
Smart Sensing Technology: A New Paradigm for Structural Health Monitoring 
 
 by 
 
 B.F. Spencer Jr.,1 T. Nagayama,2 J.A. Rice,3 and G.A. Agha4 

 
 

                                                 
1 Nathan M. and Anne M. Newmark Endowed Chair in Civil Engineering, Dept. of Civil and 
Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
2 Assistant Professor, Dept. of Civil Engineering, University of Tokyo, Tokyo 113-8656, Japan 
3 Ph.D. Student, Dept. of Civil and Environmental Engineering, University of Illinois at 
Urbana-Champaign, Urbana, IL 61801, USA 
4 Professor, Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, 
USA 

ABSTRACT 
 
The computational and wireless communication 
capabilities of smart sensors densely distributed 
over structures can provide rich information for 
structural monitoring. While smart sensor 
technology has seen substantial advances during 
recent years, interdisciplinary efforts to address 
issues in sensors, networks, and application 
specific algorithms are needed to realize their full 
potential. This paper first reports on research that 
addresses each of these issues and then integrates 
this research to provide a new structural health 
monitoring (SHM) system that is suitable for 
implementation on a network of smart sensors. 
Experimental verification is provided using 
Intel’s Imote2 installed on a three-dimensional 
truss structure.  The Imote2 is employed herein 
because it has the high computational and 
wireless communication performance required 
for advanced SHM applications.  The efficacy of 
this SHM system is then demonstrated from 
sensing, network, and SHM algorithm 
perspectives. 
 
KEYWORDS: smart sensors, structural health 
monitoring, damage detection, distributed 
computing, data aggregation 
 
1.0  INTRODUCTION    

 
The investment of the United States in civil 
infrastructure is estimated to be $20 trillion. 
Annual costs amount to between 8-15% of the 
GDP for most industrialized countries (US 

Census bureau 2004; Jensen 2004). This 
investment is likely to increase. Indeed, much 
attention has been focused in recent years on the 
declining state of the aging infrastructure in the 
U.S. These concerns apply not only to civil 
engineering structures, such as the nation's bridges, 
highways, and buildings, but also to other types of 
structures, such as the aging fleet of aircraft 
currently in use by domestic and foreign airlines. 
The ability to continuously monitor the integrity 
of civil infrastructure in real-time offers the 
opportunity to reduce maintenance and inspection 
costs, while providing for increased safety to the 
public. Furthermore, after natural disasters, it is 
imperative that emergency facilities and 
evacuation routes, including bridges and highways, 
be assessed for safety. Addressing all of these 
issues is the objective of structural health 
monitoring (SHM). 
 
To efficaciously investigate damage, a dense array 
of sensors will be required for large civil 
engineering structures (Spencer et al 2004; Gao 
2005).  To illustrate this point, consider the task of 
locating a few strategic sensors in structures such 
as the 2 km long Akashi-Kaikyo Bridge or the 443 
m tall Sears Tower in Chicago so that these 
sensors can detect randomly occurring damage; 
such a task is intractable, if not impossible. To 
effectively detect arbitrary damage in structures, 
especially complicated structures, a dense array of 
sensors distributed over the entire structure will be 
required.  
 
Some efforts have been made toward in-depth 



monitoring that can provide detailed information 
on civil infrastructure.  The Tsing Ma Bridge and 
Kap Shui Mun Bridge in Hong Kong are 
monitored with 326 channels of sensors in total, 
producing about 65 MB of data every hour 
(Wong 2004). The expense of installing 
traditional monitoring systems, however, has 
limited significantly wider-spread 
implementation (Farrar 2001; Celebi 2002; 
Lynch and Loh 2006). For example, the total 
system cost, including installation, of the 
monitoring system on the Bill Emerson Memorial 
Bridge in Cape Girardeau, Missouri, USA is 
about $1.3M for 86 accelerometers, which makes 
the average installed cost per sensor a little over 
$15,000 dollars (Hartnagel 2006).  Costs for 
other bridge installations are of a similar 
magnitude.  Smart sensors with wireless 
communication capability are reported to reduce 
installation effort to a great extent (Lynch et al. 
2005) and help to realize a dense array of sensors. 
  
 
Though networks of densely deployed smart 
sensors have the potential to improve SHM 
dramatically, limited resources on smart sensors 
preclude direct application of traditional 
monitoring strategies on smart sensor networks 
which typically require centralized, synchronized 
data acquisition.  Such an approach for SHM 
requires a tremendous amount of data to be sent 
to such a central station and is not scalable to 
large numbers of sensors.  
 
Noting that damage in structures is an 
intrinsically local phenomenon, SHM 
applications using smart sensors may be realized 
even for structures of substantial size. Responses 
from sensors close to the damaged site are 
expected to be more heavily influenced than 
those remote to the damage. If data is locally 
processed, communication requirement will 
remain reasonable.  Several other characteristic 
of smart sensors also need to be investigated with 
respect to application specific requirements. For 
example, time synchronization accuracy may not 
be suitable for some applications, and packet loss 
may severely affect the performance of SHM 
systems. By understanding both the structure and 
the smart sensor network, implementable SHM 

systems deployed on a dense array of smart 
sensors can be realized. 
This paper addresses several critical problems 
toward realization of a SHM system employing 
smart sensors. Following a brief review of smart 
sensors and a description of the proposed system 
framework, middleware services such as data 
aggregation, reliable communication, and 
synchronized sensing are presented. These 
services are then used to develop a scalable SHM 
strategy for implementation on smart sensor 
networks.  The efficacy of this strategy is then 
demonstrated using Intel’s Imote2 smart sensor 
implemented on a three-dimensional truss 
structure.  
 
2.0 SMART SENSORS 
 
The essential difference between a standard sensor 
and smart sensor is the latter’s flexible 
communication and information processing 
capability. Each sensor has an on-board 
microprocessor that can be used for digital signal 
processing, self-diagnostics, self-identification, 
and self-adaptation functions. Furthermore, all 
smart sensor platforms have thus far employed 
wireless communication technology. 
 
Some of the first efforts in developing the smart 
sensors for application to civil engineering 
structures were presented by researchers at 
Stanford University (Straser and Kiremidjian 1996, 
1998; Kiremidjian et al. 1997). Since these early 
efforts, numerous researchers have developed 
smart sensing platforms. Lynch and Loh (2006) 
cited over 150 papers on wireless sensor networks 
for SHM conducted at over 50 research institutes 
worldwide.  
 
The first available open hardware/software smart 
sensor platform, which allows users to customize 
hardware/software for a particular application, 
was the Berkeley Mote. The third generation of 
Mote, the Mica, was released in 2001 (Hill and 
Culler 2002), having improved memory capacity 
and using a faster microprocessor than its 
predecessors. Subsequent improvements to the 
Mica platform resulted in the Mica2, Mica2Dot, 
and MicaZ. Moreover these sensors have been 
made commercially available (Crossbow 2007). 



 
Several SHM applications with smart sensors 
have been studied using both scale models and 
full-scale structures (e.g., Lynch et al 2002; Aoki 
et al. 2003; Tanner et al. 2003, Chung et al. 2004; 
Nagayama et al. 2004; Nitta et al. 2005; Ou et al. 
2005). Sensor calibration and demonstration of 
data acquisition and computational capability 
have been performed with the ultimate goal of 
life-long monitoring of civil infrastructure using 
a dense array of smart sensors.  
 
 While smart sensor technology has seen 
substantial advances during recent years (Hill and 
Culler 2002; Adler et al. 2005; Kling et al. 2005), 
interdisciplinary research efforts to address issues 
in sensors, networks, and application specific 
algorithms are needed to realize their potential. 
Some identified research gaps are summarized in 
Table 1. 
 
3.0 FRAMEWORK 
 
3.1 Network topology 
 
Most of the SHM applications with smart sensors 
can be categorized into two groups, neither of 
which has fully exploited the smart sensor's 
capability.  
 
In the first group, the smart sensors emulate 
traditional wired sensors, with all data being 
synchronously collected for processing at a 
centralized location (see Figure 1a). Centralized 
SHM algorithms can then be applied to this data. 
This approach allows for direct application of a 
wealth of traditional SHM algorithms. As the 
number of smart sensors increases, however, the 
measurement data to be centrally collected 
exceeds the network bandwidth, regardless of 
whether homerun or hopping communication is 
adopted. Forwarding data to the base station may 
take a prohibitively long time and consume a lot 
of power. Introducing faster communication 
speeds offered by nodes with ample power 
sources is one approach. Chintalapudi, et al. 
(2006) utilizes a tiered approach, with lower tier 
nodes and powerful upper tier nodes. Assuming 
that the upper tier nodes have sufficient power, 
the limitation on the communication speed 

among upper tier nodes is removed; power 
consumption at lower tier nodes is moderate. 
However, installing powerful nodes is sometimes 
impractical or can reduce the advantages of smart 
sensors; the need for powerful nodes with 
associated power sources may increase the 
installation cost. In terms of the network, 
dependency on such nodes limits the ability of the 
network to automatically reconfigure should a 
powerful node cease to function.  The limited 
communication bandwidth and battery power 
hinders the application of a centralized data 
acquisition approach to a large smart sensor 
network. 
 
The second group of the algorithms assumes that 
each smart sensor measures and processes data 
independently without sharing information among 
the neighboring nodes (Sohn et al. 2002; Lynch et 
al. 2005; Nitta et al. 2005). Since only the 
processed data is sent back to base station, 
communication requirements are quite modest. 
Consequently, this approach is scalable to a large 
number of smart sensors (see Figure 1b). However, 
the independent node approach does not utilize 
available information from neighboring nodes; all 
spatial information (e.g., mode shapes) is 
discarded. The inability to incorporate spatial 
information limits the effectiveness of this 
approach. 
 
A hierarchical system is considered to resolve the 
limitations of these two approaches (see Figure 1c). 
Smart sensors are conceptually divided into 
interacting communities of sensors. Data 
processing is coordinated and distributed among 
sensors. The Distributed Computing Strategy for 
SHM (DCS) (Gao 2005) is an example of such a 
hierarchical SHM system. Communication and 
data processing in DCS take place mainly in local 
sensor communities, reducing requirements on 
transmission of large amounts of data. Structural 
analysis of DCS takes into account measurements 
at multiple locations, making use of available 
spatial information. The DCS has the features that 
make it possible to be deployed on a dense array 
of smart sensors. 
 
3.2 Proposed architecture 
 



A homogeneous configuration of hardware is 
chosen, as opposed to a tiered system approach 
employing resource demanding upper level 
nodes and less powerful lower level nodes. In 
addition to smart sensors, a PC is needed in this 
architecture as the interface to the users. A 
homogeneous configuration results in simpler 
programming and deployment of smart sensor 
nodes. Systems with homogeneous 
configurations can be programmed so that failure 
of one node does not result in failure of the 
system; roles of a non-functioning node can be 
taken over by neighboring nodes as conceptually 
shown in Figure 2.  
 
In terms of functionality, smart sensor nodes in 
the proposed system are differentiated as follows: 
(i) base station, (ii) manager nodes, (iii) cluster 
heads, and (iv) leaf nodes. All the sensors 
deployed on a structure, in principal, work as leaf 
nodes. Leaf nodes receive commands from the 
other nodes and perform preprogrammed tasks 
such as sensing, data processing, and 
acknowledgement. The collection of leaf nodes in 
a neighborhood make a local sensor community. 
One of the nodes in each local sensor community 
is assigned as a cluster head and handles most of 
the communication and data processing in the 
community. In addition to tasks inside the 
community, the cluster head communicates with 
cluster heads of neighboring communities to 
exchange information. One of the cluster heads 
also functions as the manager sensor. When 
intra-cluster RF communication signals reach 
nodes in neighboring sensor communities, the 
manager deals with time sharing among sensor 
communities to avoid RF interference. The 
manager also exchanges packets directly with 
leaf nodes to manage operations in which all the 
leaf nodes participate; sensing, which is triggered 
by the manager sensor, is an example. The base 
station node is the gateway between the smart 
sensor network and the PC. The PC, which 
provides the user interface, sends commands and 
parameters to the smart sensor networks via the 
base station. The PC also receives data and 
calculation results from the base station. While 
the base station can communicate directly with 
any node in communication range, most 
communication involving the base station is 

routed through the manager or cluster heads, with 
the exception being the transmission of a large 
amount of data or calculation results from leaf 
nodes to the PC for debugging purpose. 
The smart sensor platform employed in this work 
is Intel’s Imote2 (Adler et al. 2005). The Imote2 
(Figure 3) is a new smart sensor platform 
developed by Intel for data intensive applications. 
 The main board of the Imote2 incorporates a 
low-power X-scale processor, the PXA27x, and an 
802.15.4 radio (ChipCon 2420).  The processor 
speed may be scaled based on the application 
demands, thereby improving its power usage 
efficiency.  One of the important characteristics of 
the Imote2, which separates it from previously 
developed wireless sensing nodes, is the amount 
of data which can be stored on the node.  The 
Imote2 has 256 KB of integrated SRAM, 32 MB 
of external SDRAM, and 32 MB of Strataflash 
memory (Intel Corporation 2005), which is 
particularly important for the large amount of data 
required for real-time, dynamic monitoring of 
structures.  Table 2 gives a comparison of the 
Imote2 to the Mica2, a third generation of Mica 
motes developed at Berkeley. 
 
The sensors used with the Imote2 are interfaced to 
the main board via two connectors.  This interface 
provides a significant amount of built-in flexibility 
for the type of sensors which may be utilized.  
Some of the options available for I/O are I2C 
(which allows interface to an unlimited number of 
channels), 3 SPI ports (serial data ports limited to 
one channel per port) and multiple GPIO (general 
purpose I/O) pins. 
 
Intel has created a basic sensor board to interface 
with their Imote2.  This basic sensor board can 
measure 3-axes of acceleration, light (TSL2561), 
temperature, and relative humidity (SHTx).  All of 
the sensors on this board are digital, thus no analog 
to digital converter (ADC) is required (Adler et al. 
2005). STMicroelectronics manufactures the 
3-axis digital accelerometer (LIS3L02DQ) which 
has a ±2g measurement range and a resolution of 
12-bits or 0.97 mg (STMicroelectronics 2005a). 
 
The LIS3L02DQ’s has a built-in ADC which is 
followed by digital filters with selectable cutoff 
frequencies.  These cutoff frequencies are user 



defined by setting a decimation factor, which also 
dictates the sampling rate of the accelerometer.  
The sampling rate and cutoff frequency versus 
the decimation factor is given in Table 2, as 
specified by the manufacturer.  The digital output 
interface may be either SPI or I2C 
(STMicroelectronics 2005b). 
 
TinyOS is employed as the operating system on 
many smart sensors, including the Imote2.  This 
operating system has a small memory footprint 
and is therefore suited to the limited resources of 
wireless sensors.  TinyOS has a large user 
community and many successful smart sensor 
applications.  However, some features pose 
limitations for SHM applications.  Primarily, 
TinyOS does not support real time operations and 
thus has only two types of execution threads: 1) 
tasks and 2) hardware event handlers. This 
concurrency model leaves only a small amount of 
control to the user in the assignment of priority to 
commands; execution timing cannot be 
arbitrarily controlled.  The subsequent section 
will show that this feature of TinyOS must be 
carefully considered when designing an SHM 
implementation. 
 
4.0  MIDDLEWARE SERVICE  
       DEVELOPMENT 
 
In this section, the basic functionalities of smart 
sensors essential to SHM applications are studied 
and realized. Among these functionalities are 
data aggregation, reliable communication, and 
synchronized sensing. These functionalities are 
developed on the Imote2 platform. 
 
4.1 Data aggregation 
 
The amount of data transferred in SHM 
applications is considerable. Long vibration 
records will be acquired from densely distributed 
smart sensors. If they are collected at a single sink 
node using multi-hop communication, the 
associated time easily exceeds the time necessary 
for any other smart sensor task. Distributed 
estimation of the correlation function has been 
proposed as a type of model-based data 
aggregation (Nagayama et al. 2006). When the 
excitation can be assumed to be broadband and 

the structural response stationary, the correlation 
function between the output measurements can be 
used to determine modal parameters by virtue of 
the Natural Excitation Technique (NExT) (James 
et al. 1992). This data aggregation method, which 
is scalable to networks of a large number of smart 
sensors, is described herein. 
 
Correlation functions are, in practice, estimated 
from finite length records. Power and cross 
spectral density (PSD/CSD) functions are 
estimated first through the following relation 
(Bendat and Piersol 2000):  

 *

1

1( ) ( ) ( )
dn

xy i i
id

G X Y
n T

ω ω ω
=

= ∑  (1) 

where Gxy(ω) is the CSD estimation between two 
stationary random process, x(t) and y(t). X(ω) and 
Y(ω) are the Fourier transform of x(t) and y(t); the 
* denotes the complex conjugate. T is the length of 
the sample records, xi(t) and yi(t). In estimating the 
spectral densities, windowing of the time histories 
is common practice to suppress the phenomena of 
spectral leakage. Window functions are multiplied 
by the time histories, x(t) and y(t), prior to the 
Fourier transform. When nd = 1, the estimate has a 
large random error. The random error is reduced 
by computing an ensemble of the estimates from 
nd different or partially overlapped records. The 
normalized RMS error ε[|Gxy(ω)|]of the spectral 
density function estimation is given as  

 

1( )xy
xy d

G
n

ε ω
γ

⎡ ⎤ =⎣ ⎦
  

γxy is the coherence function between x(t) and y(t), 
indicating the degree of linearity between them. 
Through the averaging process, the estimation 
error is reduced. Averaging of 10-20 times is 
common practice. The estimated spectral densities 
are then converted to correlation functions by 
inverse Fourier transform. 
 
An implementation of correlation function 
estimation for a small community of sensors in a 
centralized data collection scheme is shown in 
Figure 4, where node 1 works as a reference sensor. 
Assuming ns nodes, including the reference node, 
are measuring structural responses, each node 
acquires data that is sent to the reference node. The 
reference node calculates the spectral density. This 

(2)



procedure is repeated nd times and averaged. 
After averaging, the inverse FFT is taken to 
calculate the correlation function. All the 
calculations take place at the reference nodes. 
When the spectral density is estimated from 
discrete time history records of length N, the 
amount of data to be transmitted through the 
radio is Nxndx (ns–1). 
 
In the next scheme, data flow for correlation 
function estimation is examined and data transfer 
is reorganized to take advantage of the 
computational capability on each smart sensor 
node (see Figure 5). After the first measurement, 
the reference node broadcasts the time record to 
all the nodes. On receiving the record, each node 
calculates the cross spectral density between its 
own data and the received record. This spectral 
density estimate is locally stored. The nodes 
repeat this procedure nd times. After each 
measurement, the stored value is updated by 
taking a weighted average between the stored 
value and the current estimate. In this way, Eq. 
(1) is calculated on each node. Finally the inverse 
FFT is applied to the spectral density estimate 
locally. The resultant correlation function is sent 
back to the reference node. Because the 
subsequent modal analysis such as ERA uses, at 
most, half of the correlation function data length, 
N/2 data is sent back to the reference node from 
each node. The total data to be transmitted in this 
scheme is, therefore, Nxnd+N/2x(ns–1).  
 
As the number of nodes increases, the advantage 
of the second scheme, in terms of communication 
requirements, becomes significant. The second 
approach requires data transfer of O(Nx(nd+ns)), 
while the first one needs to transmit to the 
reference sensor node data of the size of 
O(Nxndxns). For example, a parameter set 
{N,nd,ns}={1024, 20,10} necessitates the second 
approach to transfer 25,088 data points while the 
first one involves transmit of 184,320 data points; 
the reduction factor achieved by the distributed 
implementation is more than seven. The 
distributed implementation leverages knowledge 
regarding the application to reduce 
communication requirements as well as to utilize 
CPU and memory efficiently in a smart sensor 
network. 

 
The data communication analysis above assumes 
that all the nodes are in single-hop range of the 
reference node. This assumption is not necessarily 
the case for a general SHM application. However, 
Gao (2005) proposed a Distributed Computing 
Strategy (DCS) for SHM which supports this idea. 
Neighboring smart sensors within single-hop 
communication range make local sensor 
communities and perform SHM in the 
communities.  In such applications, the 
assumption of nodes being in single-hop range of 
a reference node is reasonable, while data 
processing results such as damage location may 
need to be transferred to the base station using 
multi-hop communication. 
 
4.2 Reliable communication 
 
RF communication is not reliable unless lost 
packets are specifically addressed. Packets may 
not be transmitted properly. When the distance 
between nodes is too long, packets may not reach 
the destination. Multiple nodes trying to send 
packets at the same time cause packet collisions. 
SHM applications employing smart sensors suffer 
from this packet loss. If packets carrying 
commands are lost, destination nodes fail to 
perform certain tasks. The sender is unsure 
whether the destination nodes have received 
commands. If packets carrying measurement data 
are lost, destination nodes cannot fully reconstruct 
the sender’s data. Therefore, packet loss may 
cause a system to be in an unknown state and may 
degrade measurement signals.  
 
When smart sensor applications come to involve 
more and more complicated internode data 
processing and are assigned more and more tasks 
by commands sent through packets, the commands 
need to be reliably delivered. Otherwise, smart 
sensors cannot assess the current state of 
neighboring nodes without intricate logic, 
resulting in extremely complicated programs. 
Reliable communication of short messages is 
clearly a necessary feature for an SHM system 
with complicated internode data processing.  
 
Compared to the need for reliable communication 
of short messages, the need to transfer large 



amounts of data is not apparent.  In many SHM 
research attempts, data loss has not been 
addressed, and the loss of a few data points has 
often been considered acceptable. The effect of 
data loss on SHM applications are assessed by 
Nagayama, et al. (2007). Packet loss is shown to 
degrade signals in the same way as observation 
noise, therefore reliable communication is 
preferable to maintain data quality. Also when 
loss of a large block of packets is expected, such 
as when devices using the same frequency range 
pass by, resending of data is preferable. 
 
A reliable communication protocol suitable for 
sending a large amount of data, as well as a 
protocol to send a single packet, is proposed. 
Each of these protocols supports multicast as well 
as unicast data transmission; SHM applications 
benefit from multicast transmission. One 
example is the distributed correlation function 
estimation. Multicasting of commands is 
commonly observed in smart sensor systems. 
Because of limited space, only the reliable 
multicast protocol for long data is briefly 
explained herein.  
 
The proposed reliable communication protocol is 
based on a modification of the Automatic Repeat 
reQuest (ARQ) protocol. ARQ is an error control 
method which repeats the sending of packets 
based on requests from the receiver. On reception 
of packets without error, the receiver replies with 
a positive acknowledgement (ACK). If an error is 
detected, the receiver sends a negative 
acknowledgement (NACK) and a request for 
retransmission. There are several ARQ protocols. 
 
The radio component on the Imote2 is in either 
listening mode or in transmission mode. During 
transmission, the Imote2 cannot receive packets. 
Without careful implementation of ARQ, the 
receiver may send acknowledgments while the 
sender is in transmission mode. Packet loss and 
retransmission are expected to be more frequent 
if transmission and reception are deeply 
interwoven. Scheduling interwoven transmission 
and reception may result in long wait times. In the 
proposed protocol, the sender transmits all the 
packets without expecting an acknowledgement. 
The receiver stores all the received data in a 

buffer. Once the sender transmits the last packet of 
data, the sender repeatedly transmits a packet 
indicating the end of data until acknowledgement 
packets from the receivers are received. These 
acknowledgment packets also contain information 
about missing packets. Only missing packets are 
resent. At the end of transmitting missing packets, 
a packet requesting acknowledgment is sent again. 
If no receiver reports missing packets, the sender 
signals the end of data transfer to the receivers and 
itself, disengaging them from this round of reliable 
communication. In this way, the number of 
acknowledgement and retransmission can be 
greatly reduced (see Figure 6).  
 
This protocol is designed to send 64-bit double 
precision data, 32-bit integers, or 16-bit integers. 
Many ADCs on traditional data acquisition 
systems have a resolution less than 16 bits, 
supporting the need for transfer of 16-bit integer 
format data. Some ADCs have a resolution better 
than 16 bits, necessitating data transfer in 32-bit 
integer format. Once an acceleration record is 
processed, the outcome may require more bits. 
Onboard data processing such as FFTs and SVDs 
are usually performed in a double precision format. 
Even when the effective number of bits is smaller 
than 32, debugging of onboard data processing 
greatly benefits from transfer of double precision 
data; data processing results on Imote2s can be 
directly compared with those on a PC, which are 
most likely in a double precision format. Transfer 
of 64-bit double precision data is supported based 
on such needs. 
 
4.3 Synchronized sensing 
 
Time synchronization errors in a smart sensor 
network can cause inaccuracy in SHM 
applications. Time synchronization is a 
middleware service common to smart sensor 
applications and has been widely investigated. 
Each smart sensor has its own local clock, which is 
not synchronized initially with the other sensor 
nodes. By communicating with the surrounding 
nodes, smart sensors can assess relative 
differences among their local clocks. For example, 
Mica2 motes employing the Timing-sync Protocol 
for Sensor Network (Ganeriwal et al. 2003) are 
reported to synchronize with each other to an 



accuracy of 50 μsec; different algorithms and 
hardware resources may result in different 
precision. Whereas time synchronization 
protocols have been intensely studied, 
requirements on synchronization from an 
application perspective have not been clearly 
addressed. The effect of time synchronization 
error on SHM applications is studied by 
Nagayama et al. (2007).  
 
In this section, the accuracy of Flooding Time 
Synchronization Protocol (FTSP) (Maroti et al. 
2004; Mechitov et al. 2004), realized on the 
Imote2, is evaluated for the SHM application. 
Time synchronization among smart sensors, 
however, does not necessarily offer synchronized 
measurement signals; other critical issues must be 
considered. Finally synchronized sensing is 
realized utilizing resampling. 
 
The Imote2s are programmed as follows to 
evaluate time synchronization error. A beacon 
node transmits a beacon signal every four 
seconds. The others eight nodes estimate global 
time using the beacon packet as provided in FTSP. 
Two seconds after the beacon signal, the beacon 
node sends another packet requesting replies. The 
receivers get time stamps of the reception of this 
packet and convert them to global time stamps. 
The receivers take turns in reporting back these 
time stamps. With perfect time synchronization, 
the time stamp of the packet reception should 
give the same global time at all the nodes. This 
procedure is repeated more than 300 times. These 
time stamps from the eight nodes are compared 
with each other. Figure 7 shows the difference in 
the global time stamp using one of the eight 
nodes as a reference. The difference is generally 
less than 10 μsec, indicating the time 
synchronization error of about 10 μsec. Scattered 
peaks are not necessarily indicators of large 
synchronization error; they may also be due to 
delays associated with global time stamping after 
the packet requesting replies are received.  
 
The time synchronization error estimated above 
is considered small for SHM applications. A 
delay of 10 μsec corresponds to 0.072 degree 
phase delay for a mode at 20 Hz. Even at 100 Hz, 
the corresponding phase delay is only 0.36 

degree. 
 
While global clock estimates two seconds after 
sending the beacon signal are found to be accurate, 
local clocks drift over time. Large clock drift 
necessitates frequent time synchronization to 
maintain a certain level of accuracy.  
 
The same program is utilized to estimate clock 
drift. On reception of the packet requesting replies, 
the receivers get offsets of their own timestamps 
instead of global time stamps. The offsets are sent 
back to the beacon node and then to a PC. If the 
clocks on the nodes are ticking at a consistent rate, 
the offsets should be constant over a long period of 
time. This experiment, however, did not show 
constant offsets. Figure 8 shows the offsets of nine 
receiver nodes. One of them stopped responding 
around 45 second, exhibiting a short line on the 
figure. Here, the maximum clock drift among this 
set of Imote2 nodes is estimated to be around 50 
μsec per second. This drift is small but not 
negligible if measurement takes a long time. For 
example, after a 200-second measurement, time 
synchronization error may become as large as 10 
msec.  
 
One solution to address this clock drift problem is 
frequent time synchronization. The drawback of 
this approach is that time synchronization may not 
perform well when other tasks (e.g., sensing) are 
running. Time synchronization requires precise 
time stamping as previously explained. Sensing 
also requires precise timing and needs higher 
priority in execution. Scheduling more than one 
high priority tasks is challenging, especially for 
operating systems such as TinyOS which have no 
support for real-time control. If the time 
synchronization interval necessary to address the 
clock drift is shorter than the sensing time, a 
different solution must be sought.  
 
Another approach is to compensate for the 
difference in clock rate. The slopes of the lines in 
Figure 8 approximately indicate the clock drift that 
needs to be compensated. If time synchronization 
offset values can be observed for a certain amount 
of time, the slope can be estimated using a least 
squares approach. 
 



Several issues must be addressed to achieve 
synchronized sensing. Issues observed on the 
Imote2 platform include uncertainty in sensor 
start-up time, difference in sampling rate among 
sensor nodes, and fluctuation in sampling 
frequency over time (Nagayama et al. 2006). 
These issues are addressed by resampling of 
measured time histories based on time stamps 
marked after a fixed number of data points are 
collected. 
 
The polyphase implementation of resampling 
Oppenheim et al. (1999) by an arbitrary 
non-integer rational factor addresses the problem 
of data sampled at inaccurate frequencies. The 
measured time history x[m] is first upsampled by 
about one-hundred zeros. Then, lowpass a filter 
h[i] is applied to yield an upsampled signal y[j]. 
The outcome z[k] of the resampling process is 
calculated by interpolating this upsampled signal. 
 

[ ] [ ]( ) [ ]( )

[ ] [ ]
( )

( )

[ ] [ ]
( )

( )

/

1

/

1

1

l a

l a

u a

u a

l u j u j l

p L

l a u j
m p N L

p L

u a j l
m p N L

j r i

l r i

u l

z j y p p p y p p p

h p L m x m p p

h p L m x m p p

p jM l

p jM l
p p

⎢ ⎥⎣ ⎦

⎡ ⎤= − +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤= − +⎢ ⎥

= − + −

= − ⋅ − +

+ − ⋅ −

= +

= +⎢ ⎥⎣ ⎦
= +

∑

∑

    
 
La is the factor of upsampling, N is the length of 
filter coefficients, and Mr is the non-integer factor 
of downsampling. ⎡⎤ and ⎣⎦ represent ceiling and 
floor function respectively. The initial delay, 
represented by li, is determined based on the 
global timestamp and takes into account the 
inaccuracy in sampled timing. The factor, La /Mr, 
determines the rate of sampling rate conversion. 
The sampling rate conversion is first tested in 
Matlab as shown in Figure 9 and subsequently 
implemented on the Imote2. The resampling 
process implemented on the Imote2 is found to 
yield acceleration signals with synchronization 
accuracy better than 50 μsec. 
 
5.0  EXAMPLE IMPLEMENTATION 
 
The Distributed Computing Strategy (DCS) for 

SHM (Gao 2005) is implemented on Imote2s 
using the developed middleware services. The 
SHM system realized on the Imote2s is then 
experimentally verified using a three-dimensional 
truss structure. 
 
5.1 Distributed Computing Strategy for SHM 
 
Gao (2005) proposed a Distributed Computing 
Strategy (DCS) for SHM that meshes well with the 
hierarchical architecture necessary to realize the 
potential of a dense network of smart sensors. The 
DCS approach is an extension of the DLV method 
(Bernal 2002) that does not require central 
collection of the measurement data. Instead, DCS 
shares data among the neighboring nodes to utilize 
spatial information. Due to this local data sharing 
with a limited number of neighboring nodes, the 
total amount of data to be transmitted throughout 
the network is kept small. Therefore, this 
algorithm is scalable to a large number of sensors 
densely deployed over large structures. While 
DCS does not require measurements at all the 
DOFs, the method’s performance is improved by 
sensing at many DOFs; DCS benefits from a dense 
array of smart sensors. Computer analysis and 
experimental validation on a simulated wireless 
network showed that DCS is a promising SHM 
scheme (Gao 2002). While DCS has been shown 
promising as an SHM algorithm for smart sensor 
networks, the strategy has not been implemented 
on smart sensor platforms.  
 
Gao (2005) explains two methods to normalize 
mode shapes in DCS. One of them utilizes input 
force measurements while the other measures only 
vibration outputs under known mass perturbation. 
Because no Imote2 sensor board with force 
measurement is available and because the input 
force of a full-scale structure is difficult to 
measure, DCS employing the mass perturbation 
method is chosen as the algorithm to be 
implemented.  Bernal (2006) proposed a stochastic 
DLV (SDLV) localization approach. This variant 
of the DLV method does not require normalization 
of mode shapes. The absence of the need for 
normalization greatly simplifies the SHM strategy. 
Therefore, the SDLV approach is also 
implemented on networks of Imote2s. 
 

(3)



The DCS implementation is comprised of various 
steps, including numerical calculation functions, 
middleware services, and the damage detection 
algorithm. The major numerical calculation 
functions utilized in DCS for SHM are: singular 
value decomposition (SVD), complex 
eigensolver, Fast Fourier transform (FFT), quick 
sort, and complex matrix inverse. These 
functions are either developed from scratch or 
functions written in C language are adapted. The 
performance of these functions is examined on 
the Imote2; execution of these functions on the 
Imote2 yields identical outputs as those from 
Matlab functions with the precision of double 
data type. Required middleware services for DCS 
include: data aggregation, reliable 
communication, and synchronized sensing. The 
services described earlier are adapted for this 
purpose. The algorithm to locate damage 
involves NExT, ERA, and DLV. These 
techniques are coded as C-functions and adapted 
to TinyOS. 
 
Implementation of DCS for SHM including these 
functions requires further consideration of the 
limited hardware resources. The memory space 
on the Imote2 is limited, and the CPU speed is 
slower than that of a PC.  For example, the size of 
the Hankel matrix utilized in ERA may exceed 
the available memory space on the Imote2s. The 
matrix size must be limited so that the matrix fits 
in the available memory. Fortunately, application 
of DCS on a PC to experiment data has shown 
that modal parameters can be estimated with 
sufficient accuracy using a reduced-size Hankel 
matrix. Additionally, estimation of the stresses 
induced by the DLVs may involve structural 
analysis of the whole truss, which requires large 
amounts of memory and calculation time. Instead, 
a matrix to convert input force to stress is 
calculated on a PC in advance and injected to the 
cluster heads; cluster heads need to simply 
compute the product of the matrix and the DLVs 
rather than to run the entire structural analysis. 
Through these considerations, DCS can be ported 
to the Imote2. 
 
Imote2s are preprogrammed to autonomously 
accomplish the DCS. All the necessary 
parameters such as node ID, sensor direction, and 

data length are initially injected to the network 
from the base station. The base station sends these 
parameters to the manager sensor or cluster head 
sensors, which forward a part of the parameters to 
the leaf nodes. After this parameter injection, the 
PC connected to the base station does not need to 
give input to the Imote2 network.  Tasks are 
preassigned to each command which is sent by the 
reliable communication protocol. 
 
Several functionalities, which may not be 
necessary for complete SHM systems, are 
considered important for debugging purposes and 
are implemented as well. Measured acceleration 
time histories are sent back to the base station so 
that processing of the time history in the network 
can be compared to equivalent data processing on 
a PC. Intermediate results of DCS such as modal 
parameters, DLVs, and accumulated stress are also 
sent back to the base station for the same reason. In 
addition, critical communication packets among 
sensor nodes are directed to the base station using 
the multicast reliable communication protocol so 
that important communication is logged at the 
base station for debugging. These functionalities 
help development and performance evaluation for 
the smart sensor system.  
 
5.2 Experimental setup 
 
A 5.6 m long, three-dimensional truss structure at 
the Smart Structures Technology Laboratory 
(SSTL) of the University of Illinois at 
Urbana-Champaign (http://sst.cee.uiuc.edu/) is 
employed for experimental validation (see Figure 
10). The length of each bay of the truss is 0.4 m. 
The truss sits on two rigid supports. One end of the 
truss is a pinned support, and the other is a roller 
support. The pinned end can rotate freely with all 
three translations restricted. The roller end can 
also move in the longitudinal direction. 
 
The truss is excited vertically by a Ling Dynamic 
Systems permanent magnetic V408 shaker. A 
band-limited white noise is sent from the computer 
to the shaker to excite the truss structure up to 100 
Hz. The shaker is connected to the bottom of the 
outer panel using a stinger.  
 
Ten Imote2s mounted on nodes of the truss 



measure acceleration in three directions. The 
three axes of the Imote2 accelerometers are 
aligned with longitudinal, transverse and vertical 
directions. The acceleration data is acquired at a 
nominal sampling rate of 560 Hz and resampled 
to 280 Hz. Six Imote2s mounted on six front 
panel nodes of two consecutive bays of the truss 
constitutes a local sensor community and monitor 
structural damage within the bays. The ten 
Imote2s in total make three overlapping sensor 
communities.   
 
A horizontal element on the lower cord is 
replaced with a thinner element to simulate 
damage to the truss. This replacement results in 
52.7 % cross section loss in elements 20 and 8 in 
the mass perturbation-based DCS method 
experiment and SDLV-based DCS method 
experiment, respectively (see Figure 11). The 
cross section loss reduces stiffness in the element 
and is expected to be detected as damage by the 
DCS method. 
 
5.3 Experimental results 
 
Through the resampling process, measured 
acceleration signals are synchronized to each 
other. The phase of the cross spectral densities 
indicates the synchronization accuracy. The slope 
of the phase indicates time synchronization error. 
As shown in Figure 12, the time synchronization 
error is approximately 30 μsec. 
 
Modal parameters are determined from these 
measured acceleration signals. The NExT 
method is used to estimate the cross spectral 
densities and convert them to correlation 
functions. The Hanning window is employed in 
spectral density estimation. Figure 13 shows 
cross spectral densities between the vertical 
acceleration signal of a cluster head node and the 
longitudinal and vertical acceleration signals of 
other nodes in the community. As expected, the 
spectral densities estimated on the Imote2s show 
clear peaks corresponding to structural modes. 
The acceleration signals are also processed on a 
PC to validate the numerical operation on the 
Imote2s. The spectral densities estimated on the 
Imote2s in a distributed manner are found to be 
identical (within the numerical precision of 

double data type) to those calculated on the PC. 
Natural frequencies, damping ratios, mode shapes, 
EMAC, initial modal amplitude, etc. are identified 
from the cross spectral densities by cluster head 
nodes running ERA. These identified parameters 
are numerically the same as those identified on a 
PC. 
 
First, the mass perturbation-based DCS method is 
considered.  Here, the network of Imote2s 
installed at nodes 7, 9, 11, 13, 15, 17, 19, 21, 23, 
and 25 (see Figure 11) estimates the mass 
normalization constants prior to commencement 
of monitoring by measuring the acceleration 
responses of the truss with and without known 
mass perturbation.  Then Imote2s are installed at 
nodes 8 to 13. The modal parameters identified 
before and after element replacement are input to 
the DLV method to locate the simulated damage. 
The normalized accumulated stress estimated by 
the cluster head node, node 10, is shown in Figure 
14. This local sensor community monitors 
elements 15 to 23. The DLV method identifies 
damaged elements as those with small 
accumulated stress. Element 20, which was 
replaced with a thinner bar, has a normalized 
accumulated stress smaller than a predetermined 
threshold value, 0.3. While the small normalized 
accumulated stress successfully localized damage 
in this experiment, false positive/negative damage 
localization is sometimes observed in other cases.  
 
The damage localization algorithm is then 
changed to the SDLV method, and the damaged 
element is sought. Ten Imote2s are installed from 
nodes 2 to 11. Nodes 4, 6, and 8 become cluster 
heads and form local sensor communities around 
them. Each local sensor community consists of a 
cluster head and five surrounding nodes.  Figure 
15 shows the normalized accumulated stress 
calculated by the three adjacent cluster heads. In 
this experiment, element 8 is replaced with the 
thinner element. As shown, the Imote2s in these 
local sensor communities successfully detected 
the damaged element. 
 
The SDLV results from the respective 
communities are shared among neighboring 
cluster heads to make judgment on damage. If 
neighboring nodes are consistent, the damage 



detection results are reported to the base station 
and the cluster heads switches to the sleep mode. 
If inconsistency is observed, the neighbors retake 
data and apply the series of data processing again. 
Figure 16 shows the report from the cluster heads 
to the base station after applying the SDLV-based 
DCS method and exchanging damaged element 
information among the communities. Element 8 
is identified as the only damaged element. The 
damage localization at the three cluster heads is 
consistent and the flag to indicate retaking data is 
set to zero. 
 
6.0  CONCLUSION 
 
A hierarchical, distributed SHM system 
employing smart sensors has been developed and 
experimentally verified on the Imote2 smart 
sensor platform. To realize this SHM system 
required various issues and algorithms to be 
addressed. Middleware services including data 
aggregation, reliable communication, and 
synchronized sensing were realized on Imote2s. 
These services as well as numerical functions and 
algorithms were combined to produce the SHM 
system. Experimental verification using the 
three-dimensional truss demonstrated the 
efficacy of the SHM system developed herein. 
More details about this research can be found in 
Nagayama (2007). 
 
7.0 ACKNOWLEDGEMENTS 
 
The authors gratefully acknowledge the support 
of this research by the National Science 
Foundation under NSF grants CMS 03-01140 
and CMS 06-00433, Dr. S.C. Liu, Program 
Manager. The second and third authors would 
also like to acknowledge the support of a 
Vodafone-U.S. Foundation Graduate Fellowship. 
 
6.0  REFERENCES 
 

Adler, R., Flanigan, M., Huang, J., Kling, R., 
Kushalnagar, N., Nachman, L., Wan, CY., and 
Yarvis, M. “Intel mote 2: an advanced platform 
for demanding sensor network applications.” 
Proc. 3rd int. conference on Embedded 
networked sensor systems, 298 - 298. (2005) 

Aoki, S., Fujino, Y., and Abe, M. “Intelligent 
bridge maintenance system using MEMS and 
network technology.” Proc., SPIE – Smart 
Systems and NDE for Civil Infrastructures, 5057, 
37-42. (2003) 

Bendat, J. S., and Piersol, A.G. Random data: 
analysis and measurement procedures, John Wiley 
and Sons, Inc. (2000) 

Bernal, D. “Load vectors for damage 
localization.” J. of Engineering Mechanics, 128(1), 
7-14. (2002) 

Bernal, D. “Flexibility-based damage localization 
from stochastic realization results.” J of 
Engineering Mechanics, 132(6), 651-658. (2006) 

Celebi, M. “Seismic instrumentation of buildings 
(with emphasis on federal buildings).” Special 
GSA/USGS Project, an administrative report, 
United States Geological Survey, Menlo Park, CA. 
(2002) 

Chintalapudi, K., Paek, J., Gnawali, O., Fu, T., 
Dantu, K., Caffrey, J., Govindan, R., and Johnson, 
E. “Structural Damage Detection and Localization 
Using NetSHM.” Proc 5th International 
Conference on Information Processing in Sensor 
Networks: Special track on Sensor Platform Tools 
and Design Methods for Networked Embedded 
Systems (IPSN/SPOTS'06), Nashville, TN, (2006) 

Chung, H.-C., Enomoto, T., Shinozuka, M., Chou, 
P., Park, C., Yokoi, I., and Morishita, S. “Real 
time visualization of structural response with 
wireless MEMS sensors.” Proc., 13th World 
Conference on Earthquake Engineering, No. 121, 
1-10. (2004) 

Crossbow Technology, Inc. 
<http://www.xbow.com> (Mar. 2, 2007). 

Farrar, C. R. “Historical overview of structural 
health monitoring.” Lecture Notes on Structural 
Health Monitoring using Statistical Pattern 
Recognition. Los Alamos Dynamics, Los Alamos, 
NM. (2001) 

Ganeriwal, S., Kumar, R., and Srivastava, M. B. 
“Timing-sync protocol for sensor networks.” Proc., 
1st International Conference On Embedded 
Networked Sensor Systems, Los Angeles, CA, 
138 - 149. (2003) 



Gao., Y. Structural health monitoring strategies 
for smart sensor networks, Ph.D. Dissertation, 
University of Illinois at Urbana-Champaign, IL 
(2005) 

Hartnagel, Bryan A.  Personal Communication, 
August 22 (2006) 

Hill, J., and Culler, D. “Mica: A wireless platform 
for deeply embedded networks.” IEEE Micro., 
22(6), 12-24. (2002) 

James, G. H., Carne, T. G., Lauffer, J. P., and 
Nord, A. R. “Modal testing using natural 
excitation.” Proc., 10th Int. Modal Analysis 
Conference, San Diego, CA..(1992) 

Jensen, S. “Summary Outlook to 2005 for the 
European Construction Market.” 
http://www.cifs.dk/scripts/artikel.asp?id=775&l
ng=2. (2005) 

Kiremidjian, A. S., Straser, E. G., Meng, T. H., 
Law, K. and Soon, H. “Structural damage 
monitoring for civil structures.” Proc., Int. 
Workshop on Structural Health Monitoring, 
Stanford, CA, 371-382. (1997) 

Kling, R., Adler, R., Huang, J., Hummel, V., and 
Nachman, L. “Intel Mote-based Sensor 
Networks.” Structural Control Health Monitoring, 
12:469–479. (2005) 

Lynch, J. P., Law, K. H., Kiremidjian, A. S., 
Carryer, E., Kenny, T. W., Patridge, A., and 
Sundararajan, A. “Validation of a wireless 
modular monitoring system for structures.” Proc., 
SPIE - Smart Structures and Materials: Smart 
Systems for Bridges, Structures, and Highways, 
San Diego, CA, 4696(2), 17-21. (2002) 

Lynch, J. P. and Loh, K. “A summary review of 
wireless sensors and sensor networks for 
structural health monitoring.” Shock and 
Vibration Digest, 38(2), 91-128. (2006) 

Lynch, J. P., Wang, Y., Law, K. H., Yi, J.-H., Lee, 
C. G., and Yun, C. B. “Validation of a large-scale 
wireless structural monitoring system on the 
Geumdang bridge.” Proc., the Int. Conference on 
Safety and Structural Reliability, Rome, Italy. 
(2005) 

Maroti, M. Kusy, B., Simon, G., and Ledeczi, A. 
“The flooding time synchronization protocol.” 
Proc., 2nd International Conference On 

Embedded Networked Sensor Systems, Baltimore, 
MD, 39-49. (2004) 

Mechitov, K., Kim, W., Agha, G., and Nagayama, 
T. “High-frequency distributed sensing for 
structure monitoring.” Proc., 1st Int. Workshop on 
Networked Sensing Systems, Tokyo, Japan, 
101–105.(2004) 

Nagayama, T. Structural health monitoring using 
smart sensors, Ph.D. Dissertation, University of 
Illinois at Urbana-Champaign, IL (2007) 

Nagayama, T., Rice, J.A., and Spencer, Jr., B.F. 
“Efficacy of Intel’s Imote2 wireless sensor 
platform for structural health monitoring 
applications.” Proc., Asia-Pacific Workshop on 
Structural health Monitoring, Yokohama, Japan. 
(2006) 

Nagayama, T., Ruiz-Sandoval, M., Spencer Jr., B. 
F., Mechitov K. A., Agha, G. “Wireless strain 
sensor development for civil infrastructure.” Proc., 
1st Int. Workshop on Networked Sensing Systems, 
Tokyo, Japan, 97–100. (2004) 

Nagayama, T. Sim, S.H., Miyamori, Y., Spencer 
Jr., B.F. “Issues in Structural Health Monitoring 
Employing Smart Sensors.” Smart Structures and 
Systems (in review) 

Nagayama, T, Spencer, B.F., Agha, G., and 
Mechitov, K. “Model-based Data Aggregation for 
Structural Monitoring Employing Smart Sensors.” 
3rd International Conference on Networked 
Sensing Systems (INSS). (2006) 

Nitta, Y., Nagayam, T., Spencer Jr., B. F., and 
Nishitani, A. “Rapid damage assessment for the 
structures utilizing smart sensor MICA2 MOTE.” 
Proc., 5th Int. Workshop on Structural Health 
Monitoring, Stanford, CA., 283-290. (2005) 

Oppenheim, A.V., Schafer, R.W., Buck, J.R. 
“Discrete-Time Signal Processing.” Prentice Hall. 
(1999) 

Ou, J. P., Li, H. W., Xiao, Y. Q., Li, Q. S. “Health 
dynamic measurement of tall building using 
wireless sensor network.” Proc., SPIE - Smart 
Structures and Materials, 5765(1), 205-215. 
(2005) 

Sohn, H., Worden, K., and Farrar, C. R. 
“Statistical damage classification under changing 
environmental and operational conditions.” J. 



Intelligent Material Systems and Structures, 13, 
561-574. (2002) 

Spencer Jr., B.F., Ruiz-Sandoval, M.E., and 
Kurata, N. “Smart sensing technology: 
opportunities and challenges.” J. of Structural 
Control and Health Monitoring, 11:349–368. 
(2004) 

STMicroelectronics, LIS3L02DQ Data Sheet. 
(2005) 

STMicroelectronics, Application Note AN2041. 
(2005) 

Straser, E. G. and Kiremidjian A. S. “A modular 
visual approach to damage monitoring for civil 
structures.” Proc., SPIE - Smart Structures and 
Materials, San Diego, CA, 2719, 112-122. (1996) 

Straser, E. G. and Kiremidjian A. S. “A modular, 
wireless damage monitoring system for 
structures.” The John A. Blume Earthquake 
Engineering Center Technical Report, 128. 
(1998) 

Tanner, N. A., Wait, J. R., Farrar, C. R., and Sohn, 
H. “Structural health monitoring using modular 
wireless sensors.” J., Intelligent Material Systems 
and Structures, 14(1), 43-56. (2003) 

U.S. Census Bureau. “Value of construction Put 
in Place.” http://www.census.gov/const/www/ 
c30index.html. (2004) 

Wong, K.-Y. “Instrumentation and health 
monitoring of cable-supported bridges.” 
Structural Control and Health Monitoring, 
11(2), 91-124. (2004) 



Table 1: Research gaps. 
Network Sensor node Algorithms 
Scalability Power available Scalability 

Time synchronization Power needed to meet 
performance requirements. Distributed 

Data loss Computational speed Data aggregation 
Power efficiency Communication bandwidth Minimize power 

Localization Environmental hardening Sensor fusion 
adaptive network Resolution/range Data protocols 
Fault tolerance Sensor type  
interoperability Digital vs analog  

middleware   
 

Table 2: Comparison between Mica2 and Imote2. 
 Mica2 Imote2 

Microprocessor ATmega128L XScalePXA271 

Clock speed (MHz) 7.373 13-416 

Active Power (mW) 24 @ 3V 
44 @ 13 MHz,     
  570 @ 416 

MHz 
Program flash (bytes) 128 K 32 M 

RAM (bytes) 4 K 256 K + 32 M 
external 

Nonvolatile storage (bytes) 512 K 32 M      
(Program flash) 

Size (mm) 58 x 32 x 7 48 x 36 x 7 

 
Table 3: Accelerometer user specified 
sampling rates and cutoff frequencies 

Decimation 
factor 

Cutoff 
frequency (Hz) 

Sampling 
rate (Hz) 

128 70 280 
64 140 560 
32 280 1120 
8 1120 4480 

 
 
 
 
 
 



Table 4: Natural frequencies identified on Imote2s. 

Mode Natural frequency 
(Hz) 

1st 19.638 

2nd 40.846 

3rd 61.888 

4th 66.714 

5th 70.344 

6th 93.606 
 
 
 
 
 
 
 



 

  
 
 

 

Manager node
Cluster head node
Leaf node
Base station

Manager nodeManager node
Cluster head node
Leaf node
Base station

Manager node
Cluster head node
Leaf node
Base station

Manager nodeManager node
Cluster head node
Leaf node
Base station

Figure 2: SHM system architecutre with interchangeable 

Figure 1: Smart sensor topologies. 

Data acquisition 

Data processing
(a) Centralized data acquisition 

Data acquisition 

Data processing
(a) Centralized data acquisition 

Data acquisition 
& processing

(b) Independent data processing 

Data acquisition 
& processing

(b) Independent data processing 

Data acquisition 

Coordinated and 
distributed 
data processing

(c) Hierarchical system 

Data acquisition 

Coordinated and 
distributed 
data processing

(c) Hierarchical system 



 
 

 

 
 
 

 
 

Figure 3: Intel's Imote2.  Top view and bottom view 

 Figure 4: Centralized NExT implementation. 

Node 1
x1

Node 2
x2

Node 3
x3

Node 4
x4

Node ns
xns

. . .Node 4
x4

( ) ( )1 iE x t x t τ+⎡ ⎤⎣ ⎦
i =1,2,…,ns

Node 1
x1

Node 2
x2

Node 3
x3

Node 4
x4

Node ns
xns

. . .Node 4
x4

( ) ( )1 iE x t x t τ+⎡ ⎤⎣ ⎦
i =1,2,…,ns

Figure 5: Distributed NExT implementation. 

Node 1
x1

Node 2
x2

Node 3
x3

Node 4
x4

Node ns
xns

( ) ( )1 2E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 3E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 4E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 snE x t x t τ⎡ ⎤+⎣ ⎦

( ) ( )1 1E x t x t τ+⎡ ⎤⎣ ⎦

. . .Node 4
x4

( ) ( )1 4E x t x t τ+⎡ ⎤⎣ ⎦

Node 1
x1

Node 2
x2

Node 3
x3

Node 4
x4

Node ns
xns

( ) ( )1 2E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 3E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 4E x t x t τ+⎡ ⎤⎣ ⎦ ( ) ( )1 snE x t x t τ⎡ ⎤+⎣ ⎦

( ) ( )1 1E x t x t τ+⎡ ⎤⎣ ⎦

. . .Node 4
x4

( ) ( )1 4E x t x t τ+⎡ ⎤⎣ ⎦



 

 
 
 
 
 

Figure 7: Time synchronization 

50 100 150 200 250 300-100

-80

-60

-40

-20

0

20

40

60

80

Repetition

Ti
m

e 
(μ

se
c)

Figure 6: Reliable communication protocol for long data records. 

• Sender • Receiver
Reliable multicast, long data

Send parameters
• Sender sends parameters to the receiver. 
(e.g. data length, sensitivity, data type, etc.)
• Sender keeps sending the parameters until 
acknowledgement packet is received.

Acknowledge
• Receiver saves received parameters and 
return acknowledgement packet

Data
• Sender sends series of data packets Receive data

• Receiver saves received data and keeps 
track of missing packets.End of data

• Sender notifies the receiver that all the 
data is sent. This message is repeatedly 
sent until acknowledgement is received.. Acknowledgement/Request missing 

packets 
• Receiver acknowledges. If receiver missed 
packets, request sender resend the missing 
packets.

Send missing data
• Sender reply to the request.

Receive data
• Receiver saves received data and keeps 
track of missing packets.

Done
• Sender tells the receiver that the data 
transfer is complete. Sender keeps sending 
packets until an acknowledgement packet is 
received.

Acknowledge
• Receiver acknowledges. 

yes

no
Missing packets?

Inquiry
• inquire of receivers whether they are ready.
•Message ID is sent to the receiver

Acknowledge
• Receiver saves received parameters and 
return acknowledgement packet



 
 

 
 
 

Figure 9: Signals before and after resampling. 

27.9 27.95 28
-3

-2

-1

0

1

2

3

Time (sec)

Sa
m

pl
es

27.9 27.95 28
-3

-2

-1

0

1

2

3

Time (sec)

Sa
m

pl
es

Figure 8: Drift estimation. 

20 40 60 80 100 120 140 160 180
-4000

-2000

0

2000

4000

6000

8000

Time (s ec)

D
rif

t(
μs

ec
)



 

 
 
 

 
 
 
 
 
 

Figure 11: Node and element IDs of the truss. 

1 4 8 12 16 20 24 28 32 36 40 44 48 52

6 10 14 18 22 26 30 34 38 42 46 50

3 7 11 15 19 23
27

31 35 39 43 47 51

2 5 9 13 17 21 25 29 33 37 41 45 49 53

1

2 4 6 8

3 5 7 9

10 12 14 16

11 13 15 17 19 21 23 25 27 28

2618 20 22 24

Figure 10: Three dimensional truss model. 

Figure 12: Phase of spectral densities. 



 

 
Figure 14: Normalized accumulated stress from mass perturbation-based DCSmethod. 

Figure 13: Cross spectral densities. 



     
 

 

Figure 16: Report on damaged elements. 

Figure 15: Normalized accumulated stress from SDLV-based DCS method. 


