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Abstract 
 

It is important to accurately and efficiently clarify phenomena that reduce the 
safety of structures in order to efficiently maintain road bridge stock. It is, therefore, 
necessary to develop the technologies that clarify damages and structural behaviors 
causing damage and to improve its detection capability. This report introduces a 
number of cases of experimental studies of these technologies to investigate their 
detection capability of damages and change of behavior and applicability to steel 
highway bridges. 

 
1. Introduction 
 

To contribute to more efficient performance of maintenance tasks such as 
inspections and surveys of the vast road bridge stock and to the quantification and 
improvement of objectivity of the evaluation and diagnosis of the state of structures, it 
is necessary to develop inspection and diagnosis technologies to support these 
activities and to improve the precision of those technologies that already exist. At the 
same time, in order to apply these inspection and diagnosis technologies, it is 
necessary to study and clarify just how they are applied in what types of maintenance 
activities. 

In response to these background circumstances, the authors have performed a 
variety of tests of technologies that directly detect damage (non-destructive inspection 
methods:NDI) and of measurement technologies and monitoring technologies used to 
clarify the change of behavior of bridges  when damage may occur. NDI can be 
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considered to be technologies that perform detailed diagnosis by examining parts of a 
structure invisible from its surface, while measurement technologies are those that can 
obtain information unobtainable by a visual examination to contribute to more 
efficient inspections. This report introduces examples of research and of 
measurements performed by this research team ranging from applied to basic 
research. 
 
2. Case 1  Non-destructive inspection method for cracks in steel deck plates 
 
2.1 Background 

Cracks that pass completely through a steel floor slab deck have been reported 
for several years (see Photo 1). If a crack passes through a floor slab deck, it may 
cause the road surface to sink, public injury, so these cracks must be discovered as 
quickly as possible. But the problem is that the damage appears and propagates in the 
portion where it is difficult to be confirmed by visual inspections. Among ultrasonic 
testing methods (UT), the applicability of general purpose type UT and methods of its 
application have been tested. 

 
2.2 Description of the study 

The applicability of four probes having general purpose and easy to perform 
was confirmed. Specifically, they were an angle probe with refracted wave of 70°, an 
angle probe with refracted wave of 85°, a creeping wave probe, and a surface SH 
wave probe. Figure 1 summarizes their characteristics. Cracked welded model 
specimens (Fig. 2) were used for experiments to inspect cracks passing through steel 
floor slab decks. The specimens had cracks with depth from 0 to 10mm created by 
cyclic loading. 

 
2.3 Experiment results 

Figure 3 shows the experimental results. The figure shows that the detection 
depth limit is about 6mm using the 70° and the 85° angle probes. It was also 
confirmed that, using the creeping method, it is possible to detect cracks no matter 
how shallow they are. But if they are as shallow as 3mm or so, in a large specimen or 
an actual bridge, it will be impossible to distinguish other echoes from those of the 
cracks. 

As a future direction of technology, we believe that further innovations will be 
able to improve the crack detecting precision to about 3mm. To improve precision, 



semi-automatic detection and detection without removing the paint film will be tested.. 
Although no investigation has been made, the application of infrared thermography 
for flaw detection may be possible after cracks repair.  As one case of its application, 
the detection of temperature change may be possible caused by water and soil 
deposition after cracks formation. 
 
3. Case 2  Corrosion of a light pole foundation 
 
3.1 Background 

During the 40 years since the light poles were installed, it has been reported 
that under the old standards, foundations have been corroded (Photo 2) and broken 
toppling the poles. Although only a few cases have been reported, this may lead to 
public injury and there needs some measures in inspection. This has occurred because 
the foundations of light poles are usually underground and even when corroded, this 
damage is not easy to observe. So technologies ranging from applied to basic 
technologies are now being studied. 

 
3.2 Description of the study 

A method of directly inspecting corroded locations was studied accompanied 
by a study to find out if corrosion can be detected by clarifying the change of 
structural properties by corrosion itself. The former was done by a UT experiment, 
and the latter was studied by focusing on frequency changes. 

(1) Ultrasonic testing method using waves with long wave length 
(electromagnetic ultrasonic testing) 

This part of the report focuses on the electromagnetic ultrasonic testing 
method that is used in Europe for pipeline corrosion inspections. Because ultrasonic 
waves are input with a magnetic field in this method, it is a non-contact method that 
can apply waves deeply into the material, even from above a paint film. The 
equipment used had already been developed. The experiment was done using a 
specimen with artificial damage made to simulate corrosion (see Photo 3). 

This inspection was performed by installing the probes about 800mm from the 
end of a steel pipe. Figure 4 shows an example of a result of an inspection when 300 
kHz ultrasonic waves were used. 

The results have shown that if appropriate calibration can be performed in 
advance, it is possible to clarify the location and the degree of damage. 

(2) Frequency measurements 



Change of vibration frequencies accompanying section damage were studied, 
but it causes little change considering the level of the impact of external turbulence, 
and although it cannot be said to be impossible, it is a little difficult. 

Figure 5 shows the comparison between the analysis and the measurement of 
damages tested. The analysis was performed using a 3-dimensional FEM analysis 
model. As shown by Figure 5, when severe damage has occurred, it can be detected, 
but slight damage is difficult to detect. There are many issues to be studied i.e., setting 
the detection target level of damage, or improvement of frequency measurement 
precision. 
 
4. Case 3  Study of degree of damage using a strain gauge 1) 
 
4.1 Background 

The study of monitoring technologies focused on strain that is a physical 
quantity directly related to the evaluation of safety and fatigue resistance of structures. 
In order to discover an evaluation method using long term strain measurement data, 
stain in an actual bridge was measured to perform a basic study. 
 
4.2 Description of the study 

The bridge that was measured is a steel simple non-composite I-girder bridge 
on The bridge that was measured is a steel simple non-composite I-girder bridge on 
National Highway No. 17 (in the jurisdiction of the Oomiya National Highway Office 
of the Kanto Regional Development Bureau). Figure 6 is a diagram of the overall 
bridge. Constructed in 1991 (complying with the guideline of 1990), its daily large 
vehicle traffic volume is 5,288 vehicles/lane (1999 survey). A visual inspection from 
underneath the bridge failed to find any particular damage or deformation to the steel 
members, bearings, or floor slabs. Strain gauges were installed on the bottom flanges 
at the center of the main girder span and on members that would presumably be 
impacted by fatigue as a result of the high concentration of localized stress, in order to 
monitor the behavior of the main girder. The modified Miner’s Rule was used to 
calculate the degree of fatigue damage for use as reference material to clarify the 
approximate impact of fatigue of each member based on the stress frequency 
distribution that was obtained. 

Figure 7 shows the layout of the measuring instruments. 
 
 



4.3 Results 
. Results of degree of fatigue damage measurements in one hour units and in 

daily units of main girders confirmed tendencies for fluctuation by time of day and 
day of the week of the live load stress that is assumed to be a result of the impact of 
the large vehicle traffic volume (see Fig. 8). Figure 9 has confirmed that there is no 
specific fluctuation of properties related to stress other than thermal stress under 
weekly and annual fluctuations, so it appears that abnormal values can be monitored 
to a certain degree. 
 
5. Case 4  Vibration characteristics of new types of bridges 2) 
 
5.1 Background 

Recent years have seen the growing use of forms of bridges rationalized by 
reducing the number of main girders by increasing the floor slab support interval 
through the use of highly durable PC floor slabs and by either simplifying or 
eliminating horizontal connecting members such as cross beams and lateral bracing 
(referred to as “steel two-girder bridges”). But in this form of bridge, the 
simplification or elimination of lateral connecting members reduces torsional stiffness 
below that of conventional steel bridges with multiple main girders (see Fig. 10), and 
the use of rubber bearings since the revision to the Highway Bridge Guideline of 1996 
has lowered structural damping. It is extremely important to clarify the natural 
frequency of the bridge, structural damping, and other vibration characteristics to 
evaluate the wind resistance in particular. Because the precision of  modal analysis is 
not sufficient at present, it needs experimental data to estimate vibration 
characteristics. Therefore, in order to obtain data with highly reliable precision, it is 
necessary to perform vibration testing using exciters that cause resonance and produce 
a certain degree of amplitude, so this test was done. 

 
5.2 Vibration testing 

The bridges were two bridges with width of 11m, half wall railings and with 
rubber bearings. The two bridges had relatively long maximum span lengths (Bridge 
A: max. span 60m, continuous 4-span 2 main girder bridge, bridge length 225m, 
width 11m, and Bridge B: max. span 70m, continuous 5-span 2 main girder bridge, 
bridge length 325m, width 11m). Two exciters (0.1 to 20Hz) owned by the PWRI 
(Photo 4) were used. 

 



5.3 Results 
The vibration characteristics of the structure tested were confirmed. As one 

result of the test, the vibration frequency and structural damping are found to be 
amplitude dependent. As an example, the amplitude dependency of structural damping 
in Bridge B is shown in Figure 11. From these results, it can be said that the degree of 
amplitude must be checked in evaluating vibration characteristics. 

And structural damping was a value that is smaller than that of a box girder 
bridge with conventional steel bearings. The reason for this is not clear, but an 
estimation equation was proposed as a criterion because structural damping is 
necessary to evaluation wind resistance stability (see Fig. 12). 

 
６. Concluding remarks 
 

Several examples of bridge monitoring techniques were briefly introduced. It 
helps road administrators to evaluate actual bridge condition. With progress of 
measuring devices, it is expected that more useful and effective monitoring system 
will be developed in the future. 
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Figure 1  Major types and outlines of ultrasonic testing probes 
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(c) Angle probe with refracted wave of 85° 
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Figure 2  Specimen shape and edge surface condition 
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(a) Angle probe with refracted 
wave of 70° 

(b) Angle probe with refracted 
   wave of 85° 

(c) Creeping wave probe 

Figure 3  Results of Ultrasonic Testing by Specimen  
(Relationship of crack depth with reflected echo) 
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Figure 4  Defects and Results of Electromagnetic Ultrasonic Testing Method 
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Figure 6  Bridge Diagram Figure 7  Measurement Instrument Layout 

State of damage to the section of the 
buried foundation of the light pole

Figure 5  Light Pole Foundation Damage and Frequency Changes Based on Analysis
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Figure 9  Seven-day Average Value of Stress of Bottom Flange in the Center of Girder 
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Figure 8  Weekly Fluctuation 
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Figure 11  Amplitude and Structural Damping

Figure 12  Structural Damping of Girder Bridges 
(Logarithmic Damping Rate) 
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(a) Vertical deflection primary mode (b) Oscillation primary mode 


