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ABSTRACT 

The present paper focuses on structural fire 
resistance of heated steel columns, in particular 
the columns subjected to thermal elongations of 
adjacent beams at fires. Behavior of the steel 
column at the fire is minutely investigated by 
making full use of a refined finite element 
analysis taken a 3-D non-linear thin plate 
element into account. From results obtained by 
numerically parametric calculations, it is 
clarified that the above thermal elongation is not 
a sensitive factor affected the fire resistance of 
the steel column and its ultimate temperature 
can be estimated by verification methods which 
has been proposed in the Recommendation for 
Fire Resistant Design of Steel Structures (AIJ, 
1999). 
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1. INTRODUCTION 
 

Recent studies on the fire resistance of steel 
structures have focused on the stability of steel 
members and steel structures during fires 1-5). To 
investigate the structural stability of structures 
exposed to fire, the fire load-bearing capacities 
of key members (beams, columns and 
connections) and other factors involved in their 
stability should be investigated since their 
collapse may lead to the collapse of the entire 
structure. The overall structural stability during 
fires of the combined members needs to be 
understood. Since the fire stability of members 
is closely related to the fire stability of the 
frames, the fire stability of both should be 
known to determine the fire resistance of a 
structure. 

Overall and local buckling of steel columns 
are one of the key causes that destabilize a 
structure. Especially, the fire resistance of 

columns positioned within frames is affected by 
elongation of adjacent beams. When beams are 
heated during a fire, the beams expand 
lengthwise and push adjacent heated columns. 
The longer the beam, the further it elongates, 
which may cause local buckling of adjacent 
columns at their upper and lower ends. 
Structures with long beam spans have increased 
in recent years and could suffer excessive 
elongation during fires. In most structures, the 
collapse of a fire compartment room is 
controlled by applying fire proofing materials to 
steel members to prevent excessive elongation 
and using fire resistant columns. Methods for 
controlling the heat input into beams have been 
found to be effective for preventing elongation, 
but the necessary structural fire resistance of 
columns is not understood and this question has 
not yet been clearly resolved. 

In the present study, a numerical analysis by 
the finite element method was conducted to 
investigate factors involved in the 
destabilization of steel columns at high fire 
temperatures, such as the possibility of local 
buckling when pushed by elongating beams, the 
behaviors of steel columns after local buckling, 
and the possibility of local buckling inducing 
failure of the columns, and to determine the 
temperature at which the columns collapse 1). 
The results of the numerical analysis were also 
used to investigate the validity and feasibility of 
existing methods for assessing the fire resistance 
of steel columns. 

In Japan, various attempts have been made to 
ensure the fire safety of steel structures, such as 
the method for assessing the collapse 
temperature at which steel columns suffer local 
buckling proposed in “ Recommendation for 
Fire Resistant Design of Steel Structures ”6). The 
validity of the method has been investigated by 
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conducting non-linear finite element analysis 7) 
using two-dimensional beam elements, in which 
several numerical assumptions are made, such as 
the deteriorating stress-strain relationship after 
local buckling is given as a known value and the 
beam element models are restricted to 
two-dimensional behaviors on a plane. Actual 
steel columns have cross sections in which steel 
plates are combined, so local buckling involves 
the three-dimensional behavior of collapse of 
the sectional form. To investigate the validity of 
the method for determining the collapse 
temperature, a precise numerical analysis is 
needed. This paper describes a non-linear finite 
element analysis using three-dimensional thin 
plate elements (shell element) to investigate the 
precise behaviors of steel columns during local 
buckling at high temperatures. The validity of 
the analysis was examined by comparing the 
results with those of high-temperature 
experiments of short steel columns in the past. 
 
2. COMPARISON OF NUMERICAL 
ANALYSIS RESULTS FOR SHORT STEEL 
COLUMNS AND EXPERIMENTAL 
RESULTS IN THE PAST 
 

Hirashima et al. conducted compressive tests 
of heated stub columns at a constant temperature 
and under increasing load 8). In their experiment, 
weld assembly square hollow columns were 
used. A cross section of the specimen is shown 
in Figure 1, and its specifications are listed in 
Table 1. The plate width of the specimen was B, 
the plate thickness was t, and the total length 
was H. Specimens of width to thickness ratios 
(B/t) of 25 and 30 were used. The length to 
width ratio (H/B) was 3 in all specimens. In the 
experiment by Hirashima et al., splice plates 
were welded on the corners to prevent the weld 
joints from breaking during the experiment 
(Figure 1). The thickness of the splice plates (ts) 
was 9 mm, which was thicker than the plates 
constituting the specimens (t). Therefore, the 
experimental results should have been affected 
by the splice plates. The models of the 
rectangular specimens used for numerical 
analysis are shown in Figure 2(a) and 2(b). The 
finite element models were constructed using 
the three-dimensional thin plate elements 

proposed in Reference 9). Details of the models 
are described in the reference; an overview is 
given below: 
 
1) The plate elements were rectangular. There 
were eight nodes per element: four on the 
corners and four in the middle of each side. The 
nodes on the corners had two degrees of 
freedom along the parallel direction, two 
degrees of freedom along the out-of-plane 
rotational direction, and two degrees of freedom 
along the in-plane rotational direction, making a 
total of seven degrees of freedom. The nodes in 
the middle of the sides had one degrees of 
freedom along the parallel direction. Each 
element had a total nodal degrees of freedom of 
32. 
2) The strain in the elements was determined 
according to Green’s strain tensile 10) to cope 
with geometrical non-linear problems. The 
multi-axial elasto-plastic constitutive law 
followed the Prandtl-Reuss law 11) and was used 
to derive the increment stress-strain relationship 
under plane stress. 
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 Table 1 Specifications of Specimen 

 B/t = 25 B/t = 30

Plate Width B  150 135 

Plate Thickness t  6 4.5 

Height of Specimen H  450 405 
S. Plate Width sB  25 25 
S. Plate Thickness st  9 9 
(Unit : mm) 
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3) The equation of equilibrium of force for the 
plate elements was determined using the 
principle of virtual work. The discretization into 
finite elements, and derivation of incremental 
control equation (incremental relationships 
between the node force and node displacement) 
were determined. 

Assuming the specimens were symmetrical 
right and left and up and down, partial analytical 
models A and B, each consisting of two steel 
plates, shown in Figure 2(a) and 2(b) were 
analyzed. The number of elements differed 
between Models A and B. Model A was divided 
into 400 elements of equal size, and Model B 
was divided into 50 elements of equal size. The 
other analytical conditions were all the same. 
Models A and B were used for the following 
reasons. 

Generally, local buckling deformation in the 
columns tends to concentrate at points of 
buckling. At the points of local buckling, the 
plate deforms toward the out-of-plane, showing 
very complicated stress conditions. Thus, at 
least a certain number of elements are needed to 
precisely analyze the behavior of plates during 
local buckling. On the other hand, the 
calculation load jumps when the number of 
three-dimensional plate elements is increased. 
For example, parametric numerical analysis of 
the behaviors of steel columns during fire, 
which is described in a following paragraph, 
requires an enormous amount of calculation and 
long calculation time. The three-dimensional 
plate elements used in this numerical analysis 
can precisely analyze the non-linear behaviors 
of plates using the least number of elements 
because each element has a nodal degrees of 
freedom of 32, enabling the displacement 
function inside the element to be set more 

precisely than for plate elements that have only 
four nodes 12). This was expected to reduce 
calculation loads. To examine the advantage, 
Model B shown in Figure 2(b) was also used as 
an analytical model. 

The relationships between stress σ and strain 
ε at high temperatures used in the analysis are 
shown in Figure 3. The stub column specimens 
were made of JIS SM490 steel, and the test 
results are shown with solid lines in the figure. 
The dashed lines in the figure denote the σ-ε 
relationships used in the numerical analysis, 
which were derived by approximating the test 
results (solid lines) to the σ-ε relationships of 
steels stated in the Recommendation for Fire 
Resistant Design. Young’s modulus of the steel 
at high temperatures was the values stated in 
Reference 6). Figure 3 shows that the stress 
jumped at a strain of 0.5% at temperatures above 
500°C. This was because the strain speed 
changed from 0.3%/min to 10%/min at 0.5% 
strain. This sudden rise in stress was not 
incorporated in the σ-ε relationships (dashed 
lines) used for the numerical analysis. At strains 
of over 0.5%, the forms of the σ-ε relationships 
(dashed lines) were determined so as to agree 
with the experimental stress values at 10% strain. 
This method was based on the same concept 
used by Hirashima et al. for determining the σ-ε 
relationships. Hirashima et al. reported no 
specific values for the loading speed (strain 
velocity) during their short column experiment 
at high temperatures but only that the loading 
was continued for about 100 minutes. The 
loading speed estimated from the duration of 
loading was slower than that used for the 
coupon tests at high temperatures (0.3%/min). 

The sections where the splice plates were 
welded were modeled as plate elements that had 
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a thickness of the sum of the plate thickness t of 
the specimen and the plate thickness ts of the 
splice plate. Since both ends of the specimen 
were connected to an accelerator via steel blocks, 
rigid plate elements were added to the upper 
ends of Models A and B, and the rotational 
freedom along the upper sides ab and bc was 
restricted. The initial imperfections were given 
by applying minute uniform load on the sides de 
and ef at the center of the specimen in Figure 2 
toward the out-of-plane direction of the plates. 
The uniform load was adjusted so as to produce 
initial out-of-plane deflection of -B/1,000 and 
B/1,000 at points d and f in the middle of the 
specimen, respectively, in all analytical cases. 
The load imperfections were given in this 
analysis because it was easier than giving 
configuration imperfections. The stub column 
specimens tested were suspected of having 
produced local temperature distribution and 
strain restriction, and the specimens before load 
application at the high temperature were likely 
to have received any minute load imperfections 
by heat and other stresses as well as 
configuration imperfections. The displacement 
at point b on the upper end along the member 
axis (displacement along the y direction in 

Figure 2) was controlled, and uniform 
compressive load was applied on the specimen 
via rigid plate elements. Analysis was conducted 
for specimen temperatures ranging from ambient 
temperature to 600°C. 

The experimental results and the results of the 
numerical analysis are shown in Figure 4 for 
stub columns of square hollow section. The X 
axis of the figure shows the average strain of the 
specimens, and the Y axis shows the average 
stress. The former is the value determined by 
dividing the total length H of the specimen by 
compressive deformation δv, and the latter is the 
value determined by dividing the compressive 
force P applied on the specimen by the total 
cross sectional area A of the specimen including 
the area of the splice plates. The open circles in 
the figure denote the experimental results, and 
the solid and dashed lines are the analytical 
results of Models A and B, respectively. Figure 
4(a) and 4(b) show that the experimental and 
analytical results agreed with each other quite 
well in all cases although not perfectly. 
Especially at B/t = 30 (Figure 4(b)), the ultimate 
strength of the specimens and their behaviors 
after the peak agreed very well. When the 
analytical values of Models A and B (solid and 
dashed lines) in Figure 4(a) and 4(b) are 
compared, the results of Model B (dashed line) 
were slightly higher than those of Model A 
(solid line). Model B, which had smaller 
elements than Model A, showed coarser 
deformation at the points of local buckling than 
in Model A. However, as shown in Figure 4(a) 
and 4(b), the analytical data of Model B agreed 
well with the experimental results. 
 
3. ESTIMATING THE ULTIMATE 
TEMPERATURE OF STEEL COLUMNS 
UNDER THE EFFECTS OF ELONGATING 
BEAMS 

The following three methods were used to 
estimate the temperature at which steel columns 
collapse. The methods have been proposed for 
estimating ultimate temperatures. The 
relationships with this study and the importance 
of the methods are described below. 
 
3.1 THEORETICAL BUCKLING 
TEMPERATURE TB OF COLUMNS BY THE 
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TANGENT MODULUS THEORY 
 

The temperature at which the steel column 
buckles during fire can be estimated from 
theoretical buckling temperature TB using the 
tangent modulus theory 5,6). To estimate TB, the 
effective buckling length of the column at high 
temperatures should be determined. The Euro 
Code 13) recommends to use 0.5 as the effective 
buckling length coefficient γ of a steel column at 
high temperatures for columns when there are 
members of ordinary temperatures adjacent to 
both the upper and lower ends and to use 0.7 for 
columns on the top story. On the other hand, the 
Recommendation for Fire Resistant Design of 
Steel Structures by AIJ proposes to use 1.0 
regardless of the boundary conditions of the 
column at both ends since elongation of adjacent 
beams may cause local buckling of the column 
at the upper and lower ends and loosen the 
rotational restriction of the column 6). Assuming 
that the column loses bending strength at the 
points of local buckling but retains the capacity 
to sustain axial load, the said points can be 
assumed to be pin supports (Figure 5). In this 
case, the buckling length coefficient is 1.0. In 
this paper, the coefficient was decided to be γ = 
1.0 by considering the possibility of local 
buckling. 
 
3.2 ULTIMATE LOCAL BUCKLING 
TEMPERATURE TLB1 OF STEEL COLUMNS 
IN THE RECOMMENDATION FOR FIRE 
RESISTANT DESIGN OF STEEL 
STRUCTURES BY AIJ 
 

The Recommendation for Fire 
Resistant Design of Steel 
Structures by AIJ proposes 
equations for estimating the 
ultimate temperatures at which a 
steel column compressively 
collapses by local buckling 
(hereinafter referred to as the “AIJ 
equations”). The recommended 
equations estimate the residual 
strength σ of the steel column after 
local buckling by: 

B
t

o
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 335.6

εσ
σ   (1) 

where, σo is the stress determined from the 
relationship between σ and ε in the tensile 
region. Equation (1) was proposed by Suzuki 
and Segawa et al. for estimating the residual 
strength of rectangular steel after local buckling 

14). They performed a number of compression 
tests of stub columns at high temperatures, 
extracted and analyzed the dynamic significance 
of behaviors during local buckling, and found 
that the equation (1) estimated by a lot of 
experimental results did not much depend on 
test temperature, the ratio of width to thickness, 
and material properties. The residual strengths 
of the steel columns after local buckling, which 
were calculated using Equation (1), are shown in 
Figure 6 together with the experimental and 
analytical results of the stub columns described 
in Section 2. The horizontal axis ε of both 
experimental and analytical results is differently 
evaluated before and after the ultimate strength. 
Before the ultimate strength, strain was assumed 
to be uniformly distributed throughout the 
specimens (∆ε = ∆δV / H, ∆ denotes differences). 
After the ultimate strength, strain was assumed 
to concentrate at points of local buckling, which 
spread over the plate width B (∆ε = ∆δV / B) 8). 
Figure 6 shows that all the experimental and 
analytical results converged into almost a single 
curve and Equation (1) for calculating residual 
strength after local buckling gives a curve that 
lies along the lower limit of the experimental 
and analytical values. 

The AIJ equations assume that a strain ε0 of 
0.01 is generated along the edge on the tensile 
side of a column section where local buckling 
occurs and a strain ε1 of 0.04 is generated along 
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the edge on the compression side. The strain 
distribution in a cross section is given by a line. 
The strain on the compression side of the section 
is increased by elongation of adjacent beams. 
The recommended equations assume a strain ε1 
of 0.04 for the edge on the compression side by 
considering the effects of the beams. Using 
Equation (1), the stresses in the section are 
integrated, and the temperature of the members 
at which the resultant value is equal to the axial 
compressive stress of the column, which is the 
external force, is determined. The temperature is 
the ultimate local buckling temperature of the 
column 6) and is hereinafter referred to as TLB1. 
 
3.3 ULTIMATE LOCAL BUCKLING 
TEMPERATURE TLB2 OF COLUMN UNDER 
EFFECTS OF ELONGATING ADJACENT 
BEAMS 
 

Joint translation angles are formed on 
columns when adjacent beams elongate. Joint 
translation angles are larger in longer spans and 
at higher member temperatures. Excessive joint 
translation angles induce early local buckling 
and accelerate the deterioration of the column 
after buckling. The theoretical buckling 
temperature TB and the ultimate local buckling 
temperature TLB1 of the AIJ equation are 
ultimate temperatures determined by the date on 
the only column and are independent of joint 
translation angles. Thus, when the joint 
translation angle is excessively large, the 
column may collapse at a temperature lower 
than the ultimate temperatures. 

Suzuki and Nakayama et al. have proposed an 
equation for calculating the ultimate local 
buckling temperature of a column under the 
effects of elongating beams (hereinafter referred 
to as the “original Suzuki Equation”) 7). A 
schematic diagram of local buckling of a column 
by the elongation δH of an adjacent beam is 
shown in Figure 7. Local buckling was assumed 
to occur at the upper and lower ends of the 
column and to rotate like a hinge. The original 
Suzuki equation assumed local buckling only at 
the upper end of a column, but large δH may also 
cause local buckling at the lower end. Thus, a 
column was assumed to have two local buckling 
hinges. The equation for calculating the ultimate 

temperature by assuming two hinges is 
hereinafter referred to as the “modified Suzuki 
equation”. The length of the hinge that becomes 
plastic was assumed to be equal to the buckling 
wavelength at the buckling points, and the 
wavelength was assumed to be equal to the 
sectional plate width B. The resultant difference 
between the strain ε1 on the compression side 
and the strain ε0 on the tensile side becomes 
equal to the hinge rotation θ: 

h
LT

h
e H αδθ ===       (2) 7), 

where, L is the total span length of the heated 
beam, α is the elongation coefficient of steel (= 
12 × 10-6 1/°C), h is the height of the column in 
the story, and T is the material temperature. 
Thus, the modified Suzuki equation for 
determining the strain ε’1 on the compression 
side is: 

h
LTe oo αεεε +=+=′1      (3). 

The strain ε0 on the tensile side is given as 0.01 
as in the recommended equation. The process of 
determining the ultimate temperature is the same 
as that used in the recommended equation. The 
ultimate local buckling temperature determined 
by the modified Suzuki Equation is referred to 
as TLB2. 
 
4. NUMERICAL ANALYSIS OF A COLUMN 
AFFECTED BY AN ELONGATING BEAM 
4.1 MODEL USED FOR NUMERICAL 
ANALYSIS 
 

The model used for numerically analyzing a 
column under the effect of an elongating beam 
is shown in Figure 8. The model is a part of the 
frame model formed by removing the exterior 
columns and beams of several spans from the 
model of the frame in the story where there is a 
fire (Figure 9). A uniform compressive force P 
was applied on the column, and the member 
temperatures T of the column and beam were 
raised uniformly. The boundary conditions at the 
lower end of the column were fixed. The heated 
beam in Figure 8 was assumed to be rigid at 
ordinary and high temperatures and to expand 
horizontally as the temperature rose for a length 
of δH. The effective buckling length coefficient γ 
was 0.5 (theoretical value for a column with 



  

both ends fixed) when no local buckling 
occurred. During an actual fire in a frame, the 
upper and lower ends of buckling columns on 
the story of the fire are believed to be strongly 
restricted by members on the other stories, 
which are at ordinary temperatures (Figure 9). 

Parameters used for the numerical analysis 
are shown in Table 3. Three axial force ratios 
p , three column width to thickness ratios B/t, 

and beam to column length ratios L/h ranging 
from 1 to 15 were used as the analytical 
parameters. The column height h  was fixed to 
4,500 mm, and L/h was varied by changing the 
span length of the heated beam. The width to 
thickness ratio was varied (B/t = 20, 25, and 33) 
by fixing the plate width B of the square cross 
section and changing the plate thickness t. B/t = 
33 is the limit width to thickness ratio of square 
hollow steel columns (JIS SS400) of Class FA at 

ordinary temperatures 15). Since the floor 
column height h  and the sectional 
plate width B were set uniform and only 
plate thickness t was changed, the height 
to width ratio λ of the column was 
almost uniform in all analytical cases (λ 
= 0.25). Therefore, the three columns 
were similarly resistant against overall 
buckling. The analytical case with a 
large L/h value assumed a fire in a space 
with a long beam span and a fire 
spreading to a large space on a story by 
burning partition walls (Figure 9). The 
relationships between L/h and 
temperature rises ∆T are shown in 
Figure 10. The figure shows that, for 
example, for L/h = 15, a temperature rise 
of about 110°C causes a joint translation 
angle ∆δH/h of 1/50. 

The steel was assumed to be JIS 
SS400. Its σ–ε relationships at high 
temperatures are shown in Figure 11. 
These are the σ–ε relationships proposed 
by the Recommendation for Fire 
Resistant Design of Steel Structures. At 
each temperature, the 1% stress σy 
corresponds to yT σκ )(  (Figure 12). 

yσ is the standard yield strength of steel 
at ordinary temperature. The analysis 
considered no effects from the creep of 

steel at high temperatures to examine the 
validity and feasibility of the method for 
estimating the ultimate temperature described in 
the previous section. In the evaluation method, 
the effects of creep should be investigated 
separately or the effective yield strength of steel 
at high temperature should be reduced when the 
effect is considered (Figure 12). Thus, the 
effects of creep of steel columns at high 
temperature are not discussed in this paper but 
will be separately reported. The aforementioned 
three-dimensional plate elements were used as 
the finite element model, which was a square 
hollow section consisting of four steel plates. 
Each plate was divided into elements using the 
methods described in Section 2 for dividing 
Model B of a stub column specimen into 
elements. In the column model shown in Figure 
8, the plates were divided into 10 and 30 

h 

yApP σ⋅=
Hδ

L

L：Total span length of heated beam 
h ：Column floor height 
P ：Column axial force 

Hδ ：Thermal expansion by heated beam 

Fig-8 Numerical analysis model of a 
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elements of equal sizes along the sectional and 
axial directions, respectively. The total number 
of elements was 1,200. Actual loading models 
should have been different between the 
beam-column model shown in Figure 8 and the 
stub column model shown in Figure 2, the 
former of which should have been more 
complicated that the latter. Although the 
analysis was a pure compression analysis, the 
minute elements of the plates after local 
buckling were under very complicated stress 
conditions and showed three-dimensional 
non-linear behaviors of in-plane and 
out-of-plane deformation. The numerical 
analysis of Model B of the stub column 
precisely reproduced the complicated non-linear 
behaviors of plates. Therefore, the element 
division method used for Model B was used for 
the column model shown in Figure 8. The 
numerical analysis case of B/t = 25, p  = 0.3, 
and L/h, which is discussed in the following 
section, was analyzed using the element division 
method used for Model A in Figure 2. The 
analysis results in an ultimate temperature 
difference of only 2°C from the result of an 
analysis conducted using the element division 
method of Model B. 
 
4.2 RESULTS OF THE NUMERICAL 
ANALYSIS OF A COLUMN AFFECTED BY 
AN ELONGATING BEAM 
 

The results of the numerical analysis of all 
parametric study cases are shown in Figures 13 
to 15. Figures 13, 14, and 15 show the results of 
B/t = 20, 25, and 33, respectively. The X axis of 
the figures is the beam to column length ratio 
L/h, and the Y axis is material temperature T. 
The dark dots in the figures are the collapse 
temperatures of the column given by numerical 
analysis of three-dimensional plate elements 
(hereinafter referred to as the “numerical 
ultimate temperature”). For analytical cases in 
which local buckling occurred in the process of 
heating, the member temperatures at which the 
local buckling occurred are shown with double 
circles. Local buckling temperatures are the 
member temperatures when out-of-plane 
buckling waveforms were produced in a plate at 
the upper or lower end of the column. The 

numerical ultimate temperatures determined by 
using a two-dimensional non-linear beam 
element model as a finite element model are also 
shown with open triangles in Figures 13 to 15. 
The same partial frame model (Figure 8) was 
used for the numerical analysis using the beam 
element model to the calculated ultimate 
temperature. The same analytical parameters 
(Table 3) and σ–ε relationships (Figure 11) were 
also used. The beam element model is not for 
analyzing the local buckling behaviors and 
considers no drop in strength by local buckling. 
Thus, the collapse mode was overall buckling of 
the columns for all cases. Figures 13 to 15 also 
show theoretical ultimate temperatures of 
various kinds. The ultimate local buckling 
temperature TLB2 determined by the modified 
Suzuki equation is shown as a solid line. The 
ultimate local buckling temperature TLB1 
determined by the AIJ equation is shown as a 
dashed line. The theoretical buckling 
temperature TB for an effective buckling length 
coefficient γ of 1.0 is shown as a dotted line. 
The trends shown by the series of parametric 
numerical analyses and comparisons with the 
theoretical ultimate temperatures are discussed 
in the following section. 
 
[1] First, an analytical case of a column affected 
by an elongating beam is described. The 
analytical results of B/t = 25 and p  = 0.3 are 
shown in Figure 16(a) and 16(b). Figure 16(a) is 
for L/h=1, and Figure 16(b) is for L/h = 15, both 
of which show the deformation when the 
columns collapsed. The elongation δH of the 
beam at the upper end of the column is produced 
along the +y direction in the figure. The 
temperature history of vertical displacement 
(displacement along the x direction in Figure 16) 
of the column head calculated from the two 
analyses is shown in Figure 17. Figure 17 shows 
upward extension of the column of L/h = 1 by 
itself thermal expansions. On the other hand, the 
column of L/h = 15 shows a drop in vertical 
displacement at the column head as the 
temperature rose since the settlement of the head 
by inclination was larger than the extension of 
the column. On the column of L/h = 15, local 
buckling occurred at the plates on the 
compression side at the upper and lower ends of 



  

the column at a member temperature of about 
100°C. The column could sustain the fixed axial 
force P even after the local buckling, and the 

member temperature rose further. In both  
analyses, immediately before the collapse of the 
columns, the column head suddenly sank, and 

[Legends for Figures 13 to 15] 
●：Numerical ultimate temperatures(using three-dimensional plate elements)  Solid lines: 2LBT  
 :Numerical local buckling temperatures(using three-dimensional plate elements) Dash lines： 1LBT  
∆：Numerical ultimate temperatures(using two-dimensional beam elements)    Dotted line： BT  
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the columns became unable to sustain the axial 
force and collapsed. This member temperature 
was the ultimate temperature of the column, and 
is the limit member temperature at which the 
column can keep the equilibrium of forces. The 
ultimate temperature of the column of L/h = 1 
was 616°C, and that of the column of L/h = 15 
was 590°C. In Figure 17, the ultimate 
temperature is around the member temperature 
at which the column head showed a sudden 
vertical displacement. The mode of collapse was 
overall buckling in the column of L/h = 1 
(Figure 16(a)) and was compressive collapse at 
the points of local buckling in the column of L/h 
= 15 (Figure 16(b)). As Figure 17 shows, the 
entire column of L/h = 1 suffered buckling 
deformation and showed jumps in the settlement 

of the head near the ultimate temperature. On 
the other hand, in the column of L/h = 15, local 
buckling waveforms concentrated at the upper 
and lower ends of the column, and the 
settlement of the head at around the ultimate 
temperature was smaller than that of L/h = 1. 
Figure 16 shows a bow-shaped buckling 
deformation of the column of L/h = 1 and local 
buckling deformation of the column of L/h = 15. 
The parametric study of the analytical cases 
showed that the mode of collapse of columns in 
which local buckling occurred during the 
process of heating was compressive collapse by 
local buckling and that of columns in which no 
local buckling occurred was overall buckling. 
 
[2] Figures 13 to 15 showed that local buckling 
occurred during the process of heating in many 
cases analyzed (○). The temperature at which 
local buckling occurred was lower in cases of 
longer beam elongation, i.e. with larger beam to 
column ratio L/h. Especially, when both L/h and 
the width to thickness ratio B/t were large, local 
buckling occurred at temperatures below 100°C 
(Figure 15). However, the local buckling did not 
cause the column to collapse immediately. The 
steel column kept stable residual strength even 
after it suffered local buckling (Figure 6) up to 
high temperatures. As the temperature rose, the 
joint translation angle gradually increased and 
accelerated the strain at the points of local 
buckling on the compression side, and the 
column ultimately collapsed by compressive 
fracture at the points of local buckling. The 
numerical analysis showed that the ultimate 
temperatures of columns (●) gradually dropped 
as L/h and B/t increased. The relationship 
between the column axial force ratio p  and 
calculated ultimate temperature showed lower 
calculated ultimate temperatures for larger 
column axial force ratios p . The case in which 
the ultimate temperature of a column (●) was 
almost the temperature at which local buckling 
occurred ( ) (for example, when p  = 0.1 and 
L/h = 1) was when local buckling occurred at 
the upper end of the column when the column 
suffered overall buckling deformation. 
 
[3] Ultimate temperature values estimated using 
two-dimensional beam element models (∆) and 
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three-dimensional plate element models (●) 
were more different for columns of larger beam 
to column ratio L/h and larger width to thickness 
ratio B/t. The difference was likely attributable 
mainly to the occurrence of local buckling. 
Columns with small L/h and B/t were estimated 
to collapse by overall buckling in both analyses. 
On the other hand, columns with large L/h and 
B/t values were estimated to collapse by local 
buckling when analyzed using 
three-dimensional plate models. Figure 15(c) 
shows that the difference in estimated ultimate 
temperature was as large as about 130°C for the 
column of B/t = 33. 
 
[4] When the column axial force ratio p , the 
width to thickness ratio B/t and the joint 
translation angle (= L/h) increased, the column 
was exposed to larger loads and several 
structural conditions, and both the temperature 
at which local buckling occurred and ultimate 
temperature lowered. However, the increases in 
L/h caused sharp drops in the temperature at 
which local buckling occurred ( ), and the drop 
in the numerical ultimate temperature (●) was 
small. For example, an analysis of a steel 
column with small B/t and p , which is widely 
used in actual frames, is shown in Figures 13(b) 
and 14(b), revealing that local buckling occurred 
when the heated span was long ( ) but the 
ultimate temperature (●) changed little even at 
large L/h. Columns of small width to thickness 
ratios (B/t) showed small drops in strength after 
local buckling, resulting in small drops in 
ultimate temperature. This trend was also 
estimated from Equation (1), which gives the 
residual strength of a steel column after local 
buckling. Equation (1), which is shown with a 
thick line Figure 6, shows that compressive 
strain ε in the section of a column increased 
largely by an elongating beam but the 
corresponding drops in residual strength were 
small at large ε values. Thus, the ultimate 
temperature of a column is likely to be a stable 
index of fire resistance, which is little affected 
by elongation of beams during fire. 
 
[5] The theoretical ultimate temperatures (TB, 
TLB1 and TLB2) of a column were investigated. 
The ultimate local buckling temperature TLB1 of 

steel columns in the Recommendation for Fire 
Resistant Design of Steel Structures (dashed 
line) and the theoretical buckling temperature TB 
(dotted line) were constant regardless of the 
beam to column ratio (L/h). On the other hand, 
the ultimate local buckling temperature 
determined by the modified Suzuki Equation 
TLB2 (solid line) gradually dropped as L/h 
increased. The three temperatures were similar 
in columns with small width to thickness ratios 
B/t, but differed in columns with large B/t 
values. The reductions were large in the ultimate 
local buckling temperature in the 
Recommendation (TLB1) and in the ultimate 
local buckling temperature determined by the 
modified Suzuki equation TLB2 (Figure 15). In 
columns of small L/h values, the temperature of 
the modified Suzuki Equation TLB2 (solid line) 
was higher than the temperature in the 
Recommendation TLB1 (dashed line); and the 
relationship was the opposite in columns of 
large L/h values. In the ultimate temperature 
estimation method, the range in which TLB2 
(solid line) is lower than TLB1 (dashed line) is 
when ε’1 > ε1 (= 0.04) (Equation (3)). From 
Equation (2), this means that a joint transition 
angle δH/h of at least 0.03 is generated in the 
column. From Figures 13(a) to 15(a), most 
columns of p  = 0.1 were within this range, but 
their ultimate temperatures were high because 
their original axial forces were small. 
 
[6] When the numerical ultimate temperatures 
(●) of the columns were compared with their 
theoretical ultimate temperatures TB (dotted 
line), the former was larger than the latter in 
columns of small L/h values. As described in 
Section 3.1, the coefficient of effective buckling 
length γ was assumed to be 1.0 for estimating 
the theoretical temperature TB by considering 
the occurrence of local buckling. However, 
columns with small L/h values showed no local 
buckling, and thus their coefficients of effective 
buckling length should have been smaller than 
1.0. The difference caused the calculated 
temperature to be larger than the theoretical 
temperature. On the other hand, columns of 
large L/h values suffered local buckling at their 
upper and lower ends, loosening the bending 
constraints at the ends. Columns of even larger 



  

L/h values showed larger drops in strength by 
local buckling, resulting in calculated ultimate 
temperatures lower than their theoretical 
ultimate temperatures TB. Figures 13 to 15 show 
that most calculated ultimate temperature values 
were higher than the ultimate local buckling 
temperatures TLB1 and TLB2 (solid and dashed 
lines). The Recommendation for Fire Resistant 
Design of Steel Structures assesses the fire 
resistance of columns after local buckling by 
making some assumptions, and estimates the 
ultimate temperatures on the safe side for a 
number of actually used steel columns.  
 
5. SUMMARY 
 

When beams are heated during fire, the beams 
elongate and push adjacent columns. The longer 
the span of the heated beam, the larger the 
elongation of the beam, and the more vulnerable 
the adjacent hot columns to local buckling. 
However, local buckling does not cause the steel 
column to collapse immediately, but the column 
keeps stable residual strength after the 
occurrence of local buckling, making the 
column advantageous in terms of fire resistance. 
The temperature at which local buckling occurs 
is strongly affected by the joint translation angle 
of the column (= elongation of adjacent beams), 
and assessing the fire resistance of the column at 
the temperature may result in underestimation of 
the load bearing capacity of the column. On the 
other hand, the ultimate temperatures of 
columns, which were the upper member 
temperature at which a column could keep 
equilibrium of forces, did not much depend on 
the size of joint translation angles under most 
structural and loading conditions analyzed and 
were much higher than the temperatures at 
which the columns suffered local buckling. This 
trend was especially clear in columns that 
consisted of thick plates and received small 
compressive forces along the action axis, which 
are widely used at seismic designs of Japanese 
steel buildings, and the columns showed no 
large drops in ultimate temperature even with 
large joint translation angles. Methods proposed 
for estimating the ultimate temperatures of 
columns were verified by conducting parametric 
numerical analyses, and were verified to be 

reliable. 
This study investigated square hollow steel 

columns of the FA class in structural 
classification by Japanese seismic codes. 
Columns of larger width to thickness ratios, 
such as those of FB class, may show larger 
drops in strength after local buckling and thus 
larger drops in ultimate temperature than in 
columns of FA class, and thus the safety should 
be thoroughly examined. Excessive elongation 
of beams during fire may also threaten fire 
compartment room. Therefore, comprehensive 
studies on these topics, investigation of local 
buckling behaviors during fire, and 
high-temperature experiments of members need 
to be conducted. 
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