Real-Time Seismic Monitoring Needs of a Building Owner and the Solution

by

M. Çelebi¹, A. Sanli¹, M. Sinclair², S. Gallant² and D. Radulescu³

ABSTRACT

A recently implemented advanced seismic monitoring system for a 24-story building facilitates recording of accelerations and computing displacements and drift ratios in near real-time to measure the earthquake performance of the building. The drift ratio is related to the damage condition of the specific building. This system meets the owner’s needs for rapid quantitative input to assessments and decisions on post-earthquake occupancy. The system is now successfully working and, in absence of strong shaking to date, is producing low-amplitude data in real-time for routine analyses and assessment. Studies of such data to date indicate that the configured monitoring system with its building specific software can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can be used as a health monitoring tool, as a method to assess performance based design and analyses procedures, long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.

Keywords: real-time monitoring, seismic event, damage, acceleration, accelerometer, displacement, drift ratio, spectrum, steel moment resisting frame.

1. INTRODUCTION

In all seismic areas, local and state officials and prudent property owners, establish procedures to assess the functionality of buildings and other important structures such as lifelines following a significant seismic event. Immediately following such an event, the decisions of functionality and occupancy of a building in most cases are based on visual inspections of possible damage to the structure. If the structure appears damaged, it is necessary to further examine and assess as to whether the damage condition of the structure presents an unsafe environment for the occupants or users of that structure. Therefore, to have instrumental measurements of shaking of a building or even a nearby ground site provides valuable information to decision makers.

In general, a system for seismic monitoring of structures must fulfill a stated need – that is, during and after a strong-shaking event, the monitoring system should yield data that serves the specific purposes for which it has been planned. Each user of the structural response data may have a different objective. In general, from the viewpoint of an owner, the objective could be to use such data obtained by monitoring to increase the likelihood that the building will be permitted to remain functional during and following an event. In practical terms, this means whether, immediately after occurrence of an event, a building will be tagged as “green = no restriction on use or occupancy”, “yellow = limited entry, entry is permitted only by the owner for emergency purposes, at his or her
own risk”, or “red = unsafe, the structure poses an obvious safety hazard” (ATC-20, 1989).

When seismic monitoring has been considered and implemented, in general, the principal objective has been the quantitative measurement of structural response to strong and possibly damaging ground motions for purposes of improving design and construction practices. Thus, it is expected that, an instrumented structure should provide enough information to (a) reconstruct the response of the structure in enough detail to compare with the response predicted by mathematical models and those observed in laboratories, the goal being to improve the models, and (b) make it possible to explain the reasons for any damage to the structure. The nearby free-field and ground-level time history should be known in order to quantify the interaction of soil and structure.

Therefore, the main objective to date has been to facilitate response studies in order to improve our understanding of the behavior and potential for damage of structures under the dynamic loads of earthquakes. As a result of this understanding, design and construction practices can be modified so that future earthquake damage is minimized. Up to now, it has not been the objective of instrumentation programs to create a health monitoring capability for structures.

However, structural engineers increasingly want the measurement of displacements in order to assess drift ratios during strong shaking events. In order to achieve these, the approach used in this paper is a suitable and technologically feasible way for real-time assessment and alarm system based on computation of drift ratios from double-integrated acceleration measurements. This approach can also be used for performance evaluation of structures. The described system is considered as a building health-monitoring system.

The objective of this paper is to describe a specific case whereby the owner of a building, in collaboration with a federal agency with expertise in seismic monitoring of buildings, private consulting engineers and a supplier, facilitated development and implementation of a state-of-the-art seismic monitoring system for a 24-story steel frame building in San Francisco, California. The objectives and implemented characteristics of the system meet the specific needs of the owner. This case illustrates that building-specific monitoring systems can be developed to meet the needs of owners of other buildings and structures.

2. BUILDING AND CHARACTERISTICS

The building was designed according to the 1979 UBC and its construction was completed in 1982. The ground floor (plaza level) with a height of 50 ft. (15.2 m.) appears as two nominal floors of the 284 ft. (86.6 m.) tall building. The building has a 70ftx90 ft (21.3m x 27.4m) square plan.

Perimeter steel moment resisting frames with welded connections are continuous from grade to roof level. The columns and beams are steel wide flange and box sections. Reinforced concrete on metal deck floors function as rigid diaphragms and transfer lateral loads to the perimeter moment frames. The perimeter moment frame beams are typically not composite with the metal deck floor system. The moment frames are expected to behave as strong-column weak-beam frames resulting in development of hinges at the beams. The building structure is therefore considered as a "pre-Northridge" perimeter welded steel moment frame. The steel columns typically terminate at just below
grade. The foundation of the building consists of 12” (0.305 m) square, reinforced, precast piles driven to approximately a 60 ft. (18.3 m.) depth. The reinforced concrete pile caps are interconnected by a grid of reinforced concrete grade beams.

A general three-dimensional schematic of the building with its overall dimensions is provided in Figure 1.

3.0 DISCUSSION OF NEEDS

The building owners are in need of reliable and timely expert advice on whether or not to occupy the building following an event. Furthermore, information gathered from the building during strong-shaking events will help the building owner to further assess technical issues as related to possible post-earthquake connection inspection, retrofit and repair of the building. For this reason, the following decisions have been made.

1. The building has been designated as part of the Building Occupancy Resumption Program (BORP, 2001). “This award-winning program (BORP) of the San Francisco Department of Building Inspection, developed in cooperation with SEAONC (Structural Engineers Association of Northern California), BOMA (Building Owners and Management Association), and AIA (American Institute of Architects) allows building owners to pre-certify private post-earthquake inspection of their buildings by qualified licensed engineers” (BORP, 2001). The owner’s engineers post red/yellow/green placards, in accordance with ATC-20 Guidelines (ATC, 1989) in lieu of the city authorized inspectors who would typically be unfamiliar with the building and may not be available for several days following the earthquake. The owners and the consultants have agreed that general building-related evaluation work will commence in the building by cognizant personnel to reach decisions on the suitability of re-occupying the building following any one of the following events, or exceedence of thresholds that may be cause of possible damage in the building:

i. a state of emergency in the City or County of San Francisco has been declared,

ii. a M ≥ 6.0 earthquake on the San Andreas or Hayward faults,

iii. a M ≥ 6.0 earthquake on the Rodgers Creek fault, or

iv. the building experiences a peak acceleration greater than 0.25 g (this intended as free-field motion and adopted from Table 3-1, FEMA352[2000]).

Damage in steel moment frame structures presents itself as yielding or fracture of the welded connections. The damage is frequently not immediately visible due to the presence of building finishes and fireproofing. In the absence of visible damage to the building frame, most steel moment frame buildings will be tagged based on visual indications of building deformation, such as damage to partitions or glazing. Lack of certainty regarding the actual deformations that the building experienced will typically lead the inspector toward a relatively conservative tag – e.g. yellow tag instead of green.

The City of San Francisco has yet to adopt or develop criteria for post earthquake inspection and assessment of pre-Northridge welded moment frame structures beyond the ATC 20 (1989) tagging requirements. Similar to the process that occurred in Los Angeles following the 1994 Northridge earthquake, the City of San Francisco will likely require detailed inspections of the welded connections in high rise steel moment frame structures in
the area of strong ground shaking. It is reasonable to expect that these will be based on the most sophisticated set of requirements developed to date, FEMA 352: Recommended Post-earthquake Evaluation and Repair Criteria for Welded Steel Moment-Frame Buildings (2000).

Application of the FEMA 352 requirements for the subject building would result in inspection of 10% to 15% of the connections in the building. The building owner and engineers anticipate using the data provided by the system to justify a reduced inspection program than that which would otherwise be required by the City of San Francisco for a similar non-instrumented building in the same area. Depending on the deformation pattern observed in the building, it would also be possible to direct the initial inspections toward locations in the building that experienced peak drifts during the earthquake.

These objectives are best accomplished by deploying accelerometers at specific locations in the building to facilitate measurement of the actual structural response, which may indicate occurrence of damage and lead to making consequential decisions in a timely way. For this reason, in addition to measurement of ground level input motions, measurement of structural response is needed to compute parameters that will relate to the damage status of the structure.

The most relevant parameter in this case is the measurement or computation of actual or average story drift ratios. Specifically, the drift ratios can be related to the performance-based force-deformation curve hypothetically represented in Figure 2 modified from Figure C2-3 of FEMA Report 274 (1997). When drift ratios, as computed from relative displacements between consecutive floors that are determined from measured responses of the building, the performance and as such “damage state” of the building can be estimated as in Figure 2.

Therefore, the problem and the challenge are clear: to compute displacements from recorded acceleration responses in real-time or near real-time. Measuring displacements directly is very difficult and, except for tests conducted in a laboratory (e.g. using displacement transducers), has not yet been feasibly achieved for a variety of real-life structures. For long-period structures such as tall buildings and long-span bridges, displacement measurements using Global Positioning Systems (GPS) are possible (Çelebi and Sanli, 2002) but limited in application (e.g. GPS technology is limited to sampling rates of 10-20 Hz and, for buildings, measurement of displacement only at the roof is possible).

4.0 GENERAL DESCRIPTION OF REQUISITE MONITORING SYSTEM

The unique aspects of the requisite monitoring system that will facilitate the needs of the particular owner are generally described as follows:

- The monitoring system must facilitate rapid assessment of the building integrity following an earthquake;
- The monitoring system must provide data in a form that is easy to correlate with known and building specific engineering parameters (e.g. drift ratio), which in turn must relate to the expected damage condition of the building; and
- The monitoring system must deliver the data within a relatively short time (few minutes if not in seconds), if not in real-time, to facilitate informed decision making regarding post-earthquake building occupancy.
5.0 CAPABILITIES OF RECORDING SYSTEMS

We have assembled a monitoring system that provides the three basics requirements above. As defined, developed and implemented by the project team, the PC-based monitoring system does the following:

- The system has the standard recording capability (of acceleration data) at the site server PC. The system continuously streams, in real-time, acceleration response data at the site. Recording starts when pre-assigned thresholds of acceleration are exceeded at selected locations (where accelerometers are deployed as seen in Figure 1) in the building. This is similar to the standard way such recording is initiated with most current systems. As in most newer recording systems, the new system can trigger at thresholds defined at ten locations. Data stored at the server can be retrieved manually at the site, retrieved remotely or transferred automatically to a pre-defined location.
- The system is (high-speed) internet-connected.
- Users are able to connect to the server via the internet and are able to view or record the data remotely. Users are provided with specific software (called “Client Software” herein) that will acquire streamed real-time acceleration data from the server and perform computations of velocity and displacement.
- Specific filter options are built into the client software for processing of the acceleration data before the integration process.
- Specific to the building being monitored, and programmed into the client software, is the capability to calculate a select number of drift ratios. While acceleration data from all of the channels are received continuously, due to time required to process and compute velocities, displacements, and ultimately the story drift ratios, only twelve channels of streamed data (as selected by the user) are visually displayed in real-time. However, once an event is recorded, it can be played back for analyses of the data from all of the channels.
- Corresponding to each drift ratio, there are 4 stages of colored indicators. When only the “green” color indicator is activated, it indicates that the computed drift ratio is below the first of the three specific threshold. As drift ratios exceed the designated three thresholds, as depicted in Figure 2, additional indicators are activated with a different color.
- The drift ratios are calculated using data from any pair of accelerometer channels oriented in the same direction. However, the expectation is that they will typically be used with drifts monitored over one story level intervals as shown in Figure 1. The threshold drift ratios are computed and decided by structural engineers using structural information. The performance-based theme, as illustrated in Figure 2, is compatible with Figure C2-3 of FEMA Report 274 (1997).
- The thresholds for the present installation are based on performance limits of the welded beam-column connections, established using FEMA352 Steel Moment Frames: Evaluation and Upgrade Criteria for Existing Buildings (2000). This allows the various drift ratio
thresholds to be matched to a probability of connection fractures in different areas of the building.

- At present, the first stage threshold corresponds to one quarter of the computed building yield level, approximately 0.2% drift. At this level of drift no connection fractures are anticipated although movement of the building should be detectable by the occupants. The second stage threshold correspond to the building yield level, approximately 0.8% drift, which is the lower bound drift for anticipated connection fractures. The third stage threshold correspond to drifts at which the beam rotation demands equal the strength degradation value determined in accordance with FEMA352 (2000). The third stage threshold varies between 1.4% and 2.2% drift depending on the location being examined in the building. At this level of drift, FEMA 352 predicts that approximately 50% of the connections will have fractured. The drift limits vary at different locations in the building due to the different frame member lengths and sectional properties.

A general schematic of the data management, communication and transmittal set-up is shown in Figure 3.

6.0 ACCELEROMETERS IN THE BUILDING

As seen in Figure 1, thirty accelerometers are now deployed throughout the building. This number of accelerometers is within the current norm that is recommended (COSMOS, 2001). Deploying accelerometers on every floor would have been too costly both from the point of added hardware and cabling required, and also the additional demands on digitizing of analog signals, recording, data streaming and transmission capabilities.

A tri-axial accelerometer is on the ground floor to provide requisite reference input motions to the building. Then at each of nine levels (at elevation 25' [7.6 m.], 6th, 7th, 12th, 14th, 17th, 18th, 23rd floors, and the roof), three uniaxial accelerometers are deployed. It is noted herein that, in the building, there is no 13th floor designation. At each of these levels, two parallel accelerometers are deployed, in the nominal EW direction, one at the north end and the other at the south end. The third accelerometer is deployed in the nominal NS direction. The configuration is the optimal distribution of accelerometers.

The purpose of this deployment scheme is to facilitate the computation of either actual drift ratios at several pairs of consecutive floors, or average drift ratios over various combinations of non-adjacent floors.

7.0 DATA RECORDING AND REAL-TIME ISSUES

7.1. Recording at the Server/Recorder at the Site

The server/recorder at the site is controlled by specific software that is multi-threaded. The system digitizer, an analog to digital [A/D] converter, within the server/recorder, processes the analog signals from all of the 30 sensors.

The raw data thread acquires data from the system digitizer at 1000 samples per second (sps), scales it to cm/s/s using sensitivity information of each channel, digitally low-pass filters the data, decimates to 200 sps, and
sends it continuously to the triggering thread and to the broadcasting thread. Continuously streamed data are not saved at the server/recorder unless trigger conditions are met.

The triggering thread of the software continuously monitors the trigger conditions by comparing the amplitude level on any ten (user selected) channels with the pre-determined trigger thresholds. In detail, the trigger thread takes the data from the raw data thread, filters the data with a band-pass filter, and compares the peak amplitude of each selected trigger channel with its corresponding threshold. When the exceedance criteria (e.g. 0.3% g) is met, the system will start recording raw data in an event file. In this specific case, the ten channels selected are at upper floors so that when the earthquake shaking of the ground floor at the particular site is ending, it will be possible to continue to capture the continued shaking response of the structure. Recording capability with pre-trigger (commonly referred to as pre-event) memory of 20 seconds (or suitable choice of duration), assures recording of the start of the shaking at the ground or basement level. To avoid false triggers, choice of level of shaking triggers (e.g. 0.3 % g), must be carefully selected to assure that triggering occurs during earthquake-generated motions originating at close or far distances.

The recording thread records raw data based on the trigger threshold exceedance. When one or more channels exceed their assigned trigger threshold (based on the trigger exceedance algorithm), acceleration data are recorded by the server as “raw data”.

The broadcasting thread broadcasts data to multiple clients continuously via the internet, and only when at least one client is connected. The posting thread sends the recorded raw data to pre-addressed users using FTP. Alternatively, events recorded at the site can be retrieved at the site or remotely via internet.

7.2 The Client Scheme

An interesting aspect of the system is that the response data are continuously streamed at the site recorder/server but they can also be streamed to a remote location using client software. Furthermore, the response data can be continuously retrieved in real-time remotely by the client software, which currently can handle visual streaming of only 12 channels due to time consumption required for computations described earlier, and to real-time graphic display limitations. To repeat, the computational load includes in real-time computation of 12 channels of velocity and displacement time-histories, drift ratios for 6 pairs of channels, and amplitude and response spectrum of a particular selected channel. Therefore, at each client location, by selecting appropriate channels from the configuration shown in Figure 1, and with the known story-heights and computed relative displacements, it is possible to compute six different story drift ratios in real-time. The decisions related to exceedence of pre-determined drift ratios as illustrated in Figure 2 are based on these computed and streamed drift ratios. The basis of judgment of the health of the building is done with the use of drift ratio computations in real-time.

Whenever recording is activated using the client software, raw acceleration data from all of the channels are recorded (at designated location of the client PC). The recording is activated upon exceedence of a threshold or manually if the user needs to record data remotely. Any recorded data can be played back by the client software or can be processed by additional other software.
Figure 4 shows a PC screen snapshot of the client software display. The upper left frame shows 12 channels of streaming acceleration time series. Each paired set of acceleration response streams is displayed with a different color. The upper right shows amplitude spectra for one of the channels and is selectable by the user. It is noted that several frequencies are clearly identifiable (as discussed later in the paper). In the lower left, time series of drift ratios are shown for 6 locations, each color corresponding to the same pair of data from the window above. In order to get the drift ratios, real-time double integration of filtered acceleration data are computed. For this, story heights, as shown in Figure 5, need to be manually entered. Figure 5 also shows the computed pairs of displacements that are used to compute the drift ratios. The thresholds of drift ratios for selected pairs of data must also be manually entered in the boxes in Figure 5. The figure hypothetically shows that the first level of threshold is exceeded, and the client software is recording data as indicated by the illuminated red button.

8.0 SAMPLE RECORDED DATA AND ANALYSES

Sample data obtained via the client software are shown in Figure 6. The data are from the two parallel channels (CH12 and CH21) and their difference as well as the orthogonal channel (CH30) at the roof recorded on February 12, 2003. The intent of the differential accelerations of parallel channels (CH12-CH21) is to identify the strong presence of torsion. The recorded peak accelerations are about 0.1-0.2 gals (~0.1-0.2 cm/s/s). The computed amplitude spectra clearly indicate a peak frequency for the fundamental translational mode (in both directions) at ~0.4 Hz (~2.5 second period) for all channels and at ~0.6 Hz (~1.67 s) for the torsional motion. Furthermore, the signals are good enough to identify the second translational mode at ~ 1.2HZ (~0.83 s). Similarly, the second torsional mode is at ~1.8 Hz (0.56 s). The identified translational frequency is typical of a framed building that is 24 stories high. The identified modes and frequencies are further supported with the cross-spectrum, coherency, and phase angle plots in Figures 7 and 8. The cross-spectrum, coherency, and phase angle plots of the motions recorded by CH12 and CH21 (the two parallel accelerometers at the roof level) are shown in Figure 7. The cross-spectrum actually exhibits all of the significant frequencies identified in Figure 6 with very high coherency (~1). At 0.4 and 1.2 Hz, the phase angles between the parallel motions are both 0 degrees which indicate that they are in phase and therefore belong to translational modes. At 0.6 Hz and 1.8 Hz, the phase angles are ~180 degrees which indicate that they are out of phase and belong to torsional modes. The strong torsional presence are further illustrated through Figure 8 that exhibits cross-spectrum, coherency, and phase angle plots of the motions recorded by differences of motions recorded by parallel channels (CH12-CH21) at the roof and (CH10-CH19) at the 18th floor. Again, at ~ 0.6 Hz, these torsional motions exhibit significant cross-spectral amplitude with very high coherency (~1) and 0 degree phase angle. Therefore, 0.6 Hz belongs to the first torsional mode.

At the level of low amplitude acceleration response recorded and exhibited in this set of sample data, the signal-to-noise ratio is quite high and satisfactory to indicate several modal frequencies. It is expected that the coherency of motions between such pairs of channels will further improve when the signal-to-noise ratio is even higher during strong-shaking events. Further detailed analyses of strong
shaking data will be carried out when recorded in the future.

9.0 CONCLUSIONS AND BENEFITS

Capitalizing on advances in computational and data transmission technology, it is now possible, as described in this paper, to configure and implement a seismic monitoring system for a specific building with the objective of rapidly obtaining sufficient response data during a strong shaking event in order to help make informed decisions regarding the health and occupancy of that specific building.

To meet such an objective and needs of a building owner, a seismic monitoring system for a 24-story steel moment frame building has recently been implemented. The system records accelerations and computes displacements (and drift ratios) in near real-time. The variable drift ratio is related to the damage and safe occupancy criteria of the specific building. Data can be streamed and recorded both at the server within the building and remotely by client software specifically configured for this building to meet the needs of the owner. The client software is capable of retrieving and recording real-time acceleration response data, and computing, in near real-time, velocity, displacements, and amplitude and response spectra of the streaming accelerations from selected accelerometers. Furthermore, the software can compute drift ratios using the near real-time computed displacements, and specific building data such as story heights. Alarms are related to thresholds of drift ratios computed for pairs of floors. The drift ratios are related to building performance and therefore are key in making occupancy and other decisions.

The monitoring system is now successfully working and, in absence of strong shaking to date, is producing useful low-amplitude data in real-time for analyses and assessment. This approach can be used for performance evaluation of structures, long-term assessments of structural characteristics, long-term damage detection, and health monitoring for buildings and other structures.

10.0 REFERENCES


BORP (Building Occupancy Resumption Program), 2001, City and County of San Francisco, Department of Building Inspection, Emergency Operation Plan, (Rev. 2001). [www.seaonc.org/member/committees/des_building.html]


Figure 1. General three-dimensional schematic of the building. Also shown are the 30 accelerometers (heavy arrows) deployed throughout the building.

Figure 2. Hypothetical displacement time-history as related to FEMA 274.
Figure 3. General schematic of data acquisition and transmittal for seismic monitoring of the building.

Figure 4. Screen snap-shot of client software display showing acceleration streams and computed amplitude and response spectra.
Figure 5. Screen snapshot of client software display showing 12-channel (6 pairs with each pair a different color) displacement and corresponding 6-drift ratio (each corresponding to the same color displacement) streams. Also shown to the upper right are alarm systems corresponding to thresholds that must be manually input. The first threshold for the first drift ratio is hypothetically exceeded to indicate the starting of the recording and change in the color of the alarm from green to yellow.

Figure 6. Twenty seconds of ambient acceleration response data obtained at the roof from parallel channels (CH12 & CH21), their difference (CH12-CH21), and from CH30, orthogonal to CH12 and CH21 (left) and corresponding amplitude spectra (right).
Figure 7. Cross-spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from parallel channels (CH12 and CH21) at the roof.

Figure 8. Cross-spectrum, coherency, and phase angle plots of ambient acceleration response data obtained from differences of parallel channels, CH12 - CH21 at the roof and CH10-CH19 at the 18th floor.