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Abstract 
 
The goal of this research is to test the response of an oscillating foundation platform, which 
is positioned on soil and submerged by water. The oscillating platform is modeled as a linear 
spring-damper-mass oscillator with two perpendicular degrees of freedom. The platform is 
mounted so it can rotate around the directions corresponding to its main bending axis. A 
specially designed flume, which is 3000 mm long and 400 mm wide, allows for the 
investigation of different soil conditions and various flow depths. The oscillating platform is 
mounted elastically on a structure over the test section of the flume. Three synchronous 
linear drive motors apply the dynamic loads. Complex plane representation of the dynamic 
moments is used to identify the nonlinear fluid and soil moments. Additional goals are to 
detect the nonlinear fluid and soil coupling moments.  
 
 
Introduction 
 
This study will investigate how bridge foundations, such as spread footings, interact with soil 
and water during an earthquake. These interactions can occur at bridge foundations 
constructed under water (such as in a creek, a river or even a bay area) as well as at 
foundations constructed within the groundwater table. While an earthquake vibrates bridge 
foundations, the foundation might be exposed to a bi-directional rocking motion.  When the 
rocking motion becomes significant, water can alternatively be sucked into gaps and pressed 
out of gaps that occur as the foundation rocks up and down.  The effects of the interactions 
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between the water and foundations can become significant and affect the bridge stability if 
the rocking motion is significant. Current design code for earthquake resistance does not 
consider these effects. This preliminary study will use a small-scale multi-hazard dynamic 
testing model to simulate these effects.  
 
The experimental set-up is designed to study the fluid-soil structure interaction of a rigid 
foundation platform modeled as a two degree of freedom (2-DOF) oscillator using a forced 
oscillation experiment. The linear 2-DOF oscillator acts as a reference system to investigate 
the nonlinear behavior of the system when it interacts with fluid and soil. The identification 
concept to determine the fluid and soil moments and to analyze the coupling effects based on 
a forced oscillation test are similar used to model fluid dynamic damping and stiffness. 
Kerenyi and Yen (2002) use forced oscillation tests to determine fluid and soil coefficients. 
The tests were conducted in a flume having a recess for different soil conditions. Billeter and 
Staubli (2000) investigated a multiple mode vibration test on a vertical plate. They use force 
coefficients and phase angle to compute fluid dynamic damping and mass. Staubli (1983) 
and Deniz (1997) used forced oscillation tests in a tow-tank to determine force coefficients 
and phase angle to describe the fluid dynamic system. Kerenyi and Staubli (2000) analyze 
the stability of a prism oscillating with two degrees of freedom in cross flow. Phase angle 
relationship is used to determine if the body is exited or damped.  
 
 
Experimental Set-Up 
 
The experimental set-up consists of two major subsystems: a flume to simulate various flow 
and riverbed conditions and the shaking device to apply different dynamic loadings. 
 
Flume 
 
The flume consists of a 1300 mm long inlet and a 2000 mm straight channel (Figure 1). The 
upstream flow conditioning is achieved using filter mats, a honeycomb flow straightener, and 
a carefully designed trumpet-shaped inlet. The flume is designed to have a uniform flow 
distribution over the width and to have fully developed turbulent flow (following Prandtl’s 
velocity distribution) at the test section. The recess at the test section is 400 mm x 300 mm 
(length x width) and 80 mm deep, and can be filled with sand particles of various sizes. The 
roughness of the fixed bed upstream of the recess can be varied according to the sand 
particles used in the recess. A 25 l/s pump provides the flume with water, which is stored 
under the flume in a water tank. A flow meter measures the discharge and an ultra sonic flow 
depth meter determines the flow depth. A laser distance meter, which is mounted on a portal 
robot, can scan scour holes during test runs. The flow velocity is measured with an electro 
magnetic velocity probe.  
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Figure 1. Test flume and trumpet shaped inlet 

 
Shaking Device 
 
The shaking device is mounted above the flume on a rigid frame at the test section. Three 
synchronous linear drive motors apply dynamic forces up to 10 Hz. Three lasers provide the 
feedback signal for the linear drive motors. The driving signals have to be superposed to 
achieve the rocking movement (Figure 2). 
 

 
Figure 2: Shaking device 

 
Band limited random noise can be used to simulate earthquake loading. The platform is 
mounted so it can rotate around the directions corresponding to its main bending axis. The 
foundation platform is linked to a transfer plate using four thin columns. The transfer plate is 
elastically mounted to the diver system. Using different coil springs for the elastical support 
can vary the natural frequency. The mechanical (structural) subsystem represents a linear 
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spring-damper-mass oscillator with two perpendicular degrees of freedom, which is lightly 
damped to study a significant peak resonant response. The damping ratio is determined by 
the Half-Power (Band-Width) method. The angular response displacement is measured with 
a laser distance meter and the angular response acceleration with accelerometers. The 
angular response velocity is determined by integrating the angular response acceleration. 
Four load cells measure the applied dynamic loading.  
 
 
Mathematical Background  
 
The objective of this research, how the equilibrium of forces change by adding fluid and soil 
to the oscillating foundation platform to determine the non-linear behavior of the additional 
stiffness and damping coefficients (Figure 3).  
 

 
 

Figure 3: Fluid-soil spring-damper system 
 
 
Identification Procedure 
 
The identification procedure is based on the idea of a forced oscillation experiments used to 
determine fluid and soil dynamic stiffness and damping. Additional damping and stiffness 
coefficients can model the fluid dynamic and the soil subsystem (equation 1), which are 
functions of several parameters (e.g., amplitude and frequency). The mechanical subsystem 
has no coupling coefficients, because the degrees of freedom are orthogonal. 
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For the tests described here only the exciting frequencies ωα, ωβ and the amplitudes αo, βo 
will be varied, by keeping the soil conditions and the flow depth h constant. 
The identification concept is based on the balance of moments acting on the linear mass two 
degree of freedom (2-DOF) oscillator (Figure 4) under steady state harmonic condition 
whereby the total response for both coordinates is: 
 

 
Figure 4: Linear 2-DOF system showing the α-coordinate 

 
)(exp tit ωα = )(α ο  and )]([exp ϕ+ωβ = )(β ο tit  (3

)

Moment equilibrium requires that the sum of the inertial )(tM i,I , damping )(tM i,D and 
stiffness moments )(tM i,S for i = α, β are equal the applied load 

)](exp[  )( o ααα ψ+ω= tiMtM ,  
)](exp[  )( o βββ ψ+ω= tiMtM ,  (4

)

Using equation (3), these moments are: 

)(exp)( o
2 tiItIM ,I ωαω−=α= ααα &&  

)]([exp)( o
2 ϕ+ωβω−=β= βββ tiItIM ,I

&&  
(5
)

 
)(exp)( o tiKitCM ,D ωαω=α= ααα &  

)]([exp)( o ϕ+ωβω=β= βββ tiCitCM ,D
&  

(6
)

 
)(exp)( o tiKtKM ,S ωα=α= ααα  

)]([exp)( o ϕ+ωβ=β= βββ tiKtKM ,S  (7
)

along with the applied loading, are shown as vectors in the complex plane (Figure 5) also 
shown is the closed polygon of moments required for equilibrium in accordance with 
equation (8)  
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)()()()( tMtMtMtM ii,Si,Di,I =++   for i = α, β   (8
)

 

 
Figure 5: Steady state harmonic moments using viscous damping in a complex plane 

representation and closed moment polygon representation (moments are plotted 
only for the α-coordinate 

 
Inertial, damping, and spring moments as given in equation (5-7) are in phase with the 
angular acceleration, velocity, and displacement motions, respectively.  
If the 2-DOF linear mass oscillator interacts with flow and soil additional damping and 
stiffness moments are required for equilibrium. These additional moments also include fluid 
and soil-coupling moments as the 2-DOF system interacts with fluid and soil (Figure 6 and 
7). These moments are frequency and amplitude dependent. To identify  

βαβα K,K,C,C  (9
)

one degree of freedom has to be blocked, as indicated in figure 6, where the β-coordinate is 
blocked. In this case the additional fluid and soil moments by substituting equation (3) are 

ooo )()()()( αωα=αωα= ααα ,Kt,KtM ,S  (10)
 

ooo )()()()( αωωα=αωα= ααα ,Cit,CtM ,D &  (11)
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Figure 6.: 2-DOF system interacting with fluid and soil and closed polygon representation 
including additional damping and stiffness moments for the α-coordinate 

 
To determine these additional moments cross power spectrum is used to compute the phase 
angle ψα between body response angular displacement amplitude αo and applied dynamic 
moment amplitude Mα,o. The moments can be expressed by equilibrating the dynamic 
moment components  

ααααα −−ψ)(= ,I,S,S MMtMM cos  (12)
 

αααα −ψ)(= ,D,D MtMM sin  (13)

Substituting equations (5) to (7) and equations (10) and (11) into equation (12) and (13), one 
obtains the fluid-soil coefficient functions for the α-coordinate 

o

o
2

oo
o

cos
α

αω−α−ψ)(
=)ωα( αααα

α

IKtM
,K ,  (14)

 

o

oo
o

sin
αω

αω−ψ)(
=)ωα( ααα

α

CtM
,C ,  (15)

To identify the coupling coefficients 

αββα,αββα. ,, K,K,C,C  (16
)

the 2-DOF oscillator is exited in both directions. As indicated in figure 7 for the α-coordinate 
additional fluid-soil coupling damping and stiffness moments are required for equilibrium. 
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Figure 7.: Complex plane representation of the 2-DOF system interacting with fluid and soil 

to determine the additional coupling moments for the α-coordinate  
 
Again cross power spectrum is used to compute the phase angle ψαβ between body response 
angular displacement amplitude αo and applied dynamic moment amplitude Mα,o and to 
determine the phase angle between response angular displacement amplitude αo and βo. The 
moments can be expressed by equilibrating the dynamic moment components (for the α-
coordinate) 

ααααβααβ −−−ψ)(= ,S,I,S,S MMMtMM cos , (17)
 

αααβαα −−ψ)(= ,D,D,D MMtMM sin . (18)

using the fluid and soil moments derived in equation (12 and 13). Coordinate transformation 
leads to  

ϕ+ϕ=)(β
αβαββα cossin ,S,D, MMtK , (19)

 

ϕ−ϕ=)(β
αβαββα sincos ,S,D, MMtC & . (20)

Substituting equation (3) into equation (19) and (20) one obtains the coupling coefficients for 
the (α-coordinate): 

o
o

cossin
)(

β

ϕ+ϕ
=ωβ αβαβ

βα
,S,D

,

MM
,K  

(21)

 

o
o

sincos
)(

βω

ϕ−ϕ
=ωβ αβαβ

βα
,S,D

,

MM
,C . 

(22)
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