Pile Response to Horizontal Cyclic Loads

Masahiro SHIRATO", Junichi KOSEKI', and Jiro FUKUI*

Abstract: This paper proposes a new hysteretic mechanism for Winkler type horizontal soil-
foundation interaction springs for dynamic analyses of deep foundations. The experimental
results of prototype piles subjected to cyclic lateral loading are reviewed. Plane strain test re-
sults of sand subjected to cyclic compression-extension loading are also investigated in order
to account for the soil-pile load transfer mechanism from a theoretical point of view. These
two investigations show that load transfer between soil and foundation depends on loading
patterns. Numerical simulations using the proposed model show good agreement with the re-
sults of experiments on single piles subjected to fully reversed or one-sided horizontal cyclic
loading.

INTRODUCTION

Due to the disastrous effects of earthquakes in past decades, the need for the use of
dynamic analyses of foundations as well as structures in practical seismic design has been
recognized. In practice, engineers often examine the soil-foundation interaction based on
the beam-on-Winkler-foundation concept in pushover analysis. In the beam-on-Winkler-
foundation concept, engineers model a pile (or deep foundation) as a beam and model the
soil-pile load transfers as distributed springs along the length of the pile. The soil-pile load
transfer of a Winkler spring at each depth is comprised of the relationship between the soil
resistance per unit area p and the displacement y of the pile relative to the far-field soil
at that depth, and this relationship is usually referred to as the p-y curve or p-y relation.
However, some effort is required in order to plug a nonlinear hysteretic mechanism in the
p-y relation beyond the static nonlinear pushover analysis into nonlinear dynamic analyses.
Typical mechanisms such as the bi-linear mechanism and Masing’s rule are often assumed,
but most of these assumptions have not been verified.

This study explores a new model for the hysteretic mechanism of Winkler interaction
springs between soil and foundation from a practical point of view. First, we observe the
experimental results for piles embedded in sand and subjected to either fully reversed or one-
sided cyclic loading at the top. These two loading patterns can be regarded as extreme cases
of seismic random loading. Then, the characteristics of load transfer hystereses between
soil and foundation are examined with respect to soil mechanics. We attempt to associate the
behavior of sand subjected to cyclic compression and extension deformation in a soil element
level with the load transfer hysteresis in the soil-pile interaction. In addition, we clarify the
characteristics to be considered in the dynamic analyses for the soil-pile interaction based on
these experimental and theoretical investigations and propose a new hysteretic mechanism of
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Figure 1 Test setup (units: mm)

interaction springs for random loading. Finally, we examine the accuracy and characteristics
of the proposed hysteretic mechanism through simulation of piles embedded in sand and
subjected to cyclic loading.

HORIZONTAL CYCLIC LOADING TESTS ON SINGLE PILES IN SAND

Test set-up

The experiment discussed herein was reported in detail by Fukui et al. (1998). Fig-
ure 1 illustrates the experimental set-up.

The soil deposit was made of Kashima sand (Dsy = 0.67 mm and U, = 2.66) in a deep
test pit at the Foundation Engineering Laboratory of the Public Works Research Institute.
The deep test pit is 4 m long and 3 m wide in plan view, and has a depth of 11 m. The sand
deposit was loose and saturated. The average relative density D, and average dry density
of the soil deposit estimated from core-cutter samples were 17% and 1.51 t/m*. During
each experiment, the water level was maintained at the ground surface level. An internal
friction angle of 39 deg. was provided by a drained triaxial compression test conducted with
D, = 30% (ps = 1.53 ym?) and o, = 29.4 kN/m?, where ¢, is a confining stress. Cyclic
triaxial compression tests provided a small strain shear modulus Gy at a shear strain level on
the order of 107* as:

Gy = 1935(0./98)"" x 98  (kN/m?), (1)

where the unit of ¢, is kKN/m?.

Steel pipe piles, each having a diameter of 318.5 mm and an embedded depth of 8
m, were used in the experiment. One pile had a wall thickness of 10.3 mm and was made
of STK490, the other pile had a wall thickness of 5.6 mm and was made of STK400. We
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Table 1 Results of material element tests for the Table 2 Experimental cases

steel pipe pile specimens Case Cyclic loading pattern  Specimen
. Yield stress  Young’s modulus S1 Fully reversed SPP-1
Specimen (N/mm?) (kN/mm?) S2 Fully reversed SPP-2
SPP-1 562.0 228 S3 One-sided SPP-2
SPP-2 589.1 238

hereinafter refer to the former specimen as SPP-1 (Steel Pipe Pile 1) and the latter specimen
as SPP-2. The material element test results on these piles are tabulated in Table 1. The point
of application of the lateral cyclic loading was 0.7 m above the initial sand deposit surface
(ground level). A pinned device was attached at the bottom of pile. Strain gauges were
placed on the sides of pile that were orthogonal to the loading plane.

The experimental cases examined herein are listed in Table 2. In particular, the
patterns of loading differed among the experimental cases. In Cases S1 and S2, the piles
were subjected to reversed lateral displacement cycles at the load point of the specimen. The
amplitude of the specified displacement was gradually increased from 6 to n X § (n = 2,
3,4, ...), where 6 was 15 mm. In Case S3, one-sided lateral displacement cycles were
applied. The amplitude of displacement was controlled in loading phases, and the load was
then released simply in unloading phases in Case S3. This difference in the loading pattern
is a noteworthy feature of these experiments, unlike most cyclic loading experiments that
are performed only under reversed cyclic loading conditions. Hence, the present study more
closely models seismic effects because it deals with two extreme cyclic load patterns in
seismic random loading. The pile specimens used in each experimental case are listed in
Table 2.

Observation of p-y curves
In the present study, p-v curves were derived from strain gauge data, where p is the
soil resistance to the pile, in other words, the subgrade reaction intensity, and y is the relative
displacement between the pile and the far field of the soil deposit. In these experiments, the
soil displacement in the far-field is supposed to be zero. Shown in Figure 2 are comparisons
of p-y relationships among the experimental cases at a depth of 0.96 m below the ground
level. Only the data measured when the pile bodies behaved elastically are shown in Fig-
ure 2. The solid lines correspond to the results for Cases S1 and S2, and the dotted lines
correspond to the results for Case S3.
In the case of fully reversed cyclic loading, we have the following characteristics:
¢ A reloading path runs toward a point |y .« on the envelope curve on the opposite side,
where [V|max corresponds to the ever-largest displacement.
e Unloading paths are stiffer than reloading paths, and the gradients of unloading paths
do not seem to change significantly, even when || .« 1S updated.
Note that the term ‘reloading’ refers to the case when the increment of |p| is positive, and
the term ‘unloading’ refers to the case when the increment of |p| is negative. An ‘enve-
lope curve’, denoted by a dashed line, is defined as a curve that is derived by connecting
neighboring peak points of the first loops.
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Figure 2 Comparison in p-y hysteresis among three experimental cases (GL —0.96 m)

In addition, Figure 2 indicates that the mobilized soil resistances in the case of one-
sided cyclic loading (Case S3) are smaller than those in the case of fully reversed cyclic
loading (Cases S1 and S2) at the same displacement level. A similar tendency was also
observed at different depths.

Figure 3 compares all of the envelope curves obtained in the experiments in the
positive load and displacement region. The lateral load capacity of Case S3 was less than
that of Case S2 in the pre-peak strength states, despite the fact that the pile specimen and
soil conditions were identical. It should be noted that observation of the pile after the Case
S2 experiment revealed that the pile failed at a depth of 1.55 m below ground level, and that
the cross-section was badly distorted into a kind of oval shape with the short axis running
parallel to the loading direction. As a consequence, postpeak behavior appeared.

EFFECTS OF STRESS-DILATANCY BEHAVIOR ON p-y RELATIONS

Review of the behavior of sand subjected to cyclic loading

During earthquakes, whilst the soil in the far-field of a foundation is primarily sub-
jected to cyclic horizontal shear deformation, the soil in the near-field is primarily subjected
to cyclic passive (compression) and active (extension) deformation due to the relative dis-
placement between the pile and the far-field of the ground, as shown in Figure 4. In the
same manner, the surrounding soil in the pile load experiment sustained cyclic compression-
and-extension deformation. Therefore, consideration of the nonlinearity of soil in such a
deformation mode in the near-field is likely to account for the load transfer characteristics of
soil-pile interaction springs.

Masuda et al. (1999) performed a series of special plane strain tests on saturated
specimens of air-pluviated Toyoura sand, to which cyclic compression and extension histo-
ries were applied. The sand specimen was under a consolidation condition, which models
the overburden stress at a depth under ground, and was subjected to an axial deformation
history. In addition, monotonic compression and extension tests were also performed under
the same conditions.

A typical result from their tests is plotted in Figure 5. The major and minor principle
stress axes are x; and x,, respectively, and the x;-direction corresponds to the horizontal
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Figure 5 o11-£11, &vol~y and sin ¢nep-y relations obtained via a plane strain cyclic test and plane strain
compression (PSC) and plane strain extension (PSE) tests of isotropically consolidated specimens of
Toyoura sand, performed by Masuda et al. (1999)

direction in the field as illustrated in Figure 4. vy and &, are shear and volumetric strains,
respectively, and are defined as

y=g&n—&p and &y = &1 + &, (2)

in the plane strain condition. Changes in volume, i.e. increments of &, A&y, are negative
for volume dilation and are positive for negative volume dilation, which is equivalent to
volume contraction. In the test result, principal stresses and strains are considered to be
positive in compression. ¢yep 18 the mobilized internal friction angle and is expressed by

R-1

RA1 ©

sin (pmob =
where R is the ratio of principal stresses R = 071 /0 2.

The left-hand graph in Figure 5 shows the relationship between axial stress o1, and
axial strain £;;. This relationship is indeed associated with the variation of the earth pressure
coeflicient. During the transition from a passive compression state to an active extension
state, the soil resistance decreases steeply, and eventually a small resistance is maintained.
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In contrast, during the transition from an extension state to a compression state, the soil
resistance gradually increases toward the past peak point. When the soil-pile interaction
at a depth under ground is simplified into a model comprised of an object sandwiched by
two soil blocks, as shown in Figure 6 (a), the superposition of the 01;-¢1; relationship for
one soil block plus the relationship of (—o;)-(—&1;) for the other soil block will form a
hysteresis shape equivalent to the p-y relations observed in the reversed cyclic horizontal
load experiments. In this manner, the element test result can indicate the p-y behavior.

The center and right-hand side graphs of Figure 5 show a general expression of soil
behavior involved with all principal stress and strain components. As the sin ¢y0b-y relation-
ship indicates, the mobilized shear strength and shear strain has a typical hysteretic behavior
under cyclic compression-extension loading, which can be expressed by a combination of a
hyperbolic or exponential function for the skeleton curve and Masing’s rule for the hysteretic
mechanism, for example. This indicates that the mobilized shear strength of soil has a sort
of unique relationship with shear strain when the soil is subjected to cyclic compression-
extension loading.

On the other hand, the right-hand graph in Figure 5 shows a shift of the &~y curve
with the increasing number of cycles and, as a result, the accumulation of negative dila-
tant deformation (volume contraction, i.e. the increment of &, is positive) at every loading
cycle. This fact, together with Eq. (2), reveals that strain components interact with each
other and do not have a stationary relationship. This indicates that the evolution of strain
components versus cyclic compression-extension loading can vary depending on the loading
pattern. Therefore, the mobilized value of soil resistance ¢, can also depend on the loading
pattern. We can infer that the loading pattern dependency of p-y on piles is induced by the
difference in the stress-dilatancy behavior of soil depending on the cyclic loading pattern.

Analytical investigation

An analytical investigation with respect to the element level of sand is performed in
order to confirm the abovementioned assumption regarding the role of the stress-dilatancy
characteristic of soil in the load pattern dependency of p-y. A simple analytical model, as
llustrated in Figure 6 (a), is adopted. A rigid body is sandwiched by plane strain sand blocks
under a confined pressure. Horizontal displacement at both ends is fixed. We control only
the horizontal displacement of the center rigid body, 1(¢), and examine the response of soil
resistance, p(t), per unit area acting on the center rigid body at time z.

This models the state of a system consisting of a pile and the surrounding soil, and
the system is sliced with a depth of dx,. The rigid body and the plane strain sand blocks are
regarded as a pile and an interaction zone between the pile and the far-field of the ground.
The x;-direction corresponds to the horizontal direction in the field.

This paper reports analytical results based on the assumptions described in the fol-
lowing. An isotropic consolidation condition is assumed. The skeleton curve (or monotonic
loading curve) of the sin ¢,,,-y relation is assumed to be symmetric about the origin and
is modeled by a hyperbolic curve. The material parameters used to describe the skeleton
curve, assuming typical values, are as follows: the maximum mobilized internal friction an-
gle dmax 18 30 deg. for giving the maximum value of sin ¢pnep; the reference shear strain vy,
is 0.0002 for setting the initial tangent gradient of the skeleton curve, sin ¢max/y,. The hys-
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Figure 6 Analyses of the effects of the stress-dilatancy behavior of sand on p-y relations

teretic mechanism of sin ¢,0p-y is presented by Masing’s rule. In addition, we need to set a
v-Evo) Telation to describe the soil behavior under the plane strain condition. The following
two cases are tested regarding the volumetric deformation component of the soil block in
order to strengthen the contributions of the stress-dilatancy behavior.
1) Rowe’s stress-dilatancy relation is adopted with the coeflicient of dilatancy K of 3.5.
2) Instead of Rowe’s stress-dilatancy law, &, = vey; is used, where v = 0.3.
The former gives an instantancous incremental dilatant strain depending on the current stress
state, and the latter case has a stationary and reversible one-to-one relationship between gy,
and .

Figure 6 (b) shows the calculation results obtained without the stress-dilatancy law.
The thin solid line shows a result for fully reversed cyclic loading, and the thick solid line
shows a result for one-sided cyclic loading. On the other hand, presented in Figure 6 (¢) are
the results obtained considering the stress-dilatancy law. The left-hand graph in Figure 6 (c)
shows a result for fully cyclic loading, and the right-hand graph shows a result for one-sided
cyclic loading. The dashed lines show the corresponding monotonic loading results.

Only when the stress-dilatancy law is considered does the degradation from the
monotonic loading curve appear. In particular, the p-y curve runs considerably lower than
the previous peak states in the case of one-sided cyclic loading. When the surrounding soils
undergo one-sided cyclic loading, large irreversible strain components appear in the soil
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blocks at every cycle, making it difficult to recover the last soil resistance as mobilized in
the previous loading cycle. Consequently, the stress-dilatancy behavior of sand is found to
greatly affect the loading pattern dependency of the p-y relation.
Next, we assigned various y displacement histories to the model shown in Figure 6
(a) and obtained the p-y responses. Ultimately, the tendencies illustrated in Figure 7 were
observed. In one p-y cycle,
e the p-y curve returns to a point near the preceding reversal point when the intensities
of |p| are almost equal at the preceding and last reversal points (Figures 7 (a) and (d)).
e the p-y curve runs lower than the preceding reversal point with an increase in the
difference in intensities of |p| between the preceding and last reversal points (Figures 7
(b) and (¢)).

A NEW NONLINEAR HYSTERETIC MECHANISM OF p-y

In this section, a new hysteretic mechanism of the p-y response is proposed. The
new model will satisfy the characteristics as summarized in Figure 7. Figures 8, 9, 10 and
11 illustrate the newly proposed hysteretic model. In order to facilitate the description for
various conditions of nonlinear relations of p-y, we describe the hysteretic mechanism by
means of combinations of piecewise straight branches.

We simplify the skeleton curve into a bi-linear curve of elastic and perfectly plastic
type, as shown in Figure 8. It should be noted that the hysteretic mechanism, which will be
proposed later, can be applied to any shape functions of the skeleton curve. In other words,
we can use the combination of a curved skeleton curve and the newly proposed hysteretic
mechanism.

The ultimate value p;; of p is provided by

Pu = @, Kpyx,, 4)

where Kp is the passive carth pressure coefficient, y is the soil weight per unit volume,
x, is the depth, and a, is a modification factor used to represent three-dimensional effects
in the effective interaction zone in subsoil layers. The value of @, in a subsoil layer can be
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estimated through a load test on a single pile subjected to monotonic loading or fully reversed
cyclic loading with a gradually increasing amplitude, or through a past theoretical study. For
example, Kishida and Nakai (1979) have theoretically indicated mechanisms of plastic flow
for surrounding soil in front of a horizontal loaded pile.

Based on a study by Kavvadas and Gazetas (1993) and Yoshida and Yoshinaka
(1979), we express the subgrade reaction coefficient as follows:

ky = aiko, (5
ko = (Eqo/Bo) X (B/By)", (6)

where E, is the small strain deformation coefficient of soil, &y is the reference subgrade reac-
tion coeflicient, B is the width of foundation and is a diameter in the case of piles, By is the
reference width, and 7 is a constant value which represents the foundation width dependency
of the subgrade reaction coefficient. In this paper, By = 0.3 m and n = —3/4 are adopted
in reference to the Japanese Specifications for Highway Bridges (Japan Road Association
2002) and Yoshida and Yoshinaka (1979). Here, a/ is a constant to fit the reference subgrade
reaction coefficient with a bi-linear curve. It is assumed that the value of @, is independent
of depth. The values of a4 and «, can be determined based on load tests on single piles
subjected to monotonic loading or fully reversed cyclic loading.

The hysteretic mechanism in response to fully reversed loading, referred to herein
as the Basic Hysteretic Mechanism, is a kind of peak oriented mechanism, as shown in
Figure 8. A p-y curve runs toward a point corresponding to the ever-largest displacement
[¥Imax. In addition, an unloading path bound for p = 0 from the last reversal point is regarded
as a straight line with an unloading gradient of kgyni. kgun 18 provided by

kHunl = ﬂ/€0~ (7)

As shown by the pile experiments and the analyses using the sand block-rigid body-sand
block model, the unloading rigidity can be assumed to be independent of the displacement
level and loading history. We furthermore assume = 1 in Eq. (7) since the unloading
gradient is closely related to the unloading gradient of soil, which has the same order of
small strain levels used to define 4.

A point corresponding to the ever-largest displacement on the skeleton curve is re-
ferred to as a global control point C;, where the suffixes i and j are 1 or 2 hereafter. A pair of
global control points, C; and C,, are located on the positive and negative sides, respectively,
and are symmetric about the origin. For example, for the path e — f — g in Figure 8, [V|,.x
is the absolute value of the displacement amplitude of point ‘e’, |y.|. The other global control
point is defined as point ‘g’, i.e. o = —[Vlmax = —Ve. Furthermore, we refer to the curves
connecting the global control points, C;-C;, as external curves. For simplicity in coding,
internal curves that move inside the external curves are always bound for the last reversal
point on the external curve or the outermost internal curve. We refer to the oriented points
for this case as the local control points Cp ;.

We then introduce a deterioration rule using target points. The deterioration rule is a
special rule to account for the tendency shown in Figure 7. As demonstrated in Figure 9, a
target point T; is defined as the intersection point of a reloading line with a gradient of kg
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from the perfectly unloaded point Z; and an extension line of the external curve C,-C; (i.e.
7Z,-Cy), and we further assume that the path after a reversal on the external curve C;-C, is
always bound for the target point T.

In the right-hand diagram of Figure 9, the curve after the last reversal is made up of
an unloading branch with the gradient of kg, and the subsequent reloading branch bound
for T;. The other target point T, can be derived in the same manner by using the perfectly
unloaded point Z, from the global control point C,, the gradient kg;, and the extension line
of the corresponding external curve C;-C, (i.e. Z;-Cy).

We refer to the line connecting the perfectly unloaded point Z; to the target point T;
as a reference reloading line and its gradient kz, as the reference reloading gradient. The
reference reloading gradient is expressed as

kHr = MkHunla (8)

where M is a constant. The value of M is not larger than one and is satisfied by the condition
whereby the extensions of the reference reloading curve and the external curve must possess
a cross point in the first or third quadrant for T, or T,, respectively. When an interaction
spring is subjected to fully reversed cyclic loading, no deterioration of p appears, regardless
of the value of M. When M = 1.0, the hysteretic mechanism becomes identical to the Basic
Hysteretic Mechanism. The value of M could be chiefly related to the density of sand, since
the degree of the dilatancy deformation of sand depends considerably on the density.

As shown in Figure 10, when a p-y curve crosses an external curve (for example,
C’1-Z2°1-C’; in Figure 10) and changes the traveling direction, the global control points C’;
and C’, are renewed to C; and C,. In Figure 10, the prime denotes the points before the
renewal. As shown in Figure 10, C; must be set as the intersection of the skeleton curve to
a line passing through the reversal point and having a gradient of kz,, when all points must
be updated and the reversal point is not on the skeleton curve. Together with the update of
C, and C,, external curves and points Z; and Z, are updated, and the target points T; and T,
are then redefined as shown in Figure 10.

A schematic diagram showing the behavior of internal curves is presented in Fig-
ure 11. Internal curves always orient toward a local target point Ty, or Ty, depending on
the traveling direction. A local target point, Ty;, is set on either the intersection of the local
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reference reloading line and the outermost internal curve or the extension thereof, or the in-
tersection of the local reference reloading line and the external curve or the extension thereof,
where the local reloading line is a line starting from point Z;; and having the gradient of k.,
and the point Z;; is the perfectly unloaded point from the reversal point on the outermost in-
ternal curve or an external curve. If an internal p-y path reaches Point Tr; in Figure 11, the
path then runs along the intercepted outermost internal curve bound for the skeleton curve
and then moves along the skeleton curve. When a displacement reversal takes place after an
internal path crosses the curve Cy;-Z1;, the corresponding local control point Cy;, point Zy;,
and local target point Ty ;, are renewed in the same manner as the global control points.

NUMERICAL SIMULATION USING THE PROPOSED HYSTERETIC MECHA-
NISM

In order to check the validity of the proposed model, the pile load experiments pre-
sented above are numerically simulated using the proposed model. Case S1 experiment,
involving a fully reversed cyclic load, and Case S3 experiment, involving a one-sided cyclic
load, are examined. A beam-on-nonlincar-Winkler-foundation model is used here with the
proposed hysteretic mechanism of the Winkler spring. Piles are dealt with as beams and are
modeled using beam elements. Nonlinearity in the bending behavior of a pile is considered
by a typical elasto-perfectly plastic bi-linear relation of moment versus curvature, where the
work hardening and the Bauschinger effect are ignored. The elastic gradient is given by the
flexural rigidity, and the ultimate bending moment is set as the plastic moment of the cross
section. The bottoms of the piles were connected by the hinge boundary condition in the nu-
merical simulation, so that the horizontal and vertical displacements are fixed at the bottom,
while rotation is free.

Distributed lateral Winkler springs are integrated into discrete lateral springs at finite
element nodes. The load-displacement relationship of each integrated lateral spring is ob-
tained based on the p-y relationship at a depth of the middle point of the beam element. We
derived the value of £y at each depth using £y = 2(1 +v)Gy, based on the value of Gy shown
in Eq. (1), which is obtained by cyclic triaxial compression tests of sand. o7, is replaced by
a mean effective stress estimated by o7,(x;) = (1 + 2Ky)o7(x2)/3 (kN/m?), where o”(x;) is
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Figure 12 Load-displacement relations at the loading point (Case S3)

an effective overburden stress at depth x,. Here, K, is the coefficient of earth pressure at rest
and is estimated by a typical empirical equation K, = 1 — sin ¢’. For simplicity, the value of
Poisson’s ratio, v, is set equal to 0.5 without any physical consideration.

We should first determine the values of parameters @, and o4 in Eqgs. (4) and (5) for
the skeleton curves of the p-y relations. The experimental results for Case S1 are used to
estimate the values of , and @, since we can regard the envelope curve of the relationship
of horizontal load and horizontal displacement at the loading point equivalent to that in a
monotonic loading condition. Parametric monotonic analyses were carried out using pairs
of values of parameters a; and «,, and the calculated monotonic load-displacement curves
at the loading point were compared with the skeleton curve of the load-displacement curve
observed in the experiment. Finally, @, = 4.0 and a; = 0.1 were chosen for any depth.
The maximum soil resistances py obtained by the present method with @, = 4.0 are very
close to theoretical solutions given by, for example, Kishida and Nakai (1979). This finding
supports the feasibility of a theoretical prediction of the maximum soil resistance, even in
the framework of the present hysteretic mechanism of p-y.

We then carry out back analyses using various values of M for the Case S3 experiment
in order to select a suitable value of M that specifies the deterioration of p for a cyclic loading
on one-side. Calculated and measured load-displacement curves at the point of loading are
shown in Figure 12, where the skeleton curve of the experimental results for Case S2 is
also shown for comparison. Note that the proposed hysteretic mechanism with M = 1
is equivalent to a typical peak-oriented bi-linear mechanism without the deterioration that
normally occurs with fully reversed cyclic loading. The use of M = 1 overestimates the
load, and the results are similar to the experimental results for Case S2, in which the pile
was subjected to fully reversed cyclic loading. A value of M = 0.10 provides the best match
calculation result regarding the skeleton curve of the load-displacement relationship.

A comparison of calculated p-y relations is shown in Figure 13 along with the ex-
perimental results. The proposed p-y mechanism when M = 0.1 is used is able to reasonably
capture the observed load transfer between soil and pile. Note that the p-y curves are shown
up to a displacement level of 66 since the pile remained within the elastic range in the exper-
iment.

When a combination in numerical parameters of a3 = 0.10, 8 = 1.0 and M = 0.10
is assumed, the initial gradient of the skeleton curve, kz, given by Eq. (5), and the reference
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Figure 14 Comparison of calculated load-displacement curves at the loading points of M = 1 and
M = 0.10 with the experimental result (Case S1)

reloading gradient, ky,, provided by Eq. (8), become identical. This fact is quite interesting,
and the values of &y and &y, might have the same order in general. The skeleton curve of
p-y would be apparently shifted due to the difference in the residual strain of the surrounding
soil on the both sides with respect to the pile, depending on loading pattern.

The proposed hysteretic mechanism of p-y should respond in an equivalent manner,
being independent of the value of M in the case of fully reversed cyclic loading. Figures 14
and 15 compare the experimental results for Case S1 to the numerical results calculated us-
ing the proposed hysteretic mechanism with M = 1 and 0.10. In Figure 14, the dashed
lines show the experimental envelope curve for comparison. Discrepancies in the calculated
results due to differences in M were barely discernible, and the calculated results show good
agreement the experimental results. This demonstrates that the proposed hysteretic mecha-
nism works as expected.

CONCLUDING REMARKS

We proposed a new hysteretic mechanism of p-y and introduced a target point to ac-
count for the loading pattern dependency of p-y. The authors argue that the consideration of
the loading pattern dependency of p-y in dynamic analyses in deep foundations is essential in
situations such as when the foundations of retaining structures are subjected to earthquakes,
or when severe eccentric motion appears due to P-A effects caused by the plasticization of
a pier or a structural member of a foundation. The principle of the proposed mechanism is
confirmed through horizontal cyclic pile load experiments and through the general behavior

115



M=010

Experiment

—_
<
<

100 100,

-
o
7
o
T

L
(=
<

—100; —100

soil resistance p (kN/mz)

soil resistance p (kN/1112)

soil resistance p (kN/mz)

=50 0 30 =50 0 50

disp. ¥y (mm) disp. y (mm) disp. y (mm)
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of sand in the deformation mode of cyclic compression-extension loading generated in the
near-field soil during earthquakes. The beam-on-nonlinear Winkler spring model with the
proposed hysteretic mechanism of p-y can be considered to reasonably reproduce the non-
linear soil-pile interaction under seismic random loading during large earthquakes without
resorting to a sophisticated method such as three-dimensional finite element analysis and can
be easily applied, even in practical design.
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