
<th>R&D Challenge</th>
<th>Participating PWRI division</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Development of an integrated evacuation/emergency activity support system</td>
<td>Yuichiro Usuda (National Research Institute for Earth Science and Disaster Resilience)</td>
<td>R&D of an integrated evacuation/emergency activity support system</td>
<td>ICHARM Water-related Hazard Research Group</td>
</tr>
<tr>
<td>II. Development of a disaster state analysis/sharing system</td>
<td>Naoki Sakai (National Research Institute for Earth Science and Disaster Resilience)</td>
<td>Development of an evacuation decision/emergency activity/ training support and integrated municipal disaster response system</td>
<td>Erosion and Sediment Control Research Group Volcano and Debris Flow Research Team</td>
</tr>
<tr>
<td>VI. Development of a super typhoon disaster prediction system</td>
<td>Yasuto Tachikawa (Kyoto University)</td>
<td>Developing a super typhoon disaster prediction system</td>
<td>Construction Technology Research Department Advanced Technology Research Team</td>
</tr>
</tbody>
</table>
PWRI manages intellectual properties appropriately based on an Intellectual Property Policy to bring the best possible value to society as a whole in a strategic and active manner.

Concepts of the Intellectual Property Policy

- **Strategic Creation**: Conduct R&D by utilizing intellectual information. Secure excellence of technology.
- **Active Utilization**: Bring useful valuable intellectual property to right users. Periodic reviews based on usage status, etc.
- **Appropriate Protection**: Comprehend the utilization state at all times. Actively promote utilization.

For more information about intellectual property rights of Public Works Research Institute, please see below.

Industrial property rights such as patents
- Tsukuba Central Research Institute, ICHARM, CAESAR, iMaRRC
- Civil Engineering Research Institute for Cold Region
 - http://www.ceri.go.jp/contents/research/research03.html

Program works/Guidelines
- Tsukuba Central Research Institute, ICHARM, CAESAR, iMaRRC
- Civil Engineering Research Institute for Cold Region

Corporate works (also posted on page 40 in this handbook)
- http://www.pwri.go.jp/eng/about/pr/publication/index.html#publications

We recommend transfer of technology to private companies so that the new technology with a focus on intellectual property rights is widely used.

Examples of use of industrial property rights

[Fluidized Bed Incineration System with Turbocharger]
- (Pat. No. 5,482,792, the other 12)
 - Energy/space-saving and low environmental load incinerator for sewage sludge

[Drainage System for the end of concrete bridge girders]
- (Pat. No.6384906, Pat. No.6410304, Pat. No. 6455753)
 - Improving the corrosion environments around the ends of concrete bridge girders as quickly as possible

Practitioner recruitment system for underutilized patent
- Public Works Research Institute looks for a partner, such as a private company that is able to carry out development, manufacturing and sales of specific products so that the technologies developed can be utilized on actual site.
- "Practitioner recruitment system for underutilized patent" is to present the conditions of technical contents and patents which are implemented and to widely recruit partners who want to participate.

Research Consortium
- As a national research and development agency, the Public Works Research Institute is actively involved in the promotion of on-site utilization of their own research results. And we are strongly required to contribute to promotion, utilize new technologies, and improve quality of the public infrastructures and reduce costs, etc.
- For this reason, for some of the new technologies that the Public Works Research Institute has developed, active follow-up will be carried out until achieve certain level of to self-reliance, through a new attempt of such research consortium.

For overview and use of each intellectual property, please contact Tsukuba Central Research Institute, ICHARM, CAESAR, iMaRRC (Technology Applications Research Team), CERI (Cold-Region Technology Promotion Division). We will provide further information.
Maximization of research and development results

Introduction of PWRI-Developed Technologies Utilized at Construction Sites

Infrastructure maintenance award / Infrastructure Technology Development Award

Steel structure paint reinforcement method using sheets of titanium foil
(iMaRRC (Advanced materials and improvement))

Used on steel bridges protected from corrosion by painting, this technology is the application of titanium foil sheets to places susceptible to rusting such as girder ends, splices, or corners of members where it is difficult to ensure sufficient paint thickness, thereby strengthening corrosion protection of the bridge. A thick anticorrosion coating is formed by first applying the corrosion-proofing undercoat (corrosion prevention performance) and a ground coat (blocks causes of deterioration) then a middle or top coat (weather-proofing) on the steel surface. The titanium foil sheet is placed above the corrosion-proofing undercoat as a replacement for the ground coat. Appropriately applying a titanium foil sheet can completely block causes of the corrosion of steel. The execution is easier than a super thick anticorrosion coating, and can lower 100 year running cost by about 7%.

This technology received the Second Infrastructure Maintenance Award.

Fluidized Bed Incineration System with Turbocharger
(iMaRRC (Recycling))

This system improves incineration efficiency by incinerating the composite of sewage sludge and other biomass at approximately 0.15 MPa, and allows utilization of compressed air generated by operating a turbocharger with exhaust gas. It can reduce power consumption by 40%, fuel by 10% and CO₂ by 40%. It can also reduce a great amount of N₂O, which has more of a greenhouse effect than CO₂ when the combustion temperature is adjusted to the high-temperature zone. Based on good results in an experimental plant located in Oshamanbe, Hokkaido, this system has been adopted at 9 wastewater treatment plants in Tokyo and other places. This technology received the 17th Infrastructure Technology Development Award (MLIT Minister’s Award) and the 41st Excellent Environmental Equipment Award (METI Minister’s Award).
Wire Rope Guardrail System
(Traffic Engineering Research Team)

The wire rope guardrail system consists of high toughness wire ropes and thin posts that break when they are hit by a car. By absorbing shocks of vehicle collision mainly with deflection of wire rope, it is expected to drastically reduce fatal accidents. There is no difference between shapes of both sides of the system, thus the width required for installation is narrow and the installation cost can be reduced. Since this guardrail system can be installed and removed by humans, it is possible to partially make opening sections in an emergency to allow car drivers to drive in the opposite lane and complete repair work in a short time. The Ministry of Land, Infrastructure, Transport, and Tourism is responding to the fact that on (toll-charging) expressways, the fatal accident rate on temporary two-lane sections is higher than it is on four lane sections by, as an emergency measure, starting trial installation of these on approximately 113 km of temporary two-lane sections throughout Japan in April 2017, and in FY2018, beginning standard installation on newly opened sections of temporary two lane sections of expressways. The ministry has also decided on a policy of installing them on low priority sections changed to four lanes on existing sections and on newly opened sections.

This technology won the Twentieth Infrastructure Technology Development Award (Minister of Land, Infrastructure, Transport, and Tourism Prize).

PWRl's Focused Dissemination Technologies/Techniques (FY2018) (Example)

Installed anchor tensile monitoring system (Aki-Mos)
(Landslide Research Team)

Ground anchor for slope stability should be maintained property. Especially, it is important to know any changes of the tensile stress in order to maintain ground anchor. However, the tensile stresses are not measured in many cases. We therefore developed continuous monitoring techniques of load for installed anchors. These techniques have enabled us to get the load data remotely by radio. By these techniques, it is possible to monitor the load, which it could hardly be done in the past. As of January 2018, 333 systems have been adopted in 71 locations, such as dams and roads managed by Regional Development Bureaus and NEXCO roads.

Drainage system for the end of concrete bridge girders
(CAESAR)

A rubber or polyethylene gutter-shaped drainage available to insert into the expansion gap from the side of existing concrete bridges allows preventing salt damage of girders and substructures due to leakage water contaminated by deicing salt from expansion joints. This drainage can be easily installed from under the bridges without affecting to traffic flow. They have been installed on expressways in Hyogo Prefecture and Tokushima Prefecture.
Maximization of research and development results

Technical Support

Technical support at the time of disasters

Our nation suffers from a lot of natural disasters such as earthquakes, heavy rain, landslides, and snow. To prepare to give disaster support immediately after disasters, the PWRI established the Disaster Countermeasure Headquarters to respond to requests for disaster experts from the national government and local governments. Since then it has received requests for disaster support from managers of damaged facilities, etc., and responded by sending personnel to the scene to survey actual damage and to provide advanced technical guidance concerning methods of restoring damaged civil engineering structures and saving lives during a disaster.

Kumamoto Earthquake: Inspection of damages at the crossover in the City Road Chuo Line (Apr. 17, 2016)

Kumamoto Earthquake: Field survey of the collapsed Aso-Ohashi Bridge and the landslide on the national highway No.57 (Apr. 17, 2016)

Typhoon No.10 etc.: Investigation of the overflow and the collapse of embankment in Kitami City (Aug. 21, 2016)

Torrential rainfall in July 2018: View of sediment disaster survey in Yasuura-cho in Kure City (July 10, 2018)

Hokkaido Eastern Iburi Earthquake: view of a meeting held to plan an emergency sediment accident survey in the Atsumagawa River Basin (Sep. 13, 2018)

Hokkaido Eastern Iburi Earthquake: View of many surface collapses in the Atsumagawa River Basin (Dec. 6, 2018)
Technical support relating to civil engineering technology in general

We provide technical support by the request from the national and local public organizations even at the time of the non-disaster for the purpose of supporting solution related to agriculture, fisheries and harbors and providing civil engineering technology in cold regions. We also participate in the technical committee, such as the government and relevant societies to provide technical support. Public Works Research Institute has accumulated knowledge and research results that are reflected in the formulation and revision of various technical standards.

A road maintenance technical team assessing the earthquake resistance of a bridge

Technical support on the maintenance and management of the snowbreak woods in Hokkaido

Dispatch of lecturers

We offer the trainings to engineers of College of Land, Infrastructure, Transport and Tourism, Regional Development Bureau, Hokkaido Regional Development Bureau, local governments, and universities. We also organize lectures for the general public including elementary, junior high, and high schools as well as dispatch a lecturer to institutions by request to give guidance and promote civil engineering technology.

Training session for relevant officers in central and local government and for private businesses (58th sediment control and landslide prevention lecture meeting)

Training sessions for civil engineers
Maximization of research and development results

Dissemination of Research Findings

Publications of the Public Works Research Institute
Research results of PWRI are published and/or posted on the internet as: Reports of PWRI, PWRI Materials, Joint Research Reports, Monthly Reports of the Civil Engineering Research Institute for Cold Region, etc.

Publications by PWRI
PWRI has published the below books under copyright. These books are available at bookstores.

<table>
<thead>
<tr>
<th>Book title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco-cement Concrete Utilization Technology Manual</td>
<td>Gihodo Shuppan</td>
</tr>
<tr>
<td>Manual for Inspecting Soundness Level of Concrete Structures Using Nondestructive Tests</td>
<td>Gihodo Shuppan</td>
</tr>
<tr>
<td>Collection of Physical and Chemical Information Regarding Human Use Pharmaceuticals</td>
<td>Gihodo Shuppan</td>
</tr>
<tr>
<td>Guideline for Recycling Waste Wood (Draft)</td>
<td>Taisei Shuppan</td>
</tr>
<tr>
<td>Manual of Application Technology of Other Industries Recycled Material in Construction Works</td>
<td>Taisei Shuppan</td>
</tr>
<tr>
<td>Inspection and Maintenance Manual for Ground Anchors</td>
<td>Kajima Publishing</td>
</tr>
<tr>
<td>Manual for Recycling Construction Generated Sludge</td>
<td>Taisei Shuppan</td>
</tr>
<tr>
<td>Soil Pavement Handbook (for Pedestral Pavement)</td>
<td>Taisei Shuppan</td>
</tr>
<tr>
<td>Manual for Landslide Measurements with Insertion Borehole Inclinometer</td>
<td>Rikohtosho</td>
</tr>
<tr>
<td>Manual for Inspection of Concrete Structures by Nondestructive/Micro-destructive Tests</td>
<td>Taisei Shuppan</td>
</tr>
<tr>
<td>Integrated geophysical exploration of levee systems – A Guideline for the application to the safety assessment</td>
<td>Aichi Shuppan</td>
</tr>
<tr>
<td>Shape estimation method of landslides line</td>
<td>Kajima Publishing</td>
</tr>
<tr>
<td>Practical Guide to Water Drainage Boring for Preventing Landslides</td>
<td>Kajima Publishing</td>
</tr>
<tr>
<td>Handbook for Handling Rocks and Soils Containing Naturally-occurring Heavy Metals at construction works</td>
<td>Taisei Shuppan</td>
</tr>
</tbody>
</table>

Application in Standards
Research findings are reflected in new and revised standards for infrastructure.

- River Bureau, Ministry of Land, Infrastructure, Transport and Tourism
 - Preliminary Technical Guidelines for Landslide Investigation and Its Remedies for Reservoirs
 - Guidelines for Seismic Safety Evaluation of Dams for Large Earthquakes (Draft)
- Road Bureau, Ministry of Land, Infrastructure, Transport and Tourism
 - Highway Bridge Specifications and Instruction Manual
- Ministry of the Environment
 - Guidelines for Applying for Offshore Disposal of Waste
 - Guidelines for Topographical Changes to Final Disposal Sites
- Related Organizations
 - Standard Specifications for Concrete Structures etc. Japan Society of Civil Engineers
 - Engineering Bedrock Classification Method, etc. Japanese Geotechnical Society
 - Guidelines and Commentary on Earthquake Proofing Sewage Treatment Facilities, etc. Japan Sewage Works Association
 - River Earthwork Manual etc. Japan Institute of Construction Engineering
 - Manual of Design and Construction of Reinforced Earth Using Geotextiles, etc. Public Works Research Center
 - Electronic Delivery Methods for Geological and Soil Research Findings Japan Construction Information Center

Presentation of Papers
PWRI publishes approximately 1,500 papers each year, including the presentation of papers at international conferences and academic meetings, and the submission of papers for publication in collections of papers and specialist journals. We aim to present high-quality findings, with more than 300 of these papers undergoing peer review before publication.
The “PWRI New Technology showcase” is a seminar event to explain our new technologies. The panels and models are also exhibited at the events. The researchers provide consultation to introduce our new technologies into actual sites. The Showcases are held every year in Tokyo, and a few other cities. In FY2018, 1601 participants attended the Showcase in the five cities, Tokyo, Osaka, Niigata, Naha, and Takamatsu.

On-site seminars are cosponsored in various areas of Hokkaido by the Civil Engineering Research Institute for Cold Region and the Hokkaido Regional Development Bureau so that survey methods and countermeasures in snowy cold regions can be effectively utilized at sites and such seminars contribute to the promotion of development in Hokkaido.
The Public Works Research Institute (PWRI) has been active in conducting research and on-site activities in collaboration with international organizations and research institutes in Asian and other regions. One example is an international project, “Transformation of Urban Management (TA8456 MYA),” in which the International Centre for Water Hazard and Risk Management (ICARM) has been involved since July 2014. The project is led by the Asian Development Bank and specifically developed for Myanmar. Assigned to strengthen the nation’s urban flood management capacity, ICARM has provided local government personnel with training and technical assistance needed to perform flood and storm-surge risk assessment and hazard mapping. ICARM is also involved in a UNESCO-funded project, "Strategic Strengthening of Flood Warning and Management Capacity of Pakistan Phase II." Furthermore, it has been the secretariat of the International Flood Initiative (IFI), a global framework to promote collaboration on flood management with major international organizations such as UNESCO, the World Meteorological Organization (WMO), and the United Nations University. PWRI will continue to plan and implement a wide range of activities in partnership with donor organizations such as the Japan International Cooperation Agency (JICA) and the World Bank.
Human Resource Development

The Public Works Research Institute accepts trainees of civil engineering technology field of more than 300 people every year from Africa, Asia, and Central and South America. We also dispatch a large number of instructors in specialized training of civil engineering that JICA organized to work on human resource development.

In particular, the three parties, ICHARM, the National Graduate Institute for Policy Studies (GRIPS) and JICA jointly launched a one-year Master’s course “Disaster Management Policy Program and water disaster risk management course”. ICHARM also launched a three-years Ph.D. program “disaster prevention science program” with GRIPS.

Overseas Technical Support

As a reply for requests made by JICA, foreign governments, and foreign research institutes, PWRI dispatches engineers to foreign countries, and disseminates technical knowledge and research outcomes of PWRI, depending on the need.

At the end of May 2017, after flooding in Sri Lanka, we investigated the scene as part of a specialist international emergency assistance team. We observed and prevented secondary damage and provided guidance and assistance related to infrastructure recovery and improvement.
Introduction of Facilities

- Tsukuba Central Research Institute
- International Centre for Water Hazard and Risk Management
- Center for Advanced Engineering Structural Assessment and Research
- Innovative Materials Resources Research Center
Introduction of Facilities
Introduction of Facilities

Civil Engineering Research Institute for Cold Region

- Irregular oscillatory water tunnel
- Concrete combined-deterioration accelerating test apparatus
- High-speed hydraulic channel
- Centrifugal force load laboratory
- Low-Temperature Laboratory Examination Machine
- Low-Temperature Laboratory Examination Annex
- Large single-shear testing room
- Multipurpose Low-Temperature Laboratory
- Laboratory Building (1)
- Laboratory Building (2)
- Laboratory Building (3)
- Laboratory Building (4)
- Administration Building

Concrete combined-deterioration accelerating test apparatus
Irregular oscillatory water tunnel
High-speed hydraulic channel
Off-Site Facilities

Ishikari Experiment Site

The Double Fence Intercomparison Reference (at the Ishikari Experiment Site)

Wind tunnel experimental apparatus (at the Ishikari Experiment Site)

Cold-Region Test Track in Tomakomai (Tomakomai City)

Construction Test Field in Tomakomai (Tomakomai City)

Kakuyama Experiment Site (Ebetsu City)

Civil Engineering Research Institute for Cold Region (Sapporo City)

Cold-Region Test Track in Tomakomai

Construction Test Field in Tomakomai

Kakuyama Experiment Site
Lease System of Facilities

PWR leases test facilities and equipment in its possession to national institutions, local governments, universities, public-interest corporations and private research organizations as a rule. There are special civil engineering test machines that are expensive or difficult to maintain properly. Some of the lease-signers are from fields other than civil engineering.

Examples of lease

Civil engineering-related experimental research

Other experiments

Other facilities for lease

- 30 MN large-scale universal testing machine
- Earthquake engineering laboratory
- Current meter calibration channel
- Earth Structure Laboratory
- Differential settlement
- Earthwork experimental laboratory
- Large-scale Geotechnical Dynamic Centrifuge
- Dam hydraulics laboratory
- Pavement test field
- Large-scale box shear test apparatus

- Impact acceleration tester
- Wind tunnel experimental apparatus
- Ishikari hydraulic experimental station
- Wheel tracking test machine
- Ishikari Blowing-Snow Test Field
- Freeze-thaw testing machine
- Raveling testing machine
- Centrifuge
- Incliable channel

Please check our homepage for application procedures, forms and regulations.
Open House

We organize open house for the general public to get to know more about our research. Research institutions, corporate officials, university students and vocational school students as well as the residents of the region who have no contact to our research visit our facilities so they can observe part of our activities. We also accept the facility tour if it is pre-registered.

Public Works Research Institute

The research facilities of Tsukuba, Ibaraki Prefecture, has an open house during “Science and Technology Week (April)” and on the “Civil Engineering Day” (November) in collaboration with the National Institute for Land and Infrastructure Management.

We introduce civil engineering in recent years and the mechanism of disasters through hands-on events and demonstration/experiment. We also introduce special vehicles used in the field in cooperation with Ministry of Land, Infrastructure and Transport Kanto Regional Development Bureau.

At open house in November, we hold the bridge making contest for elementally students with support from the city Board of Education cooperation. We display the bridges which elementally students create.

Civil Engineering Research Institute for Cold Region

CERI in Sapporo, Hokkaido has held open house every year in July since 1983 in conjunction with the “Land, Infrastructure, Transport and Tourism Day”. The purpose of this event is to provide the general public including children with understanding and outreach of our institution’s role, research result and research themes that we are correctly working on.

Every year each team displays unique exhibition and visitors can enjoy and play with hand-on exhibits. We also have the section dedicated to the professional civil engineers.

Aqua Restoration Research Center

In the Aqua Restoration Research Center (Kakamigahara, Gifu Prefecture), guided tours are conducted according to appointments through the year. The purposes of the tours are to propagate knowledges of studies on preservation and conservation of river environment and to advise river management methods.

The tours help you learn practical contents related to the nature-oriented river management, such as importance of river morphology and flow and sediment regimes for riverine organisms, some points in selection of revetment blocks to consider river landscape, and installation methods of crossing structures to consider physical environment in rivers.
CERI is located on the eastern side of the Toyohira River that goes through the center of Sapporo City, in an area called Hiragishi in Toyohira-ku. The institute is about 200 meters north of, or 3 minutes walk from, the Nakanoshima Station on the Namboku Line of the Sapporo City Subway System.

Access

Train

- Rapid train (about 96 minutes)
- JR Sapporo Sta.
- Walk (about 3 minutes)
- Sapporo Sta. on Namboku Line
- Subway (about 10 minutes)
- Nakanoshima Sta. on Namboku Line
- Walk (about 3 minutes)

Highway Bus

- Highway Bus (about 60 minutes)

Car

- Suitable route (about 10 minutes)
- Chitose I.C.
- Hokkaido Expressway (about 25 minutes)
- Kitago I.C.
- Suitable route (about 20 minutes)

Civil Engineering Research Institute for Cold Region

CERI is located on the eastern side of the Toyohira River that goes through the center of Sapporo City, in an area called Hiragishi in Toyohira-ku. The institute is about 200 meters north of, or 3 minutes walk from, the Nakanoshima Station on the Namboku Line of the Sapporo City Subway System.
Public Works Research Institute

Tsukuba Central Research Institute
International Centre for Water Hazard and Risk Management
Center for Advanced Engineering Structural Assessment and Research
Innovative Material and Resource Research Center
1-6 Minamihara, Tsukuba-shi, Ibaraki-ken 305-8516
Phone: +81 29-879-6700
http://www.pwri.go.jp/eindex.html
e-mail: www@pwri.go.jp

Civil Engineering Research Institute for Cold Region
3-1-34 Hiragishi Ichijo, Toyohira-ku, Sapporo-shi, Hokkaido 062-8602
Phone: +81 11-841-1624
e-mail: info@ceri.go.jp