TSUNAMI AND STORM SURGE CHARACTERISTICS BASED ON LONG-TERM TIDE OBSERVATIONS bу Toshihiko NAGAI¹⁾, Kazuteru SUGAHARA¹⁾, Hiroshi WATANABE¹⁾, Koji KAWAGUCHI¹⁾, Masahiro MIHARA²⁾, and Katsumi TAKASHIMA³⁾ ### ABSTRACT Based on the 38-year tide observation records digitized every hour between 1958 and 1995, long waves-characteristics including Tsunamis and Storm surges were investigated. Long-waves with double amplitudes greater than 15cm were observed for 180 cases during the 38 years including 4 tsunamis. Key Words: Tide Observation, Long Waves, Tsunami ## 1. INTRODUCTION This paper presents the analysis of observed long-term tide data; to clarify profiles of long-waves including tsunamis and storm surges. (Nagai.et.al., 1996) # 2. TIDE OBSERVATIONS AND DATA ANALYSIS 38 years of tide data, between 1958 and 1995, obtained at the Kurihama-Tide-Station were analysed. The station is located at the entrance of the Tokyo-Bay (N35° 13'28", E139° 43'27"), and employs the Fuse type tide gauge with a well. Figure 1 and 2 shows location of the tide station. Photo 1 shows the Fuse type tide gauge. The tide well is connected to the sea with a tube as the Figure 3 shows. The tube of the diameter 131mm works as a low-pass-filter by omitting the high frequency sea level fluctuations caused by wind waves. Observed data were recorded on an analog recorder for the entire observation term. All the data were digitized every hour in order to calculate the mean sea level and the harmonic components. #### 3. LONG-WAVE RECORDS Figure 4 shows the observed long-waves with the heights (double amplitude) greater than 15cm. Among these 180 cases, 4 casese were tsunamis, and the others were caused by weather disturbances. Table 1 shows joint distribution between double amplitudes and periods of the observed long waves. Observed periods were either between 2-3 minutes or 15-20 minutes, which corresponds to the local topographical resonance periods of the two different modes, except the 1960-Chile-Tsunami event with periods of around 80 minutes. - Hydraulic Engineering Division, Port and Harbour Research Institute, Ministry of Transport 3-1-1, Nagase, Yokosuka 239-0026, Japan TEL:+81-468-44-5017 FAX:+81-468-42-5246 - ECOH Co. 2-6-4. Kita-Ueno, Taito, Tokyo 110-0014, Japan - TEL:+81-3-5828-2185 FAX:+81-3-5828-2176 - Coastal Ocean Research Co. 3-21-1, Shimo-Ochiai, Shinjuku-ku, Tokyo 161-0033, Japan - TEL:+81-3-3950-3740 FAX:+81-3-3951-9171 # 4. THE 1960-CHILE-TSUNAMI PROFILES Figure 5 shows the observed 1960-Chile-Tsunami profiles by digitizing with a shorter interval, every 36s. The lower figure shows the observed water surface level with astronomical tides, while the upper figure shows the tsunami profiles by omitting lower frequency astronomical tide components. The marks ①,②,③,④, and ①',②',③',①',⑤',①',⑥',⑦',⑥' mean the data terms for frequency spectra analysis. Frequency spectra analysis was conducted with different record lengths 1024, 2048, 4096, and 8192 data points, which corresponds to the sampling length of 10h, 20h, 40h, and 80h, respectively, as the Figure 6 shows. The results showed that the peak frequency of the tsunami was 0.0002Hz, and the second peak was at 0.001Hz. This second peak corresponded to the local topographic resonance frequency. The ratio of the second peak and the first peak increased with time. The results of this study provided more detailed tsunami spectra information than the previous study conducted in 1960's. (Hatori, 1969) # 5. THE 1996-IRIANJAYA-TSUNAMI PROFILES The frequency response of the well, connected with a tube to the sea water, was investigated at the occasion of the 1996 Irianjaya-Tsunami event by comparing the tide gauge data with the ultra-sonic direct sea surface elevation data. Photo 2 shows the Ultra-sonic direct sea surface measurement equipment. Figure 7 is the tsunami profiles including the NOWPHAS offshore wave gauges continuous records (Nagai et.al. 1994), the low-pass-filtered Fuse type tide gauge records, and the ultra-sonic direct sea surface elevation records. The NOWPHAS offshore wave gauge is located 50km off the tide station near the Izu-Ohshima Island. (water depth 50 m, N 34° 40'23", E 139° 27'19") Figure 8 shows the results of the spectra analysis of the three records of the Figure 7. The peak frequency of the tsunami was 0.001Hz, near to the local topographic resonance frequency. The responce function indicates that the tsunami was amplified in the Kurihama Bay due to the topographic resonance. Figure 8 also proves that for longer period waves, greater than 5 minute periods, ratio is almost 1.0 between the two records of the low-pass-filtered Fuse type one and the direct sea surface elevation one. ## 5. STORM SURGE RECORDS Harmonic analysis was conducted for every year from the hourly based observed data, and the 28 components' amplitudes and phases were obtained. Table 2 shows the results of the 4 principal components of M2 (period of 12.42h), S2(12h), K1(23.934h), and O1(25.819h). Z0 values defined as the sum of the amplitudes of the 4 components are also shown. In addition to the each year's calculated 4 components and the ZO value, maximum, minimum, and average amplitudes and the standard deviation (S.D.) are shown in Table 2. The 4 components' amplitudes fluctuations were small with the standard deviation less than 1%. Nevertheless, amplitudes of the longer period components such as Sa(1year) and SSa(0.5year), showed much larger fluctuations. Astronomical tide was calculated from the 28 harmonic tide components' amplitudes and phases, and storm surge (meteorological tide) level was obtained as the difference between the observed tide and calculated one. Table 3 shows the records of the 40 highest storm surges during the 38 years with the meteorological cause. Figure 9 shows an example of the storm surge records. ### 6. CONCLUDING REMARKS Interesting facts related to the tsunami and long-wave profiles were found from the analysis of long-term tide records. It is desirable to apply these methods of analysis to additional tide stations, and to compare the results, in order to obtain more precise information. Efforts are now underway to establish a digital network system of tide data stations, with the cooperation of the concerned organizations. (Nagai, et. al., 1994) ### REFERENCES Hatori, T. (1969): Analysis of Oceanic Longperiod Wave at Hachijo Island, Bull. Earthq. Res. Inst. Univ. Tokyo, Vol. 47, pp. 863-874 Nagai, T., Sugahara, K., Hashinoto, N., Asai, T., Higashiyama, S., and Toda, K. (1994): Introduction of Japanese NOWPHAS System and its Recent Topics, Proc. of HYDRO-PORT'94, PHRI, pp. 67-82 Nagai, T., Sugahara, K., Watanabe, H., and Kawaguchi, K. (1996): Long Term Observations of the Mean Tide Level and Long Waves at the Kurihama-Bay, Rept. of PHRI, Vol. 35, No. 4, pp. 3-35 Photo 1 Fuse Type Tide Gauge Photo 2 / Ultra-Sonic Direct Sea Surface Figure 1 Location of the Tide Station (1) Figure 2 Location of the Tide Station (2) Figure 3 Structure of the Tide Well Figure 4 Observed Long-Waves Table 1 Joint Distribution of the Observed Long Waves | Double Amplitude | Perio | Total | | | |------------------|-------|-------|----------|------| | (cm) | -10 | 10-20 | 20- | | | 15 - 20 | 17 | 80 | 0 | . 97 | | 20 - 25 | 17 | 22 | + | 40 | | 25 - 30 | 12 | 7 | 1 | 20 | | 30 - 40 | 6 | 4 | 0 | 10 | | 40 - 50 | 6 | 1 | 0 | 7 | | 50 -100 | 5 | 0 | 0 | 5 | | 100 - | 0 | 0 | 1 | 1 | | Total | 63 | 114 | 3 | 180 | Figure 5 1960-Chile-Tsunami Profiles Figure 6 Spectra Analysis of the 1960-Chile-Tsunami Figure 7 Comparison of the Observed 1996-Irianjaya-Tsunami Profile Table 2 Results of the Harmonic Analysis | · | <u> </u> | M2 | | S2 | | KI | | 01 | ZO | |-------|-----------|----------|-----------|----------|--------------------|-----------|-----------|-----------------|----------| | Year | amp. (cm) | pha. (°) | amp. (cm) | | amp. (cm) | pha. (°) | amp. (cm) | | (cm) | | 1958 | 35. 851 | 147. 174 | 17. 103 | 175. 561 | 23, 259 | 176. 155 | 18.653 | 0157.503 | 94. 866 | | 1959 | 36. 283 | 148, 890 | 17.400 | 177.502 | 23. 322 | 175. 840 | 18. 336 | 158, 489 | 95. 341 | | 1960 | 36. 359 | 149.025 | ☆ 17.492 | 177. 282 | 22. 985 | 175. 924 | 18.453 | 157, 851 | 95. 289 | | 1961 | 36. 657 | 148.703 | 17. 255 | 177, 196 | 23. 558 | 176. 107 | 18.390 | 158, 695 | 95. 860 | | 1962 | 36. 409 | 148, 588 | 17, 283 | 176. 549 | 23. 367 | 176. 397 | 18.461 | 158. 798 | 95. 520 | | 1963 | 36, 613 | 148, 305 | 17.155 | 176. 745 | 23. 839 | 177. 234 | 18 608 | 158.830 | 96. 215 | | 1964 | 36. 322 | 147. 703 | 17. 273 | 176. 151 | 23. 758 | 177. 406 | 18.832 | 158. 756 | 96, 185 | | 1965 | ☆ 36.684 | 147.691 | 17. 360 | 176. 240 | 23. 836 | 177, 252 | 18.741 | | ☆ 96.621 | | 1966 | 36. 111 | 147. 768 | 17.089 | 176, 167 | 23. 330 | 176. 683 | 18.553 | | 95. 083 | | 1967 | 36. 135 | 148. 356 | 17. 311 | 176. 840 | 23. 441 | 177. 708 | 18.361 | 159.506 | 95. 248 | | 1968 | 36. 022 | 148. 286 | 17. 300 | ☆177.755 | 23, 665 | 177. 742 | 18.737 | 159. 494 | 95. 724 | | 1969 | 35. 872 | 148.018 | 17. 195 | 176, 796 | 23. 365 | 177.056 | 18.606 | 158, 766 | 95. 038 | | 1970 | 36. 106 | 148, 227 | 17. 241 | 176. 343 | 23. 527 | 177. 685 | 18.519 | 159, 058 | 95. 393 | | 1971 | 35, 934 | 148.554 | 17. 143 | 177. 036 | 23. 533 | 177. 778 | 18.400 | 158. 878 | 95.010 | | 1972 | - 35, 717 | 148, 323 | 17. 202 | 177. 354 | 23. 216 | 176. 795 | 18.342 | 159.066 | 94. 477 | | 1973 | 35. 968 | 147.557 | 17, 210 | 176. 490 | 23. 482 | 177. 142 | 18.725 | 158. 799 | 95. 385 | | 1974 | 35, 932 | 148, 005 | 17. 329 | 177. 023 | 23. 483 | 177. 646 | 18.638 | 158. 196 | 95. 382 | | 1975 | 35. 765 | 148, 623 | 17. 208 | 176. 858 | 23. 306 | 177. 203 | 18.410 | 159. 367 | 94. 689 | | 1976 | 35. 881 | 148. 163 | 17. 170 | 177. 034 | 23. 118 | 176, 123 | O 18, 247 | 158. 766 | 94.416 | | 1977 | 36. 143 | 147. 877 | 17.160 | 176, 725 | 23. 240 | 176. 045 | 18.789 | 158, 331 | 95. 332 | | 1978 | 36. 215 | 148. 242 | 17. 118 | 176. 825 | 23. 452 | O175, 720 | 18, 473 | 157. 551 | 95. 258 | | 1979 | | ☆149.297 | 17.078 | 177. 653 | 23. 353 | 176, 711 | 18.342 | 158.068 | 94.930 | | 1980 | 36, 073 | 148.018 | 17, 009 | 176.002 | 23. 552 | 177.001 | 18, 533: | 158. 661 | 95. 167 | | 1981 | 36. 488 | 147. 103 | | 0174.517 | 23. 581 | 177. 594 | 18.504 | 159. 102 | 95. 804 | | 1982 | 35. 873 | 148.513 | 17. 115 | 176. 502 | 23. 398 | 176. 664 | 18.517 | 159, 451 | 94.903 | | | O 35, 610 | | 16.968 | 176. 335 | 23. 333 | 176. 854 | 18.558 | 158, 549 | 94. 469 | | 1984 | 35. 982 | 147, 877 | 17.340 | 176. 165 | 23. 688 | 177. 357 | 18.532 | 158. 382 | 95. 542 | | 1985 | 35. 881 | 148.448 | 17. 214 | 176, 760 | 23. 722 | 177. 825 | | ☆159.536 | 95. 506 | | 1986 | 36. 246 | 148.788 | 17. 301 | | | ☆178.198 | | 159. 474 | 96. 497 | | 1987 | 36. 051 | 149.077 | 17. 191 | 177.094 | 23. 431 | 176. 478 | 18.579 | 158. 408 | 95. 252 | | 1988 | 36. 169 | 148. 087 | 17. 409 | 176. 662 | 23. 436 | 177: 100 | 18.516 | 158. 727 | 95. 530 | | 1989 | 35. 967 | 147. 579 | 17. 229 | 175. 407 | 23. 611 | 177. 118 | 18.546 | 159. 232 | 95. 353 | | 1990 | 35. 739 | 147. 573 | 17. 240 | 176. 442 | 23. 178 | 176, 204 | 18. 633 | 158. 962 | 94.790 | | 1991 | 35. 698 | 147. 228 | 17. 261 | 175. 832 | 23. 680 | 176. 978 | 18.819 | 158. 129 | 95. 458 | | 1992 | 35. 848 | 147. 281 | 17. 380 | 175. 770 | 23. 464 | 176. 785 | 18, 598 | 158. 040 | 95. 290 | | 1993 | | 0146.524 | 17. 165 | 175. 275 | 23. 583 | 176. 723 | 18.572 | 158. 205 | 95. 231 | | 1994 | 35. 761 | 147. 616 | 17. 147 | 175. 612 | 23. 519 | 176. 296 | 18.759 | 158. 445 | 95. 186 | | 1995 | 35. 867 | 147. 550 | 17. 177 | 175. 608 | 23. 545 | 176. 611 | 18.909 | 157. 870 | 95.498 | | mean | 36, 061 | 148.078 | 17. 222 | 176. 500 | 23. 476 | 176. 898 | 18, 576 | 158. 653 | 95. 335 | | S. D. | 0. 268 | 0.6 | 0.11 | 0.697 | 0.204
☆: maximu | | | 0.533 | 0.492 | ☆: maximum, ○: minimum, S.D. : Standard deviation Figure 8 Observed Spectra of the 1996-Irianjaya-Tsunami Table 3 Storm Surge Records | | Year/Mon/Day | Maximum Tide | Primary Factor | |-----|----------------|---------------------------------|----------------| | NO | Time | Diviation(cm) | 112 | | 1 | 79/10/19 16:00 | 5 1 | Typhoon7920 | | 2 | 58/ 7/23 9:00 | 4 7 | Typhoon5811 | | 3 | 82/ 9/12 22:00 | 4 2 | Typhoon8218 | | 4 | 70/ 1/31 9:00 | 4 1 | Low Pressurae | | 5 | 85/ 7/ 1 3:00 | 4 1 | Typhoon8506 | | 6 | 67/ 9/15 2:00 | 4 1 | | | 7 | 58/ 9/18 8:00 | 3 8 | Typhoon6722 | | | | 3 7 | Typhoon5821 | | 8 | 59/ 9/26 23:00 | | ※ Typhoon5915 | | 9 | 69/ 8/23 15:00 | | Typhoon6909 | | 10 | 58/12/26 16:00 | 3 6 | Low Pressurae | | 11 | 66/4/16 14:00 | 3 6 | Low Pressurae | | 12 | 91/10/13 8:00 | 3 6 | Typhoon9121 | | 13 | 86/12/19 7:00 | 3 6 | Low Pressurae | | 14 | 91/ 2/16 6:00 | 3 6 | Low Pressurae | | 15 | 89/8/6 7:00 | 3 5 | Typhoon8913 | | 16 | 77/ 9/19 20:00 | 3 5 | Typhoon7711 | | 17 | 72/ 2/27 15:00 | 3 4 | Low Pressurae | | 18 | 83/ 3/13 16:00 | . 3 4 | Low Pressurae | | 19 | 90/12/ 1 4:00 | 3 4 | Typhoon9028 | | 20 | 87/ 9/18-16:00 | 3 4 | Typhoon8713 | | 21 | 79/10/-1:14:00 | 3 2 | Typhoon7916 | | 22 | 67/10/28 15:00 | 3 2 | Typhoon6734 | | 23 | 91/ 9/19 16:00 | 3 2 | Typhoon9118 | | 24 | 75/ 8/23 18:00 | 3 2
3 2 | Typhoon7506 | | 25 | 62/10/30 17:00 | 3 2 | Typhoon6224 | | 26 | 69/4/56:00 | 3 2
3 2
3 2
3 2
3 2 | Low Pressurae | | 27 | 75/10/ 8 7:00 | 3 2 | Low Pressurae | | 28 | 65/11/ 9 16:00 | 3 2 | Low Pressurae | | 29 | 88/10/ 7 3:00 | 3 1 | Low Pressurae | | 30 | 90/11/10 11:00 | 3 1 | Low Pressurae | | 31 | 65/6/4 7:00 | 3 1 | Typhoon6508 | | 32 | 68/10/26 9:00 | 3 1 | Typhoon6819 | | 33 | 82/10/20 7:00 | 3 1 | Low Pressurae | | 34 | 90/11/ 4 17:00 | 3 1 | Low Pressurae | | 35 | 58/ 3/18 16:00 | 3 0 | Low Pressurae | | 36 | 85/ 2/21 17:00 | 3 0 | Low Pressurae | | 37 | 64/ 5/25 17:00 | 3 0 | Low Pressurae | | 38 | 80/ 5/ 9 11:00 | 3 0 | Low Pressurae | | 39 | 80/12/26 19:00 | 3 0 | Low Pressurae | | 40 | 93/10/4 7:00 | 3 0 | Low Pressurae | | 110 | US/10/ T 1:00 | <u></u> | |