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ABSTRACT 
This paper presents an analysis of the force 
reduction factors used in the force-based seismic 
design of structures. The force reduction factors 
are evaluated based on 70 free-field ground 
motions. Scattering of the force reduction factors 
depending on ground motions and the effect of  
damping rations assumed in linear and nonlinear 
responses are clarified. A new formulation of the 
force reduction factors is presented. 
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1.  INTRODUCTION 
 
In the force based seismic design, it is usual to 
estimate the demand from a linear response of a 
structure by dividing it by the force reduction 
factor. The force reduction factor or response 
modification factor, which is often called q-factor 
or R-factor, has an important role in the estimation 
of design force of a structure. An early study by 
Newmark and Hall (1973) revealed the fact that 
the equal displacement assumption and the equal 
energy assumption provide a good estimation of 
the force reduction factors at long and short 
periods, respectively. This affected an important 
effect to seismic design criteria worldwide. 

Various researches such as Nassar and Krawinkler 
(1991) and Miranda and Bertero (1994) have been 
conducted on the force reduction factors. In 
particular, Miranda and Bertero provided a 
detailed review on the force reduction factors.  

However, in spite of the importance in seismic 
design, less attention has been paid to large 
scattering of the force reduction factors depending 
on ground motions. Since the scattering is so large, 
only the mean values of the force reduction factor 
is not sufficient to evaluate a force reduction 
factor for design. Assumption of damping ratio for 
evaluating the linear and nonlinear responses is 
another important point. Although it has been 
general to assume the same damping ratio for the 
linear and nonlinear responses, it depends on how 
the force reduction factors are used. 

This paper present an analysis on the force 
reduction factors based on 70 free-field ground 
motions. The scattering of the force reduction 
factors depending on ground motions and the 
effect of assumption of damping ratios in linear 
and nonlinear responses are clarified.  
 
 
2.  DEFINITION OF FORCE REDUCTION 

FACTOR 
 
If one idealizes a structure in terms of a 
single-degree-of-freedom (SDOF) oscillator with 
an elastic perfect plastic bilinear hysteretic 
behavior as shown in Fig. 1, the force reduction 



factor µR  may be defined as 
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in which T : natural period, EL
RF and NL

YF : 
maximum restoring force in an oscillator with a 
linear and a bilinear hysteresis, respectively, Tµ : 
target ductility factor, and ELξ  and NLξ : 
damping ratio assumed in the evaluation of linear 
and bilinear responses, respectively. The natural 
period T  may be evaluated based on the cracked 
stiffness of columns. Representing yu  the yield 
displacement where the stiffness changes from the 
cracked stiffness to the post-yield stiffness, a 
target ductility factor Tµ  may be defined based 
on the yielding displacement yu  as 

y
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in which Tumax  is a target maximum 
displacement of an oscillator. The post-yield 
stiffness is assumed to be 0 in the present study. 

Since the damping controls structural response, 
it has to be clarified carefully. A structure under a 
strong excitation generally exhibits strong 
hysteretic behavior, and this results in an energy 
dissipation in a structure. For example, the 
flexural inelastic deformation of columns 
contributes to energy dissipation in a bridge. 
Hence, the evaluation of damping ratio depends 
on the idealization of such an energy dissipation. 

If one idealizes the energy dissipation in nonlinear 
structural components by incorporating nonlinear 
elements that represent the hysteretic behavior, the 
energy dissipation in the nonlinear structural 
components is automatically included in the 
analysis. On the other hand, if one idealizes the 
nonlinear structural components by elastic linear 
elements, the energy dissipation in the nonlinear 
structural components has to be included in the 
analysis by other means. The equivalent viscous 
damping ratio hξ  is generally used for such a 
purpose as 
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in which W∆  and W  represent an energy 
dissipation in a hysteretic excursion and the 
elastic energy, respectively. For example, in an 
oscillator with an elastic perfect-plastic bilinear 
hysteresis, the equivalent damping ratio hξ  is   

µ
µ

π
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Fig. 2 shows the equivalent damping ratio by 
Eq. (4). It is generally very large such as 0.4 at the 
target ductility factor of 3-5. 

In addition to such hysteretic energy 
dissipation, there must be some other sources of 
energy dissipation (for example, Kawashima, 
Unjoh, Tsunomoto 1993). The radiation of energy 
from a foundation to surround ground contributes 
to energy dissipation. Structural damping such as 
friction at connections may be important in many 
structures (for example, Kawashima and Unjoh 
1989). Viscous damping due to friction with air is 
generally predominant in a structure with a long 
natural period. It is general to idealize those 
sources of energy dissipation in terms of the 
equivalent viscous damping.  

If one considers a structure in which the 
flexural hysteretic energy dissipation is 
predominant with other sources of energy 
dissipation being a secondary importance, the 
total damping ratio eqξ  of a SDOF oscillator 
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Fig. 1 Definition of Force reduction Factor 



may be provided as 
othheq ξξξ +=           (5) 

in which hξ  is the damping ratio that accounts 
the hysteretic energy dissipation by Eq. (3), and 

othξ  is the damping ratio that accounts the energy 
dissipation other than the hysteretic energy 
dissipation. 

In the evaluation of the force reduction factor 
µR  based on Eq. (1), how damping ratios are 

assumed in the evaluation of the linear and the 
nonlinear responses is important. If one assumes 
the damping ratios as 

eqEL ξξ =  and othNL ξξ =     (6) 
the energy dissipation is essentially the same 
between the linear and the nonlinear responses. 
Hence, the force reduction factor by Eq. (1) 
represents the difference of restoring force 
between the linear and nonlinear responses. Thus, 
Eq. (1) reflects the effect of nonlinear response of 
an oscillator.  

On the other hand, if one assumes the damping 
ratios as 

eqNLEL ξξξ ==            (7) 
or, 

othNLEL ξξξ ==           (8) 
the force reduction factor by Eq. (1) includes the 
effect of different energy dissipation between the 
linear and nonlinear responses, in addition to the 
effect of nonlinear response. By assuming Eq. (7) 
in the evaluation of nonlinear response, the 
hysteretic energy dissipation in the nonlinear 

structural components is counted by the 
equivalent viscous damping in addition to the 
inelastic excursion in the nonlinear elements. As a 
consequence, the hysteretic energy dissipation in 
the nonlinear structural components is counted 
twice in the evaluation of nonlinear response. On 
the other hand, if one assumes Eq. (8), the 
hysteretic energy dissipation is not taken into 
account in the evaluation of linear response.  
  It should be noted here that which is 
appropriate among Eqs. (6), (7) and (8) depends 
on how the force reduction factor is used. Based 
on the original definition inherent to the force 
reduction factor, it seems that Eq. (6) is the most 
appropriate. Eq. (8) generally provides 
conservative estimation for the force reduction 
factors. If 0≈othξ , the difference of the force 
reduction factors among Eqs. (6), (7) and (8) is 
limited. It should be noted that hξ , othξ  and eqξ  
depend on the type of a structure, mode shape, 
hysteresis and the target ductility factor. 

Although the equivalent damping ratio hξ  is 
very high as shown in Fig. 2, it is not general to 
assume such a high damping ratio in seismic 
design of a bridge structure. It is because a bridge 
structure is generally more complex than a SDOF 
oscillator, and this makes the relative contribution 
of the hysteretic energy dissipation of columns 
less significant. Since it is general practice in a 
standard bridge structure to assume about 0.05 for 
the damping ratio including hysteretic energy 
dissipation of columns, eqξ is assumed to be 0.05 
in the present study based on Eq. (6). Hence, it is 
assumed here that hξ  and othξ  is 0.03 and 0.02, 
respectively.  

Using those damping ratios, the force 
reduction factors are evaluated in this study based 
on Eq. (6). However, an analysis assuming Eqs. 
(7) and (8) is also conducted for comparison with 
the previous studies. 
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Fig.2 Equivalent Damping Ratio hξ  by Eq. (4) 



3. REVIEW OF THE PAST 
INVESTIGATIONS 

 
An early study for the force reduction factor was 
conducted by Newmark and Hall (Newmark and 
Hall 1973). They used 10 ground motions 
recorded in the 1940 Imperial Valley Earthquake. 
They assumed ELξ = NLξ =0.05, and proposed a 
force reduction factor as 
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where, 

A
V

T
ea

ev
φ
φ

π21 =  

 
12

11
−

=′
µ
µTT          (10) 

V
D

T
ev

ed
φ
φ

π21 =  

in which, A , V  and D  represent peak ground 
acceleration, velocity and displacement, 
respectively, and eaφ , evφ  and edφ  represent 
the amplification for acceleration, velocity and 
displacement, respectively. 

Nassar and Krawinkler proposed a force 
reduction factor, assuming ELξ = NLξ =0.05, 
based on an analysis for 15 ground motions as 
(Nassar and Krawinkler 1991) 

{ } ccR /11)1( +−= µµ         (11) 
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in which α  represents a ratio of the post-yield 

stiffness to the initial elastic stiffness, and a  and 
b are coefficients depending on α . Nassar and 
Krawinkler precisely analyzed the effect of 
stiffness deterioration, and provided the 
coefficients a  and b  depending on α . 

Miranda and Bertero proposed a force 
reduction factor, assuming ELξ = NLξ =0.05, 
based on an analysis for 124 ground motions as 
(Miranda and Bertero 1994) 
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in which gT  represents a most predominant 
period.  

It has been known that the equal energy 
assumption provides a good estimation for the 
force reduction factor at short periods while the 
equal displacement assumption at long periods. 
The force reduction factor provided by the equal 
energy and the equal displacement assumptions 
are given as 

12 −= µµR   (equal energy)    (15) 
µµ =R   (equal displacement)    (16) 

Application of Eqs. (15) and (16) and a 
comparison of the present study to the previous 
models will be described later. 



4. FORCE REDUCTION FACTOR FOR 
BILINEAR OSCILLATORS 

 
Force reduction factors were evaluated for target 
ductility factor Tµ  of 2, 4, 6 and 8 assuming an 
elastic perfect-plastic bilinear hysteresis. Damping 
ratio in the linear and nonlinear analyses is 
assumed as ELξ =0.05 and NLξ =0.02 based on 
Eq. (6). Seventy free field ground accelerations by 
64 shallow earthquakes with depth less that 60 km 
were used for analysis. They are classified into 
three soil conditions depending on the 
fundamental natural period of subsurface ground 

gT ; stiff ( 2.0<gT s), moderate ( 6.02.0 <≤ gT s) 
and soft ( ≥gT 0.6 s) (Japan Road Association 
2002). Number of records in the stiff, moderate 
and soft categories is 16, 39 and 15, respectively. 
Distribution of peak ground accelerations on the 
earthquake magnitudes and epicentral distances is 
shown in Fig. 3. The peak accelerations are in the 
range of 0.1-8m/s2, and the epicentral distances 
are in the range of 10-500 km.  

Fig. 4 shows the force reduction factors for the 
70 ground motions. Only the results for Tµ =4 
and 6 are presented here since the results for other 
target ductility factors show the similar 
characteristics. It is seen in Fig. 4 that scattering 
of the force reduction factors depending on 
ground motions is significant. For example at 
natural period of 1 second, the force reduction 
factors varies from 1.9 to 10.3 depending on 
ground motions for Tµ =4 at the moderate soil 
sites. It is apparent that such a large scattering of 
the force reduction factors result in a large change 
of sizing of a structure in seismic design. 
Obviously smaller force reduction factors should 
be assumed in design to provide conservative 
design. It is observed in Fig. 4 that the 
dependence of force reduction factors on the soil 
condition is less significant. This will be discussed 
later.  

Since the scattering of the force reduction 

factors depending on ground motions is so large 
that the means +/- one standard deviations of the 
force reduction factors were obtained for each 
target ductility factor, natural period and soil 
condition. Fig. 5 shows the mean values and the 
mean values +/- one standard deviations of the 
force reduction factors presented in Fig. 4. The 
force reduction factors predicted by Eqs. (15) and 
(16) based on the equal displacement and the 
equal energy assumptions are also presented here 
for comparison. The mean values of force 
reduction factors increase as the natural periods 
increase, and then they approach to Tµ  at long 
period. It has been pointed out in the previous 
researches that the Eq. (15) provides a good 
estimation to the force reduction factor. However, 
it is noted that Eq. (15) provides a good estimation 
to the mean values, but it considerably 
underestimates the force reduction factors 
corresponding to the mean values minus one 
standard deviations. On the other hand, Eq. (16)
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Fig. 3 Classification of Ground Accelerations in
Terms of Soil Conditions and Earthquake
Magnitudes 



provides better estimation to the mean values 
minus one standard deviations. Taking account of 
the force reduction factors having considerable 

scattering depending on ground motions, it seems 
reasonable to consider a certain redundancy in the 
estimation of the force reduction factor in design. 

 

0

4

8

12

16

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 

0

4

8

12

16

20

24

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 (a) Stiff (Type-I) (a) Stiff (Type-I) 

 

0

4

8

12

16

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 

0

4

8

12

16

20

24

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 (b) Moderate (Type-II) (b) Moderate (Type-II) 

 

0

4

8

12

16

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 

0

4

8

12

16

20

24

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 (c) Soft (Type-III) (c) Soft (Type-III) 

 (1) Tµ =4 (2) Tµ =6 
Fig. 4 Force Reduction Factors 



Based on such a consideration, it is more 
conservative to assume Eq. (16) instead of Eq. 
(15) for a design purpose. 

Fig. 6 shows the dependence of the standard 
deviations of force reduction factors )( µσ R  on 
the natural periods T  and the soil condition. 
Similar to the mean values, the standard 
deviations )( µσ R  increase as the natural periods 
increase, and decrease after taking peak values at 
natural period of 1-2 second. Fig. 7 shows the 
dependence of the standard deviations )( µσ R  on 
the target ductility factors Tµ . The standard 

deviations )( µσ R  increase as the target ductility 
factors increase. The relation may be 
approximated by a least square fit as 
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As the soil condition dependence of )( µσ R  
is less significant as shown in Fig. 7, Eq. (17) may 
be approximated as 

TR µσ µ ⋅+−≈ 4.03.0)(       (18) 
 

Average + 1σ

Average - 1σ
Average

Rµ =   2µ-1
Rµ =   µ

 

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
 (a) Stiff (Type-I) (a) Stiff (Type-I) 

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
 (b) Moderate (Type-II) (b) Moderate (Type-II) 

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
0

4

8

12

0 1 2 3 4
Natural Period (s)

R
µ 

fa
ct

or

 
 (c) Soft (Type-III) (c) Soft (Type-III) 
 (1) Tµ =4 (2) Tµ =6 

Fig. 5 Mean and Mean +/- One Standard Deviation of the Force Reduction Factors 
for 70 Ground Motions 



0 1 2 3 4 5

R
µ  f

ac
to

r

Natural Period (s)

µ

1 a

(µ−1)

1/b

P
c Q

0

 
Fig. 8 Idealization of Force Reduction Factors 

5. FORMULATION OF FORCE 
REDUCTION FACTORS 

 
To idealize the mean values of the force reduction 
factors in Fig. 5, they are represented as 

1)()1( +Ψ⋅−= TR µµ        (19) 

 
where, 

1)( )( +−⋅=Ψ −⋅ aTbe
aTcT         (20) 

in which a , b  and c  are parameters to be 
determined.  

Since µµ =R  at aT =  in Eq. (20), the 
parameter a  represents the period where µR  is 
equal to µ  (Point P) as shown in Fig. 8. Because 
the gradient of µR  is 

)(
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aTbc
dT

dR
−
−−⋅−= µµ     (21) 

it is )1( −⋅ µc  at Point P. Consequently, the 
parameter c  represents the gradient at Point c 
divided by 1−µ . Representing Q as the point 
where µR  takes the peak value, b/1  represents 
the period between Points P and Q.  

Based on the definition, the following 
condition has to be satisfied in µR  

0lim
0

=
→

µR
T

           (22) 

Hence, the coefficient c  can be eliminated as 
abaec /1=             (23) 

Substitution of Eq. (23) makes Eq. (20) as 

1)( +−=Ψ bTae
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 It is noted that Eq. (19) automatically satisfies 
the following condition 
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Fig. 7 Target Ductility Factor Dependence of
the Standard Deviations of Force
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It is a feature of the above formulation that the 
equation is simpler and the physical meaning of 
the parameters a  and b  is clearer than the 
previous studies.  

The mean values of force reduction factors in 
Fig. 5 were fitted by Eq. (19) using a nonlinear 
least square method (Press et al 1996). Table 1 
represents the a  and b  as well as the 
regression coefficients. Although the regression 
coefficient is not high enough for some 
combinations such as Tµ =2 and stiff sites, it may 
be accepted in other conditions. As shown later, 
the fitting is not necessarily poor for a 
combination of Tµ =2 and stiff sites. 

Fig. 9 shows parameters a , b/1  and ba /1+ . 
Parameter a  is in the range of 1.0-1.4 second at 
stiff and moderate sites, and 1.5-2.4 second at soft 
sites. They are less sensitive to the target ductility 
factor Tµ  between 2 and 8. As described before, 
a  represents the period where µµ =R , which 
implies that the equal displacement assumption by 
Eq. (16) provides the best estimation at period a . 
Consequently, the accuracy of equal displacement 
assumption is high at 1.0-1.4 second at stiff and 

moderate sites, and 1.5-2.4 second at soft site. 
As shown in Fig. 8, ba /1+  represents the 

natural period where µR  takes the peak value. It 
is 1.5-2 second at stiff and moderate sites, and 
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Table 1 Parameters a  and b  and Regression 
Coefficients R  ( NLξ =0.02 and ELξ = 
0.05) 

Soil Conditions Tη  a, b 
and R Type-I Type-II Type-III 

a 1.29 1.12 2.35 
b 2.77 2.18 1.69 

 
2 

R 0.379 0.701 0.851 
a 1.24 0.989 1.52 
b 2.39 1.62 1.05 

 
4 

R 0.673 0.842 0.886 
a 1.34 1.03 1.85 
b 2.15 1.24 0.821 

 
6 

R 0.717 0.869 0.878 
a 1.36 1.20 1.74 
b 1.67 1.11 0.611 
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R 0.776 0.899 0.895 
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Fig. 10 Natural Periods where Force Reduction
Factors Take Values Predicted by the
Equal Energy Assumption (Eq. (15)) 



2.5-3.5 second at soft site. It slightly increases as 
target ductility Tµ  increases. 

The natural periods where µR  take the values 
predicted by Eq. (15) based on the equal energy 
assumption are obtained as shown in Fig. 10. 
They are in the range of 0.2-0.36 second, 0.26-0.4 
second and 0.4-0.6 second at stiff, moderate and 

soft sites, respectively. They are much shorter than 
the natural periods where the equal displacement 
assumption provides the best approximation. 

Fig. 11 compares the mean force reduction 
factors presented in Fig. 5 to the values predicted 
by Eq. (19). Although some discrepancies are 
observed at larger target ductility factors, Eq. (19) 
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Fig. 11 Application of Eq. (19) to the Mean
Force Reduction Factors Presented in
Fig. 5 
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Fig. 12 Effect of Soil Condition on the Force
Reduction Factors Predicted by Eq.
(19) 



provides a good estimation for the mean force 
reduction factors.  

Fig. 12 shows the effect of soil condition on the 
mean force reduction factors estimated by Eq. 
(19). The effect of soil condition is less significant 
on the force reduction factors, in particular at 
small target ductility factors.  

As shown in Fig. 4, scattering of the force 
reduction factors around the mean values is 
extensive. Hence, the force reduction factors 
corresponding to the mean values m  substituted 
by a standard deviation )( µσ R  are evaluated as 
shown in Fig. 13. The mean and the standard 
deviation of force reduction factors were 
evaluated by by Eq. (19) and Eq. (18), 
respectively, in this estimation. They are of course 

close to the force reduction factors of the mean 
minus one standard deviation directly computed 
from the 70 ground motions (refer to Fig. 5). The 
force reduction factors predicted by Eq. (15) 
based on the equal energy assumption are 
presented here for comparison. From Fig. 13, it is 
seen that at Tµ =4, the equal energy assumption 
provides a good estimation at natural periods 
longer than 0.5 second at stiff and moderate sites 
and 1.2 second at soft sites, while it provides 
underestimation at natural periods shorter than 
those values. On the other hand, at Tµ =8, the 
equal energy assumption provides a good 
estimation at 0.6 second at stiff and moderate sites 
and 1 second at soft sites. It underestimates and 
overestimates the force reduction factors 
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Fig.13 Force Reduction Factors Corresponding to
Means minus One Standard Deviations 

Table 2 Parameters a  and b  ( NLξ = ELξ = 
0.02) 

Soil Conditions Tµ
 

a and 
b Type-I Type-II Type-III 
a 0.152 0.225 0.361 2 
b 0.289 1.60 1.12 
a 0.289 0.348 0.600 4 
b 2.46 1.28 0.902 
a 0.397 0.432 0.800 6 
b 1.81 1.14 0.768 
a 0.507 0.513 0.916 8 
b 1.14 1.04 0.632 

Table 3 Parameters a  and b  ( NLξ = ELξ = 
0.05) 

Soil Conditions Tµ
 

a and 
b Type-I Type-II Type-III 
a 0.226 0.344 0.521 2 
b 4.14 1.94 1.34 
a 0.778 0.572 0.976 4 
b 3.50 1.35 0.994 
a 0.981 0.725 1.23 6 
b 2.93 1.15 0.757 
a 1.23 0.807 1.28 8 
b 2.57 0.983 0.569 



corresponding to the mean minus one standard 
deviation at natural periods shorter and longer, 
respectively, than the above natural periods.  
 
 
6. EFFECT OF DAMPING RATIOS 
 
In the preceding analysis, the force reduction 
factors were evaluated based on Eq. (1) assuming 

ELξ =0.05 and NLξ =0.02. However in the past 
researches, damping ratios were usually assumed 
as ELξ = NLξ =0.05. Consequently, the same 
analysis presented in the preceding chapters was 
conducted by assuming ELξ = NLξ =0.05 based 
on Eq. (7) using the same ground motion data set. 

For comparison, an analysis was also conducted 
assuming ELξ = NLξ =0.02 based on Eq. (8).  

Tables 2 and 3 show the parameters a  and b  
determined for a combination of ELξ = NLξ =0.02 
and ELξ = NLξ =0.05, respectively. Fig. 14 
compares a  and ba /1+  thus determined. Also 
presented in Fig. 14 are a  and ba /1+  used in 
the preceding chapter ( ELξ =0.05 and NLξ =0.02, 
refer to Fig. 9). It is seen in Fig. 14 that both a  
and ba /1+  at the same target ductility factors 
are the shortest for a combination of 

ELξ = NLξ =0.02 and the longest for a 
combination of ELξ =0.05 and NLξ =0.02. 
Parameters a  and ba /1+  for a combination of 

ELξ = NLξ =0.05 are between the two cases. 

ξNL = ξEL = 0.02
ξNL = 0.02,  ξEL = 0.05
ξNL = ξEL = 0.5
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Fig. 14 Dependence of Parameters a and a+1/b on the Assumption of Damping Ratios 



Fig. 15 compares the mean values of the force 
reduction factors based on the three assumptions 
of damping ratios. Original force reduction factors 
computed from the 70 ground motions are also 
presented here for comparison. A systematic 
difference of the force reduction factors is 
observed reflecting the dependence of a  and 

ba /1+  on the damping rations. The combination 

of ELξ = NLξ =0.02 provides the largest 
estimation for the force reduction factors, while 
the combination of ELξ =0.05 and NLξ =0.02 
provides the smallest estimation. The combination 
of ELξ = NLξ =0.05 provides the estimation 
between the two cases. 
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Fig. 15 Dependence of Force Reduction Factors on the Assumption of Damping Ratios 



7. COMPARISON WITH THE PREVIOUS 
STUDIES 
 
Fig. 16 shows a comparison of the force reduction 
factor in the present study by Eq. (19) to Nassar 
and Krawinkler by Eq. (11) and Miranda and 
Bertero by Eq. (13). Since it is assumed in Eqs. 
(11) and (13) that ELξ = NLξ =0.05, the same 

damping ratios are assumed in the present study 
for comparison. The original mean values of the 
force reduction factors computed from the 70 
ground motions are also presented here for 
comparison. It is noted that definition of soil 
conditions is not the same among three researches. 
Hence they are classified into stiff, moderate and 
soft. In the Miranda and Bertero formulation, gT  

Present Study
MeansMiranda et al.

Nassar et al.
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Fig. 16 Comparison with Previous Studies 

 



was assumed 1.5 second at soft (alluvial) site in 
Eq. (14).  

From Fig. 16, it is seen that the present study 
provides a quite similar result to the formulations 
by Miranda & Mertero and Nassar & Krawinkler 
if the same damping ratios are assumed in the 
evaluation of linear and nonlinear responses. 
 
 
8. CONCLUSIONS 
    
An analysis was conducted for the force reduction 
factor based on response of SDOF oscillator using 
70 free-field ground motions. Based on the 
analysis presented herein, the following 
conclusions may be deduced: 
 
1) A new formulation as shown in Eqs. (19) and 
(24) was developed. The formulation is simpler 
than the past formulations. Parameters a  and 
a +1/b  express the natural period where µR  is 
equal to µ and µR  takes a peak value, 
respectively. 
2) Difference of the damping ratios assumed in 
the evaluation of linear and nonlinear responses 
( ELξ  and NLξ ) provides a systematic difference 
in the force reduction factors. The combination of 

ELξ = NLξ =0.02 provides the largest estimation 
for the force reduction factors, while the 
combination of ELξ =0.05 and NLξ =0.02 
provides the smallest estimation. The combination 
of ELξ = NLξ =0.05 provides the estimation 
between the two cases. Hence, the damping ratios 
have to be carefully assumed keeping how the 
force reduction factors are used in mind. 
3) Scattering of the force reduction factors 
depending on ground motions is significant. 
Although it has been pointed out that the equal 
displacement assumption by Eq. (15) provides a 
good estimation to the force reduction factors, it 
provides a good estimation only to the mean 
values; however, it considerably underestimates 

the mean minus one standard deviation. On the 
other hand, the equal energy assumption by Eq. 
(16) provides a better estimation to the force 
reduction factors corresponding to the mean 
minus one standard deviation, although it provides 
too conservative estimation to the mean values. 
Taking account of the considerable scattering of 
the force reduction factors depending on ground 
motions, it is conservative to assume the equal 
energy assumption instead of the equal 
displacement assumption.  
4) The response modification factors in the 
present study by Eqs. (19) and (24) provides quite 
close force reduction factors proposed by Nassar 
and Krawinkler, and Miranda and Betero, if the 
damping ratios are assumed as ELξ = NLξ =0.05. 
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