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ABSTRACT 
 
This paper presents advances in an ongoing 
research project on simplified linear methods for 
preliminary seismic analysis of dams. In 
particular, several aspects of the influence of 
foundation flexibility on the seismic response of 
concrete gravity dams are addressed. Finite 
elements models, continuum-parameter models, 
and three degree-of-freedom models are used to 
evaluate the dynamic behavior of concrete 
gravity monoliths on flexible foundations. 
Hydrodynamic phenomena are modeled using 
frequency-domain representations of the semi-
infinite reservoir accounting for fluid 
compressibility and reservoir-bottom energy 
absorption. The effects of foundation flexibility 
on seismic response are investigated, analyzing 
the fundamental mode shape and effective mass 
of the dam-foundation model for horizontal 
ground motion. The effect of the rocking and 
translation components of the fundamental mode 
shape on hydrodynamic pressure and base shear 
is characterized comparing displacement and 
base shear frequency response functions for 
different foundation flexibilities. 
 
A simplified method to estimate the period 
elongation, added damping due to hydrodynamic 
interaction, and distribution of inertial forces is 
recommended using a standard mode shape that 
includes the effect of rocking and base 
displacement due to foundation flexibility. 
Accuracy of the proposed single mode analysis 
is evaluated comparing frequency response 
functions of dam-crest relative displacement and 
seismic base shear. 
 

KEYWORDS: Seismic Response; Concrete 
Gravity Dams; Foundation Flexibility; Dam-
Foundation Interaction. 
 
1. INTRODUCTION 
 
The influence of foundation flexibility on the 
dynamic response of massive concrete structures 
may be very significant. For example, in the 
case of concrete gravity dams for which the ratio 
between the modulus of elasticity of the 
foundation, fE , and that of the dam, sE , is 
smaller than one, important rocking components 
can be expected in the vibration response. This 
may have a considerable effect on the dynamic 
performance of gravity monoliths subjected to 
seismic ground motion.  
 
Preliminary design and evaluation of concrete 
gravity sections is usually performed using the 
simplified response spectrum method proposed 
by Fenves and Chopra (1986). A standard 
fundamental mode of vibration, representative of 
typical sections, is used in this method. This 
mode shape does not take into account the 
foundation flexibility since it is representative of 
a standard concrete gravity section on rigid 
foundation. As an alternative, the first mode of 
vibration of the concrete section could be 
estimated using a finite element model with 
massless foundation. In the case of relatively 
flexible foundations, an important rocking 
component can be observed in the computed 
fundamental mode shape. The rocking response 
component caused by base rotation may induce 
significant differences in the effective mass and 
inertial-force distribution. Therefore, the use of 
the computed mode shape in the simplified 



 
  

 

 

analysis, instead of the standard mode shape, 
may lead to considerable variations in the 
estimation of seismic demands such as base 
shear and overturning moment. This observation 
motivated the research reported in this paper. 
 
2. FOUNDATION FLEXIBILITY EFFECTS 
ON MODE SHAPES 
 
2.1 Finite Element Model 
 
A two-dimensional (2D) finite-element (FE) 
model is used to investigate the effects of 
foundation flexibility on the fundamental mode 
of vibration of a typical non-overflow gravity 
section with empty reservoir. The dam height is 
100 meters, the downstream slope is 0.78:1, and 
the upstream face is assumed vertical for 
simplicity. The crest of the dam is 9.36 m wide, 
and a rectangular section is assumed for the top 
12 m of the monolith. Standard material 
properties are assumed, with unit weight of 
concrete = 2.53 ton/m3, and Es= 3,515,400 
ton/m2.  Radiation damping in the foundation is 
not considered in the study. 
 
Figure 1 shows the FE mesh of triangular 
quadratic elements in plane strain and the 
computed first-mode lateral displacement along 
the upstream face for different ratios 

/ 0.3,0.5,1,2,5,f sE E = ∞  (solid lines). The 
circles correspond to the standard mode shape 
recommended for non-overflow sections in 
Chopra’s simplified procedure (Fenves and 
Chopra, 1986). Foundation flexibility causes 
significant lateral displacement and rotation at 
the base of the dam in the fundamental mode 
that deviates significantly from the standard 
mode (which corresponds to fixed-base 
conditions), especially for / 1f sE E < . 
 
The change in natural frequency due to 
foundation flexibility can be estimated using the 
coefficient Rf recommended by Chopra in the 
simplified method. However, the estimation of 
base shear, hydrodynamic pressure, and inertial 
force distribution highly depends on the 
effective modal masses and mode shape, which 

in the simplified procedure are considered as 
that of a fixed-base dam. 
 
For the example considered, the normalized 
effective masses for lateral motion 
corresponding to the first mode of vibration are 
computed as =xem 1  0.85, 0.73, 0.56, 0.46, 0.40, 
0.36, for ratios =sf EE  0.3, 0.5, 1, 2, 5, ∞, 
respectively. Using the standard mode shape, the 
normalized effective modal mass for this section 
is 0.447 (independent of foundation flexibility).  
 
2.2 Continuum Parameter Model 
 
As an alternative approach for modal analysis, a 
model of the dam section is developed using the 
theory of beams with plane sections, shear 
deformation, and coupled axial and flexural 
vibrations due to cross-section asymmetry. 
Warping is neglected, and the motion of plane 
sections is described by a vertical displacement 
field, ( , )yu y t , a lateral displacement field, 

( , )xu y t , and a rotation field, ( , )z y tψ  (Figure 
2). 
 
The lateral stiffness, vertical stiffness, and 
rotational stiffness of the foundation are 
assumed as those of a square foundation (with 
dimensions 2bx2b) on a semi-infinite elastic 
medium at low frequencies (Richart et al., 1970) 
 

)1)(1(2

)1)(1(23.4
2

3
fff

fffv

fh

bEk

bEk
bEk

νν

νν

θ −+=

−+=

=

 (1)

 
where fν =  Poisson ratio of the foundation.  
 
Using Hamilton’s principle, a set of coupled 
partial differential equations and corresponding 
boundary conditions are obtained for the 
displacement fields. The application of the 
method of separation of variables leads to the 
differential equations for the mode shapes and 
natural frequencies. Details, not included here 
for brevity, can be found in a paper by Inaudi 
and Matusevich (2005). 



 
  

 

 

Table 1 compares the natural periods and 
normalized effective masses in horizontal and 
vertical directions for the first mode of vibration 
estimated with this procedure and the FE model 
as functions of the ratio sf EE . The table 
shows that the difference between the natural 
period estimates provided by the models 
becomes larger as the foundation flexibility 
increases (i.e., sf EE decreases). The table also 
shows that the trend of increasing effective 
modal mass with foundation flexibility is 
confirmed by both models.  
 
It was determined that cross-section warping did 
not have a significant influence on the difference 
observed in the fundamental period estimates. 
This was confirmed by imposing plane-section 
constraints on the dam-foundation interface in 
the FE model and computing the corresponding 
vibration periods. For example, the first natural 
period for =sf EE 0.3 changed only from 
0.419 s to 0.409 s.  
 
To investigate the influence of effective width of 
the foundation on its stiffness, let us consider 
stiffness estimates for rectangular foundations 
(with dimensions BxL) as given by Wolf and 
Meek (1994) and a Department of Defense 
Manual (1983), maintaining a constant monolith 
base B and varying the equivalent width L. 
Figure 3 shows the corresponding lateral and 
rocking stiffness normalized by the foundation 
width. The results show larger flexibility per 
unit width as the width L of the rigid foundation 
increases. Concrete gravity monoliths interact 
through the foundation rock and contraction 
joints. Assuming that adjacent monoliths of 
similar height show synchronous motion, 
foundation stiffness estimates for a single 
monolith on an isolated foundation will show 
some overestimation because the width of the 
single monolith would be used in the 
computation of its corresponding foundation 
stiffness. The equivalent stiffness per unit width 
of a single monolith is clearly larger than the 
stiffness per unit width of two or more 
monoliths (much larger BL ) with synchronous 
motion (as shown in Figure 3). In the limit, the 

foundation stiffness for ∞→BL should 
converge to the stiffness estimated by a 2D FE 
model with a plane-strain foundation region. The 
values shown between parentheses in Table 1 
correspond to models with foundation stiffness 
adjusted to the values obtained from a 2D FE 
analysis of a rigid foundation, neglecting 
coupling of the condensed stiffness matrix. 
These values are closer to the 2D FE estimates 
in fundamental period of vibration and effective 
lateral mass. 
 
The main reason for the difference in the 
computed periods shown in Table 1 is that the 
representation of foundation flexibility effects in 
the 2D FE model and the approximate model 
based on analytical expressions for a square 
isolated foundation differ significantly. These 
foundation modeling approaches are simplified 
strategies to represent the actual 3D system 
constituted by the concrete gravity monoliths 
and the foundation rock. A single monolith or a 
set of adjacent monoliths do not behave as 
supported by isolated square foundations, or by 
a single rigid rectangular foundation of infinite 
out-of-plane width. Therefore, special attention 
should be paid when developing approximate 
models to represent the foundation region 
beneath single monoliths, particularly for those 
cases with relatively low values of sf EE . 
 
2.3 Simplified Foundation Model 
 
Another simplified approach to estimate mode 
shapes and natural frequencies of a concrete 
gravity monolith, including foundation 
flexibility effects, is to use standard FE 
discretization techniques on the dam and 
represent the foundation elasticity by equivalent 
lumped elements at the center of gravity of the 
dam-foundation interface section. This model 
requires the incorporation of nodal displacement 
constraints enforcing rigid-body conditions 
along the base of the dam.  
 
For low-frequency mode estimation, the 
parameters defined in Eq. (1) or other 
frequency-dependent dynamic stiffness 
expressions suggested in the literature can be 



 
  

 

 

used. Because the rigid-body constraint along 
the dam-foundation interface does not have a 
significant effect on the lower natural 
frequencies, this type of model provides good 
estimates of low-frequency mode shapes and 
natural frequencies, provided that the lumped 
stiffness parameters are assumed adequately. 
 
2.4 Simplified Dam-Foundation Model 
 
The normalized effective mass in vertical 
motion of the fundamental mode of vibration of 
a typical dam on flexible foundation is relatively 
small, as shown in Table 1. In addition, vertical 
displacements due to rocking motion are not 
very significant. Therefore, a simplified 3-
degree-of-freedom (3DOF) model that neglects 
vertical motion and captures the lateral and 
rocking components due to foundation flexibility 
can give satisfactory accuracy in the estimation 
of the fundamental mode of vibration. The 
model defines a horizontal displacement field as 
 

)()()()(),,( 1 ytqyttqtyxu ssxx ψθ ++= (2)
 

where ( )xq t =  rigid body lateral displacement 
of the dam induced by the foundation, ( )tθ =  
the rigid body rotation induced by the 
foundation, 1 ( )s yψ =  Chopra’s standard mode 
shape used in the simplified method, and 

( )sq t =  the coordinate that represents dam 
deformation. For these coordinates, the stiffness 
matrix can be expressed as 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

s

h

k
k

k

00
00
00

θK  (3)

 
where  
 

2 2
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(2 ) 2 ( ) ( )sH

s s s sk T ba y y dyπ ρψ= ∫  (4)
 

sρ =mass density of dam concrete, and 

1sT = standard fundamental frequency of the 
dam on rigid foundation (Fenves and Chopra, 

1986); a(y) = width of the cross section of the 
dam; B = 2b is the monolith base; and L = 2b is 
the monolith thickness or width, assumed equal 
to B to use the stiffness of a square foundation 
defined in Eq. 1 (as discussed previously, the 
stiffness of a different equivalent rectangular 
foundation could be alternatively used). 
 
Using the mass distribution of the dam and 
considering only horizontal motion of the dam 
(assumed independent of horizontal coordinate 
x), we obtain the corresponding mass matrix 
from the differentiation of the approximation of 
the kinetic energy 
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Solving the standard eigenvalue problem, we 
obtain an estimate of the first natural period and 
mode shape of the dam taking into account 
foundation flexibility. The results obtained by 
this method are shown in Table 1 and compared 
with the corresponding values obtained by the 
continuum model. As shown, an excellent fit is 
obtained with the continuum model described in 
the previous section. 
 
Defining the first mode estimation as 
 

1 1 2 3 1( ) / ( )s sy y H yφ β β β ψ= + + , (6)
 
normalizing this first mode shape such that 

1( ) 1sHφ = , and considering that 1 ( ) 1s sHψ = , 
then the estimated mode shape can be entirely 
defined by the coefficients 1β  and 2β , 
with 3 1 21β β β= − − .  
 
Figure 4 shows the foundation flexibility effects 
on the lateral displacement component, 1β , the 
rocking component, 2β , and the deformation 
component 3β  corresponding to the first mode 
of vibration. The figure shows the first mode 
estimates obtained with both the continuum 



 
  

 

 

model and the 3DOF model. If a finite-element 
model of the dam-foundation system is not 
available, then the mode shape computed with 
the 3DOF model is recommended for estimating 
inertial load distribution in simplified seismic 
analysis of dams and hydrodynamic loads, as we 
explain in the following section. 
 
3. DAM-RESERVOIR INTERACTION 
 
3.1 Hydrodynamic Pressure 
 
The dynamics of a single monolith of a gravity 
dam can be efficiently modeled in planar 
motion. The horizontal acceleration of the 
boundary of the fluid domain in contact with the 
vertical upstream face of the dam (coordinate 
x=0) causes interaction between the dam and the 
reservoir. Let us define 
 

( , ) ( ) (0, , )x gx xu y t u t r y t= +&& &&  (7)
 
where  ( , )xu y t&&  = horizontal absolute motion of 
the upstream dam face, ( )gxu t&&  = free-field 
ground motion in the horizontal direction, and 

(0, , )xr y t = relative motion of the upstream dam 
face with respect to the free-field motion. This 
relative motion of the dam face can be modeled 
as a linear combination of Nq generalized 
coordinates ( )iq t  and Ritz fields (or finite-
element shapes), ( , )i x yψ , in a reduced-order 
finite-dimensional model of the dam as follows: 
  

1
(0, , ) ( ) (0, )

qN

x i i
i

r y t q t yψ
=

=∑  (8)

 
In this study, the mode shapes of the dam-
foundation model are used for order reduction 
because these coordinates show minor coupling, 
allow the estimation of the effects of reservoir 
interaction in a direct manner, and are suitable 
for spectral modal analysis. 
 
Assuming a uniform vertical acceleration 

( )gyu t&& along the bottom of the reservoir, we can 
obtain the following frequency-domain 

expression for the hydrodynamic pressure 
distribution on the dam face as a linear 
combination of the boundary motions of the 
reservoir: 
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where ϖ =  frequency variable, ( , )

gxpuH y ϖ&&  = 

frequency response function (FRF) from 
horizontal ground acceleration (rigid dam face) 
to hydrodynamic pressure, ( , )

gypuH y ϖ&&  = FRF  

from vertical ground acceleration (rigid reservoir 
bottom) to hydrodynamic pressure, and 

( , )
ipqH y ϖ =&&  FRF from acceleration of modal 

coordinate ( )iq t  to hydrodynamic pressure 
( , )p y t  on the dam face. These frequency 

response functions depend on the generalized 
shapes used in the analysis. 
 
Using virtual work, the load vector on the 
generalized modal coordinate ( )iq t  due to the 
hydrodynamic pressure can be expressed as 
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where Hw is the height of water in contact with 
the dam face. In vector notation then 
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( )

q gxp u ϖH && and ( )
q gyp u ϖH &&  are column vectors of 

Nq components, and ( )
qp q ϖH && is a square Nq x 

Nq matrix obtained by integration of Eq. (10) 
after replacing Eq. (9) into Eq. (10). 
 
The frequency domain formulation of 
rectangular semi-infinite fluid domains (Eq. 9  
and Eq. 10) has been investigated by several 



 
  

 

 

authors. Details of the formulation can be found 
in the work by Fenves and Chopra (1984) where 
the effects of energy absorption in the bottom of 
the reservoir are considered and a 
comprehensive analysis of the reservoir-dam- 
foundation interaction is presented. The main 
parameters required for this formulation are Hw 
= height of water reservoir, ρw = density of 
water, Cw = speed of sound in water, and α = 
wave reflection coefficient for reservoir bottom 
absorption. To carry out the computations 
presented in this paper, a computer program was 
developed to evaluate the pressure frequency 
response functions, implementing this 
formulation. 
 
Let us consider the hydrodynamic loads on the 
first mode of vibration of the dam-foundation 
system due to accelerations in the first modal 
coordinate. Variations in the fundamental mode 
shape of the dam monolith significantly affect 
this fluid-structure interaction problem, as 
shown in Figure 5, where the normalized real 
and imaginary components of the hydrodynamic 
load on the first modal coordinate due to 
acceleration of this modal coordinate are shown 
for two values of frequency and for different 
foundation flexibility values.  
 
To better quantify the effect of foundation 
flexibility on hydrodynamic pressures, the added 
hydrodynamic mass on the first modal 
coordinate ])1,1[(real qpq &&

H−  and the energy 

dissipation component ])1,1[(imag qpq &&
H  are 

computed as functions of frequency and 
normalized with respect to the first modal mass 
m1 to show the proportion of equivalent added 
hydrodynamic mass on the first modal 
coordinate due to dam-reservoir interaction and 
the energy dissipation of the first modal 
coordinate due to reservoir interaction (Figure 
6). The normalized frequency is 1/ rϖ ω , where 

1rω = first natural frequency of the reservoir. 
Although the hydrodynamic pressure increases 
with the change in mode shape due to the 
increase in foundation flexibility (Figure 4), the 
relative increase of hydrodynamic mass with 
respect to modal mass decreases, because the 

modal mass increases more rapidly with the 
increase of foundation flexibility. 
 
Figure 7 shows the absolute value and the real 
part of [1]

q gxp uH &&  normalized by the ground-

motion influence coefficient 1 1 1T
x xL φ= − M  to 

assess the relative importance of the 
hydrodynamic pressure loading terms with 
respect to the direct seismic inertial load on the 
fundamental modal coordinate. As the figure 
shows, for values of 1/ rϖ ω close to 1, the 
hydrodynamic load on the first mode takes 
values close to the inertial effect of the ground 
motion on the dam with empty reservoir. 
 
3.2 Coupled Dam-Reservoir System 
   
The dynamic behavior of the dam-foundation-
reservoir model can be expressed as 
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where Mq, Cq, and Kq are the mass, damping 
and stiffness matrices of the dam-foundation 
model in modal coordinates; vectors 1x and 1y 
contain ones in the corresponding degrees of 
freedom of the dam (in direction x and y, 
respectively); the mass matrix M contains only 
the mass contribution of the dam (massless 
foundation model). 
 
Replacing Eq. (11) into Eq. (12), the following 
frequency-domain representation of the 
dynamics of the coupled system is obtained: 
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Because the dam-foundation mode shapes are 
used in the formulation, matrices Mq and Kq are 
diagonal. If classical modal damping is defined 
for each mode, Cq is also diagonal. In this work, 
5% modal damping ratios are assumed for the 



 
  

 

 

dam-foundation model, and foundation radiation 
damping is not considered.  
 
Figure 8 shows a block diagram representation 
of the dynamics of the coupled dam-reservoir 
system (closed-loop system). By examining the 
frequency-domain representation in Eq. (13), a 
feedback component, given by ( )

qp q ϖH && , can be 

identified in the dynamics of the coupled system 
which modifies the natural frequencies and 
damping ratios of the dam-foundation model. 
 
Natural frequencies of the dam-foundation 
system are typically well separated (Inaudi and 
Matusevich, 2005), and modal coupling due to 
hydrodynamic pressure does not play a major 
role in seismic response and can be neglected 
without significant loss of accuracy. Therefore, 
neglecting modal interaction through the fluid 
(off-diagonal terms of the matrix ( )

qp q ϖH && ), the 

fundamental closed-loop system resonance 
frequency, 1ω̂ , can be estimated by finding the 
frequency that makes the dynamic stiffness of 
the first modal coordinate equal to zero:  
 

2
1 1 1 1ˆ ˆ( real( [1,1]( )))

qp qm kω ω− − + =H 0&&  (14)
 
where k1 and m1 represent the first-mode 
stiffness and modal mass, respectively, of the 
dam-foundation model. 
 
The contribution of the reservoir to the damping 
ratio of the approximate first modal equation can 
be estimated by equating the imaginary part of 
the modal dynamic stiffness to that 
corresponding to a viscous single-degree-of-
freedom (SDOF) oscillator at 1ˆϖ ω= , to obtain 
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Let us define the coefficient Rr as the ratio of 
period of the coupled dam-reservoir system to 

the period of the dam-foundation model. Figure 
9a shows the variation of this coefficient as a 
function of sf EE  for a set of values of α, for 
the dam model previously used as an example. 
The figure shows that the coefficient Rr clearly 
depends on foundation flexibility. This is due to 
the mode shape dependence on the ratio 

sf EE . The figure also shows that Rr becomes 
almost independent from the wave reflection 
coefficient α for sf EE < 0.5.  
 
In Chopra’s simplified method, the period 
elongation of the dam-foundation-reservoir 
model is estimated by the product of two factors: 
Rf and Rr. The factor Rf depends on the ratio 

sf EE  and is independent of reservoir 
interaction effects, whereas Rr is independent of 
the flexibility of the foundation since it is based 
on the mode shape corresponding to rigid 
foundation conditions.  
 
Figure 9b shows estimates of the damping ratio 
contribution associated with hydrodynamic 
effects (defined as 1r̂ξ  in this paper and rξ  in 
Chopra’s simplified method) for different values 
of α. Again, we notice that dam-reservoir 
interaction damping depends on the ratio 

sf EE . This term is considered independent of 
foundation flexibility effects in Chopra’s 
simplified procedure. As the figure shows, the 
change in this parameter due to foundation 
flexibility is not as significant as the change in 
Rr. 
 
3.3 Equivalent SDOF Model 
 
To compute the equivalent natural frequency of 
the first closed-loop mode shape, the first mode 
of vibration can be approximated by Eq. (6). The 
coefficients, 1β , 2β ,  and 3β  are computed by 
standard modal analysis of the dam-foundation 
model or solving the eigenvalue problem for the 
3DOF model described in section 2.3.  
 
The computation of [1,1]

qp qH &&  requires the 

evaluation of the integrals of the frequency-



 
  

 

 

response functions of the hydrodynamic pressure 
for the response components that define the 
fundamental mode, and this can be expressed as 
the following quadratic form 
 

[ ]
1 1

2 2

3 3

[1,1]( ) ( )
q

T

p q HDT
β β

ϖ β ϖ β
β β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

H &&  (16)

 
where )(ϖHDT  is a symmetric 3X3 matrix 
whose terms are obtained by integrating along 
the height of the dam the frequency response 
functions between the generalized coordinates 
and the hydrodynamic pressure. 
 
Because )(ϖHDT  is symmetric, only six 
different terms are required to define the full 
matrix. These terms are shown in Figure 10 for 

0.9α =  and / 1w sH H = , as functions of 
normalized frequency and normalized by the 
reservoir height square and water density. 
Assuming these functions are available in tables 
or graphs similar to Figure 10 for all ranges of 
parameters of interest, a general procedure can 
be proposed as follows: 
 
I. Compute the first mode of vibration and 

natural frequency 1ω of the dam-
foundation model to obtain the 
parameters 1β , 2β , 3β , 1m , and k1. 

II. Initialize 1 1ω̂ ω=   
III. Compute normalized frequency estimate 

1 1ˆ /w rR ω ω=  
IV. From tables or graphs evaluate ( )HD wT R  

and compute [1,1]
qp qH && with the quadratic 

form in Eq. (16). 
V. Compute 1ω̂  using Eq. (14). 
VI. Return to III until convergence is achieved 
 
Once the closed-loop natural frequency has been 
computed, 1r̂ξ  can be computed applying Eq. 
(15). For the standard mode shape defined by 

1β , 2β , and 3β , we can express 
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3 3

imag( [1,1]( ))

imag ( )

qp q
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3.4 Hydrodynamic Loading Terms 
 
In the frequency-domain representation defined 
in Eq. (13), four loading terms can be identified. 
Two of them are directly due to ground motion 
inertial effects, and they are standard in any 
seismic analysis problem. The other two loading 
terms, which are given by ( ) ( )

q gxp u gxUϖ ϖH &&
&&  

and ( ) ( )
q gyp u gyUϖ ϖH &&

&& , constitute feed-forward 

components and they represent reservoir-filtered 
ground motion terms. They represent the 
pressure acting on the generalized coordinates 
due to the hydrodynamic pressure field produced 
by a rigid dam moving laterally and a rigid 
reservoir bottom moving vertically, respectively. 
The spectra corresponding to these reservoir-
filtered ground motion signals will show peaks 
at the natural frequencies of the reservoir. 
Therefore, the frequency response functions 
from ground acceleration to a particular output 
of the system will show these peaks, which are 
not related to modes of vibration of the closed-
loop system (fluid-structure interaction model) 
but to the feed-forward loop defined by the 
reservoir. These peaks are especially noticeable 
in the case of full-reservoir rigid dams (high Es 
values or special monolith geometries that show 
a first natural frequency of the reservoir lower 
than the first frequency of the dam), and wave 
reflection coefficient α close to 1. 
 
As these filters amplify the input signal at the 
natural frequencies of the reservoir, their effect 
on the dam response may be significant if the 
natural frequency of the reservoir coincides with 
the closed-loop frequency of the dam-
foundation-reservoir system. This is not an 
unusual situation when Hw is close to Hs. The 
first natural period of a standard non-overflow 
dam monolith on rigid foundation is 
approximately (Fenves and Chopra, 1986) 
 



 
  

 

 

1 1.4 /s sT H E=  (18)
 
for Hs in feet and Es in psi. The fundamental 
natural period of the reservoir with α =1 is 
 

1 4 /r w wT H C=  (19)
 
Considering the speed of sound in water 

wC = 4,720 ft/s (1,438.7 m/s), and from the last 
two equations, it can be shown that a value of Es 
= 2,729,104 psi (1,918,750 ton/m2) yields 
identical values of natural periods for s wH H= . 
In addition, the closed-loop system fundamental 
period of the dam-reservoir system will be 
higher than 1T  due to reservoir added mass. This 
means that it could be possible to have a first 
natural period for the dam-reservoir system 
equal to the reservoir natural period for some 
value of Es larger than 2,729,104 psi. 
 
In the case of flexible foundation rock, the 
elongation of the natural period due to 
foundation flexibility and reservoir interaction 
will usually separate the closed-loop natural 
period from the reservoir natural period. Another 
consequence of this is related to the amount of 
added damping by the reservoir because the 
imaginary part of the hydrodynamic pressure 
FRF shows larger imaginary parts (dissipation) 
for frequencies larger than the reservoir natural 
frequency. This means that foundation flexibility 
in general will produce small added damping 
contribution to the first modal coordinate due to 
reservoir interaction. 
 
To estimate the loading terms for the first modal 
equation, the real and imaginary parts of the 
reservoir-filtered ground motion signal can be 
computed as a linear combination of the 
parameters 1β , 2β , and 3β  that define the 
proposed mode shape. Figure 10 shows the real 
and imaginary parts of the functions required to 
compute the frequency-domain hydrodynamic 
loading coefficients for ground motion in the 
horizontal and vertical directions, 
 

1 2 31 1 2 3( ) ( ) ( ) ( )
x x xHD xL L L Lβ β βϖ β ϖ β ϖ β ϖ= + + (20)

 

1 2 31 1 2 3( ) ( ) ( ) ( )
y y yHD yL L L Lβ β βϖ β ϖ β ϖ β ϖ= + + (21)

 
Another alternative approximation for the 
reservoir-filtered ground motion effects is to 
assume an incompressible fluid for the loading 
terms. This leads to frequency-independent 
terms that allow the assembly of equivalent 
hydrodynamic masses for horizontal and vertical 
ground motion components. This assumption 
simplifies the response computations, in 
particular in modal spectral analysis. If this 
approximation is used, the right-hand side term 
of Eq. (13) is approximated by 
 

2 ( ( )) ( )

( ) ( ) ( ) ( )
qq p q q q

T T
HDx x gx y HDy x gy

j

U U

ϖ ϖ ϖ ϖ

ϖ ϖ

⎡ ⎤− − + + =⎣ ⎦
−Φ + −Φ +

M H C K Q

M M 1 M1 M 1

&&

&& &&
(22)

 
where the matrices HDxM  and HDyM  represent 
frequency-independent hydrodynamic mass 
contributions for horizontal ground motion and 
vertical ground motion, respectively. Their 
nonzero entries corresponding to the “wet” 
lateral-displacement degrees of freedom along 
the upstream face of the dam, and they can be 
computed using an uncompressible fluid model 
of the reservoir (Inaudi and Matheu, 2005). 
 
3.5 Higher Mode Correction 
  
Because the second and higher modes of a 
monolith have natural frequencies significantly 
higher than the fundamental mode of vibration, 
their contribution to the response can be 
estimated by a static mode correction method 
(Chopra and Fenves, 1986).  
 
In the frequency domain, the higher mode 
coordinates are assumed uncoupled, therefore 
 

( ) ( 1 ( )) ( ) ...

( 1 ( )) ( ) 2,3,...
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qi gy

T
i i i x p u gx

T
i y p u gy

k Q H U

H Ü i

ϖ φ ϖ ϖ

φ ϖ ϖ
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M

&&

&&
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If the uncompressible model is used for the 
loading terms, 
 

( ) ( )1 ( ) ...
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Several additional criteria can be used to further 
approximate higher mode components. Details 
of these procedures are given elsewhere (Inaudi 
and Matheu, 2005). 
 
3.6 Accuracy of SDOF-Model Estimation 
   
To analyze the prediction capability of the 
equivalent SDOF model, the FRF from free-field 
ground acceleration to dam-crest displacement 
and the FRF from free-field ground acceleration 
to normalized base shear are computed for the 
full FE model and for the equivalent SDOF 
model. The results are shown in Figure 13 for 
three values of foundation flexibility. The 
figures show the exact response of the full 
model, the estimation using only the 
contribution of the equivalent first mode, and the 
estimation using the contribution of the first 
mode and static correction in higher modes. The 
input signals are considered without 
approximations as given by the ground motion 
acceleration producing inertial forces and the 
reservoir-filtered ground motion signals. As 
figures show, dam-crest relative displacement 
FRF is accurately estimated by the first mode of 
vibration with or without static correction term. 
Base shear FRF estimation is significantly 
improved by including the static correction term 
in addition to the equivalent single mode 
response. Figure 14 compares the simplified 
method using the full reservoir-filtered ground 
motion and the simplified method using 
frequency-independent loading terms. As the 
figure shows, very similar results are predicted 
by both methods. Therefore, a simplified method 
with static correction and incompressible fluid 
model for the evaluation of loading terms 
constitutes an efficient alternative for modal 
spectral analysis of dams on flexible foundation. 
 
4. CONCLUSIONS 
 
Any simplified linear method for dam analysis 
has its limitations in strong ground motion 
response estimation: nonlinearities in concrete 
and rock foundation and fluid cavitation are 
neglected. Nevertheless, linear models give a 
good starting point for preliminary dam design. 
A precise estimation of modes of vibration, with 

foundation flexibility effects included, lead to 
better estimates of inertial forces and 
hydrodynamic interaction. 
 
The consideration of foundation flexibility in the 
determination of mode shapes has significant 
influence on the effective modal mass, 
hydrodynamic pressure, and base shear in cases 
of low modulus of elasticity of the foundation 
rock with respect to dam concrete. The use of 
the dam-foundation fundamental mode shape 
instead of the standard fundamental mode (dam 
on rigid foundation) is recommended for 
simplified seismic analysis of dams if the 
foundation modulus of elasticity is of the order 
or smaller than that of the dam concrete. A 
simple 3DOF model is proposed for the 
corresponding implementation of the simplified 
analysis. 
 
As the examples demonstrated, the 
approximation of the frequency-domain loading 
terms by using an incompressible model of the 
fluid leads to satisfactory results in dams with 
closed-loop frequencies separated from the 
reservoir natural frequencies, a typical situation 
for gravity dams on flexible foundation rock. 
Research by the authors on these topics is 
ongoing with the intent of improving valuable 
simplified linear response spectrum methods 
available to the engineering community. 
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Figure 1. FE-model mesh (left) and fundamental vibration mode shape on upstream face of dam 
computed with FE model for / 0.3,0.5,1,2,5,f sE E = ∞ (right)   

Figure 2. Alternative simplified models of dam-foundation system. 
 

Table 1 Comparison of fundamental period and normalized effective mass for lateral ground motion 
estimated by 2D FE model, continuum model with lumped foundation model (CP), and 3DOF model with 

lumped foundation model. Values in parentheses are for foundation stiffness adjusted to 2D FE model. 
 

 T1   [s] me1x/mdam me1y/mdam 
Ef/Es FE CP 3DOF FE CP 3DOF FE CP 3DOF 

0.3 0.419 0.340 
(0.381) 

0.342 
(0.385) 

0.731 0.665 
(0,717) 

0.770 
   (0.832)    

0.051 0.064 
(0,077) 

0 
(0) 

0.5 0.351 0.291 
(0.319) 

0.292 
(0.322)     

0.687 0.621 
(0,678) 

0.710 
(0.779)    

0.045 0.056 
(0,067) 

0 
(0) 

1 0.291 0.250 
(0.266) 

0.250 
(0.266)     

0.604 0.551 
(0,604) 

0.620 
(0.683)    

0.038 0.046 
(0,054) 

0 
(0) 

2 0.257 0.228 
(0,236) 

0.228 
(0.236)   

0.517 0.490 
(0,527) 

0.547 
(0.590)    

0.031 0.038 
(0,043) 

0 
(0) 

5 0.235 0.215 
(0,218) 

0.214 
(0.218) 

0.437 0.440 
(0,458) 

0.490 
(0.511) 

0.026 0.032 
(0,034) 

0 
(0) 

Inf 0.212 0.206 0.205 0.358 0.400 0.447 0.022 0,028 0 
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Figure 3. Equivalent foundation stiffness per unit width. 

 

 
 

Figure 4. Contributions to lateral displacement of the first mode due to rocking and lateral deformation of 
the foundation. a) 3DOF model; b) CP model. 

 
 

 
Figure 5. Effect of foundation flexibility on feedback hydrodynamic pressure function for fundamental 

mode shape: a) 1/ rϖ ω = 1, α = 0.90; b) 1/ rϖ ω = 1.5, α = 0.90. 



 
  

 

 

 
Figure 6. Normalized hydrodynamic mass contribution to first modal coordinate as a function of 
normalized frequency 1/ rϖ ω  and damping contribution 1 1Im( [1,1]) /(2 )

qp q rH mϖ ω&&  (α = 0.90). 

 
 
Figure 7. Feed-forward hydrodynamic pressure on the first mode [1]

q gxp uH normalized by 1 1 1T
xL φ= M , 

as a function of normalized frequency (α = 0.90): a) absolute value, b) real part. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Block diagram representation of dam-reservoir interaction. 
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Figure 9. Period modification factor Rr and hydrodynamic damping ratio ξr as functions of Ef/Es for 
various values of α  (First mode of FE model). 

 
 

 
Figure 10. ( )HDT ϖ for the three generalized mode shapes normalized to unity at dam-crest frequency  

(α = 0.90). 

 
Figure 11. ( )HDxL ϖ for the three generalized mode shapes normalized to unity at dam-crest frequency  

(α = 0.90). 



 
  

 

 

 
Figure 12.  Normalized ( )HDyL ϖ for the three generalized mode shapes normalized to unity at dam-crest. 

 
Figure 13. Dam-crest displacement FRF and normalized base-shear FRF for FE model (solid line), single 
mode ( / 0.3, 2,f sE E = ∞ ).  No foundation radiation damping considered in the analyses; 5% structural 

damping ratios in all modes. 
 

 
Figure 14. Dam-crest displacement FRF and normalized base-shear FRF for FE model (solid line), 

simplified method and simplified method with incompressible fluid model for loading terms. 
 


