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ABSTRACT

Characterizing atmospheric turbulence and determin-
ing the far-field velocity-pressure relation are impor-
tant for simulation and prediction of extreme wind
loads on structures. In this work, we show some short-
comings of Fourier decomposition and present wavelet
analysis as a better suited technique for charactes-
izing turbulence and modeling velocity-pressure rela-
tion. Examples from full and model scale experiments
are presented. The results show that, with wavelet

- analysis, one could establish an intermittency charac-
ter for atmospheric turbulence and relate low-pressure
peaks to highly turbulent events in the atmospheric
wind.
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1. INTRODUCTION

Over the past thirty years, there has been extensive
research studies to mitigate against wind damage on
structures. The results of many of these siudies have
found their way into building codes and have played
an important role in reducing the extent of damage.
Yet, it is fair to state that more improvements are
needed in order to reduce Josses. A simple comparison
of wind tunnel experiments, code requirements, and
full-scale measurements of pressure coefficients show
a large scatter of data even for the simplest cases.
These discrepancies are mainly due to the lack of con-
sensus which has been hard to obtain because of the
many variables and methods of analysis involved in de-
termining wind loads. In particular, the atmospheric
boundary layer is turbulent and consequently simulat-
ing turbulence characteristics is as important as simu-
lating the mean flow. Moreover, the velocity-pressure
relation is governed by Poissons equation which pre-
dicts that surface pressure is a function of the entire
velocity field. Such equation has linear and nonlinear
terms whereby the mean shear and tur-
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bulence contribute to the pressure. Consequently, two
important questions would be: Is it possible to es-
tablish & model that predicts pressure from mean and
turbulence parameters of the atmospheric wind? If so,
which turbulence perameters should be considered? In
this work, we present wavelet analysis as a suitable
technique that could provide answers to these ques-
tions.

To date, Fourier decomposition has been the main too}
used in the analysis and modeling of atmospheric tus-
bulence and the velocity-pressure relation. The un-
derlying process in Fourier decomposition is the rep-
resentation of a time series, such as wind velocity or
surface pressure, by a set of complex sinusoids. There
are several advantages for such a representation, First,
turbulence scales in the atmosphere can be represented
by frequency components and their energy is obtained
from the power spectrum. Second, estimates of spec-
tral energy in particular frequency bands are statis-
tically independent of the energy estimates in other
bands, Third, for large sets of data, frequency decom-
position can be obtained rapidly with FFT techniques.
Fourth, higher-order moments can be used to deter-
mine nonlinear couplings among spectral components
in one signal or between two signals, such as veloc-
ity and pressure. Finally, the velocity-pressure rela-
tion can be modeled by an input-output system that
accounts for contributions from linear and nonlinear
sources in the velocity fluctuations to the pressure.

The above mentioned advantages made the use of fre-
quency domain analysis for the simulation and model-
ing of atmospheric turbulence and wind loads on struc-
tures very aitractive. Yet, this analysis domain has
many shortcomings which makes it of limited impor-
tance in characterizing wind flows for the purpose of
predicting or simulating extreme wind loads on struc-
tures. The objectives of this paper are three-fold.
The first is to discuss some shortcomings of frequency
domain analysis when used to characterize the wind
events that are of important value in prediction and
simulation of wind loads on structures. The second
is to present wavelet, i.e. time-scale, domain analysis
as an alternative to the traditional frequency decom-
position. In particular, we will show how quantita-



tive information regarding extreme wind loads from
the wavelet analysis can be derived. The third is to
show how such information can be used to experimen-
tally and numerically simulate or predict wind loads
on structures. Examples from full and model scale ex-
periments are presented,

2. SHORTCOMINGS OF FREQUENCY DOMAIN
MODELS OF ATMOSPHERIC TURBULENCE

Models of normalized spectra of the velocity compo-
nents of atmospheric wind have been developed to
characterize energy content of turbulence scales which
are represented by frequency components. The major-
ity of these models are interpolation expressions be-
tween low-frequency and high-frequency asymptotes.
Figures 1-a and 1-b show the time series of fifieen
minutes records of the u- and v-velocity components
obtained from the Wind Engineering Research Field
Laboratory (WERFL) at Texas Tech. The sampling
rate for these records is 10 Hz and the measurements
were taken at an elevation, H, of about 4.0 m. The
corresponding time record of the pressure coefficients
at 2/H = 0.6 and y/H = 0.403 is shown in figure 1-c.
More information about the terrain and experimental
set-up is given in Levitan and Mebta (1991}, Those
records were classified stationary by Smith and Mehta.
A comparison of the power spectral density functions
of these records and their respective analytical models
{Tielemnan (1994)) is given in figures 2-a and 2-b. The
results clearly show that the observed spectra do not
match the analytical models. This mismatch is due to
the fact that, in our estimates of the spectra, no seg-
ment averaging was performed. Because only one seg-
ment was used, the variances of the spectra are equal
to the estimated values. It should be noted here that
when segment averaging was performed over a period
of two hours, the estimated spectra became smooth
and approached the analytical models. Yet, such an
averaged spectra cannot be of any significant use in
simulating or modeling low pressure peaks that take
place over time periods of one to three seconds (see
figure 1-¢). These peaks cannot be related to average
spectra estimated over a two-hour period, These peaks
can only be related to time variations of the energy of
turbulent fluctuations.

3. SHORTCOMINGS OF FREQUENCY-DOMAIN
MODELING OF THE VELOCITY-PRESSURE RE-
LATION '

Several frequency-domain models have been proposed
to establish a relation between incident velocity fluctu-

ations and surface pressure fluctuations. These mod-
els are based on strip or quasi-steady approaches. In
strip theory, the wind pressure is directly-related to
the wind velocity at the same elevation Kawai (1983).
In the linearized quasi-steady theory, the surface pres-
sure fluctuations are considered to be directly pro-
portional to instantaneous velocity and flow direc-
tion Kawai (1983). The modified {nonlinear version
of) quasi-steady theory assumes that the flow is di-
rectly proportional to the squares of the fluctuating
velocity components. Studies conducted to examine
these theories show that, in general, they fail to pre-
dict many of the characteristics of the surface pres-
sure fluctuations. This is especially true in the im-
portant regions of separation, vortex shedding and/or
vortex formation. These results have lead to the idea
of introducing frequency-dependent empirical aerody-
namic admittance functions. Yet, measurements of
these functions show large discrepancies. Often, it is
assumed that these discrepancies arise from nonlinear
effects that were not taken into consideration. In or-
der to determine these effects, we performed analysis
of nonlinear relations between velocity and pressure
spectral components using higher-order statistical mo-
ments {Hajj et al. (1997)).

The extent to which spectral components in two sig-
nals are linearly correlated can be obtained from mea-
surements of the linear coherence. For zero-mean sta-
tionary fluctuations u(t) and p(t), that represent ran-
dom velocity and pressure waveforms, the linear co-
herence function, '}rﬁp, is defined as

AP >< PN >}

where < ... > denotes time averaging and U(f) and
P(f) are the complex Fourier amplitudes of «{f) and
p(t) respectively. As explained by Hajj et al. (1997),
the next higher-order spectral moments to the cross-
power spectrum, namely the cross-bispectrum, can
be used to investigate the nonlinear coupling among
spectral components, with different frequencies, in two
signals. For the velocity and pressure waveforms, the
cross-bispectrum is defined as

Suup(fitfj) =< P(fk)U*(ft)U*(fJ) > (2)

where fi is the algebraic sum of f; and f;. As defined
here, the cross-bispectrum .is a function of two fre-
quency components and measures the degree of coher-
ence among modes with frequencies fi in the pressure
spectrum and f; and f; in the velocity spectrum. If the



three modes are independent, their phases are statis-
tically independent and subsequently, the phase of the
cross-bispectrum is randomly distributed. The averag-
ing, indicated in equation (2) by < ... >, yields a zero
value for the cross-bispectrum. On the other hand, if
the three modes are nonlinearly related, a phase co-
herence will exist among them and the averaging will
result in a nonzero value for the cross-bispectrum. The
normalized value of the cross-bispectrum is termed the
cross-bicoherence and is given by

[Suup(fs‘: fj)z (3)
< WU >< 1Pl >

and, by Schwartz inequality, varies between zero and
one,

bgup(fir f:?) =

In order to assess the extent of the nonlinear rela-
tion between spectral components of the velocity and
pressure fluctuations, simultaneously measured veloc-
ity and pressure fluctuations were obtained from the
Clemson wind-tunnel. The experimental model is a
1/50 scale of the experimental building at WERFL.
Details of the experimental setup are given in Hajj
et al. (1996). The wind tunnel data was chosen be-
cause higher-order statistical analysis require long data
records that are stationary. Such data could not be
obtained from full scale measurements. Spectra of the
u-velocity component of the incident flow and of the
pressure fluctuations at the corresponding point on the
roof surface and the linear coherence between the two
signals are shown in figures 3 and 4, respectively. The
resulting pressure spectra show two broadband peaks
around fH/U = 0.02 and 0.5. The linear coherence
measurements reveal that only the very low-frequency
band (fH/U < 0.01} in the velocity and pressure are
linearly correlated. Beyond this band there is no indi-
cation of any linear coherence. By comparison of fig-
ures 3 and 4, the range of frequencies where relatively
high velocity-pressure coherence occurs contains only
a small portion of the spectral energy. Figure 5 shows
contour plots of the cross-bicoherence between the ve-
locity and pressure fluctuations. The results show that
a low level of bicoherence is measured among all pairs
of frequency components for the velocity and the pres-
sure fluctuations. Such a low level (<0.1) shows that
there is no direct nonlinear coupling between the fre-
quency components in the pressure and the far-field
velocity fluctuations.

The above results show that, while low-frequency com-
ponents (fH/U < 0.01) in the incident turbulence
and pressure fluctuations are linearly coupled, the rel-
atively higher frequency components, which contain

energy, are not coupled. These results are true for
different angles of incidence and different flow config-
urations. Measurements of the cross-bicoherence show
that the nonlinear effects are not the major cause for
the low linear coherence in the high frequency range.
These results show that the relation between frequency
components of the incident velocity and pressure fluc-
tuations is not direct and cannot be quantified. This
is mainly due to segment averaging and elmination of
temporal information.

4. DEFINITIONS AND IMPLEMENTATION PRO-
CEDURES AND WAVELET DOMAIN ANALYSIS

As discussed in the previous section, one major short-
coming of frequency domain analysis is that it does
not provide temporal information. Such information
can be obtained from short-time Fourier transform or
the Gabor transform. However, it is proposed to use
wavelets for two reasons. First, the wavelet analy-
gis has the advantage of providing a better time-scale
resolution. A short-time Fourier transform uses a sin-
gle analysis window. Consequently, the time-frequency
resolution is fixed over the entire time-frequency plane.
In contrast, the wavelet transform uses short win-
dows at high frequencies and long windows at low
frequencies. Because wind velocity components can
contain low-frequency components over long durations
and relatively high-frequency components of short du-
ration, wavelet analysis is a more suitable technique
than Fourier analysis. Second, while frequency analy-
sis is performed by projecting a signal onto a number
of sinsoids which are infinite in extent, wavelet anal-
ysis is performed by projecting the signal onto a set
of highly localized basis functions. These basis func-
tions are called wavelets and are obtained from a single
“mother” wavelet by dilations and translations. Thus,
in wavelet analysis, the notion of a scale replaces that
of frequency which leads to the so-called time-scale
representation. Because it is localized in time, a scale
representation is more suitable than a frequency rep- -
resentation for examining temporal characteristics of
iurbulence.

Given a time signal, f(t), its continuous wavelet trans-
form is defined as

W(a,7) =< £(0) b >= | ‘: Feydt, (@)

with

a

Yor = a4 ("" - ) , %)



where 1, is a function called a wavelet, a is a dilation
parameter, 7 is a translation or shiff parameter and
the * denotes complex conjugate, when the wavelet is
complex. The wavelet transform coefficients, W(a, 1),
represent the contribution of scales ¢ to the signal at
time, . Wavelet energy is defined from the wavelet
coefficients as WW"*. From Farge (1992}, a wavelet
energy density (energy per scale size) can be defined
as WW*/a. When integrated over time, the wavelet
energy density yields the global wavelet energy spec-
trum which gives the energy content at that scale.

In the following, we use a complex Morlet mother
function which is given by

P(t) = exp(iw¢t)exp(m!t12/2), ()

where wy is a constant that forces the wavelet to be ad-
missible, i.e., it possess an inverse transform, the com-
plex Morlet wavelet has been shown to have several
advantages over real wavelet functions. The digital
implementation of the continuous wavelet transform
is a discrete convolution between the sampled time se-
ries and sampled versions of the analyzing wavelet at
all scales. All scaled versions of the complex Morlet
wavelet were sampled with enough samples to avoid
aliasing and the convolutions were performed in the
frequency domain using the FFT. A relationship can
be established between the wavelet scale and the peak
frequency, fp, of the scaled wavelet bandpass filter.
In our implementation procedure, this relationship is
given by 290
=22 ")
Forty-seven values of a were spaced logarithmically to
cover a frequency range from 2.9 Hz to about 0.022 Hz.
The large scale cut-off was determined by the number
of points in the sampled time series. More information
about the application of wavelet analysis to the study
of turbulence is given in {Farge, 1992).

5. CHARACTERIZATION OF ATMOSPHERIC
TURBULENCE WITH WAVELETS

Contour plots of the wavelet energy density of the u-
and v- velocity components in figures I-a and 1-b are
shown in figures 6-a and 6-b. The axes are time in
seconds and the natural log of the scale, a. The plots
show that scales corresponding to frequencies below
0.15 Hz contribute significantly but intermittently to
the signal. Such contribution is seen in the high peaks
at various times. The plots also show the presence of
smaller scales indicated by the streaks. These scales

correspond to the frequency range between .25 and 1.0
Hz. By examining time records of the velocity compo-
nents in the atmospheric wind it can be noticed that
the fluctuations are intermittent. By intermittency, we
mean that the energy is not evenly distributed in time
or space, Farge (1992); Following Townsend (1956),
we define an intermittency factor as the percentage of
time a measuring device sees the variable in its higher
amplitude state.

Because turbulence fluctuations contain different time
scales, we have opted to examine the intermittency of
the whole time record. In order to estimate the per-
centage of time where these scales are in their higher
amplitude state, it is necessary to define a thresh-
old value and time of integration of energy. Here,
the threshold is defined as twice the average emergy
content of that scale. The time of integration of a
scale is taken to be equal to the inverse of the peak
frequency of the magnitude of the Fourier transform
of the wavelet. It must be recognized that the mea-
sured intermittency factor is dependent on the choice
of threshold. However, varying the threshold value be-
tween 1.5 and 2.5 times the average did not cause sig-
nificant variations in the measured intermittency fac-
tor. Once intermittent peaks in the wavelet transform
energy were located, the total energy in these peaks
were calculated. Figures 7-a and 7-b show the inter-
mittency factor and percentage of energy content in
the peaks of wavelet transform energy of the u- and v-
velocity components shown in figures 1-a and 1-b, The
results show that all scales are intermittent, i.e. energy
is not distributed evenly in time. The measured inter-

mittency factor, for both u- and v-components, varies

around 0.12 for the smaller scales (In a < 3.9) and is
slightly higher, up to 0.2, for the larger scales. Another
feature is the percent of energy contained in these in-
termittent peaks. For the larger scales, the amount is
40 to 50%. These results imply that up to 50% of the
total energy of these scales appears over less than 20%
of the time.

6. WAVELET ANALYSIS THE VELOCITY-
PRESSURE RELATION

In order to better assess the velocity-pressure relation,
the wavelet cross scalogram of the continuous wavelet
coefficients, W, W, is used. The cross scalogram gives
peaks where fluctuations from two time series fluctuate
at the same time and same scale. H fluctuations do
not appear at the same time and same scale, the
magnitude of the cross-scalogram is very low. Figures
8-a and 8-b show the u — p and v — p cross-scalograms



for the records shown in figures I-a, 1-b, and 1-
¢. The large peak in the u — p and v — p cross
scalograms appears at times between 450 and 550
seconds By comparison of the v — p and v — p cross
scalograms with the pressure time series, figure 1-c, it
is noticed that the pressure peaks at ¢ near 480 and
520 have their origin most probably in turbulent events
in u— and v— velocity components. These resulés
suggest the v- component of the velocity is important
to the occurrence of peak pressures and should not
be disregarded. Furthermore, the cross scalogram
results suggest that there is a clear relation between
the time-localized fluctuations of u- and wv-velocity
components and the pressure peaks. In particular,
peaks in pressure are associated with fluctuations at
the same scale and time as the velocity fluctnations
from which they originate.

7. CONCLUSIONS

The above results show that wavelet analysis is better
suited than Fourier decomposition for the characteri-
zation of atmospheric turbulence events and modeling
the velocity-pressure relation. With wavelet analysis,
we are able to show that:

Atmospheric turbulence is highly intermittent. Up to
60% of the energy of large and intermediate scales
appears over less than 20/time.

The peaks in the energy distribution of the velocity
fluctuations are related to low pressure peaks observed
in the pressure coefficients.

Simulation of these events, along with Reynolds num-
ber, mean flow parameter, geometry and turbulence
intensity, in wind tunnel experiments or in numerical
analysis will improve the prediction of peak pressure
coefficients.

Both u- and »- turbulence characteristics should be
considered in the simulation.

While the wavelet analysis has been applied for the
purpose of improving the analysis and simulation of
wind loads on low-rise structures, such analysis can
be used to characterize the response of bridges and
tall buildings to wind forces. Using wavelet analy-
sis, higher-order statistical analysis, perturbation tech-
niques or a combination of them should improve signif-
icantly the undestanding of the dynamical behavior of
structures subject to wind forces. One example on the
modeling and identification of damping and nonlinear

parameters of a three-beam structure with the use of
the above techniques is given by Hajj et al (1995).
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Figure 1-a: Time trace of the
u-componert of atmospheric wind,
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Time (5)

Figure 1-b: Time trace of the
v-component of atmospheric wind.
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Time (8)
Figure I-c: Time trace of the corresponding
pressure coefficient at y/H = (.318.
(normal incidence)
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Figure 2-a: Observed and model spectra
of the u-component of atmospheric wind

: ' T 13 llf[l'l 1 L L LLITL 3 Ererdredrebd.
025 Eevoonnnnen i, ........... % ........ Cbserved
3 ; ,"\ i Model
y 02 R
<
£ 0185 Forpee e et e e s
]
Lol Y, [ Y ORI NESUR. \ N S
0'05 .........................
0 AT AN ETIT BN R U TTIT Al A W TTT,
0.001 .01 0.1 1 10

fH/U

Figure 2-b: Observed and model spectra
of the v-component of atmospheric wind



f S{hVar

0.4 1 1 1 El[ll! LI illlll
o : i Velocity (u)
03 E’“"‘"? - =~ =~ Pregsure
% o !
5 ! vA :
0.2 -‘ :
0.1
0 L.t ll!lli dodod 401
0.001 0. 01 1 10

Figure 3: Spectra of the u~component and
pressure from the Clemson tunnel.

Figure 4: Linear coherence between spectral components of
the u-component of the velocity and pressure fluctuations.
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Figure 6-a: Wavelet energy density of the
u-component of atmospheric wind (figure 1-a2).

Figure 6-b: Wavelet energy density of the
v-component of atmospheric wind {figure 1-b).
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content of the u-component of atmospheric wind. content of the v-component of atmospheric wind.
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Figure 8-a: Cross scalogram of the wavelet coefficients
of the u-component and pressure (figures 1-a and 1-¢),

Figure 8-b: Cross scalogram of the wavelet coefficients
of the v-component and pressure (figures 1-b and 1-).



