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Abstract 
 

The paper evaluates the radiation damping associated with shallow foundations 
sitting on linear or nonlinear soil medium. The study is motivated by the need to develop 
a macroscopic foundation model that can realistically capture the nonlinear behavior and 
energy dissipation mechanism of shallow foundations. Such model is essential to 
simulate the complex behavior of bridges sitting on flexible foundations due to soil-
structure interaction effects. In this study, the dynamic response of an infinitely long strip 
foundation resting on an elastic and inelastic half-space is investigated. The study 
revealed responses’ strong dependency on amplitude and frequency of the motion. It also 
found that the radiation damping of nonlinear soil medium is significantly lower than the 
elastic soil counterpart, which in turn affects the bridge response.  
 
Introduction 

 
Recent earthquakes in major urban areas have underscored the need to better 

understand the responses of bridges to seismic actions. The responses of bridges are 
affected by not only the nonlinear dynamic behavior of individual components (i.e. 
superstructure, foundations and surrounding soil) but also the complex interaction among 
them, i.e. the soil-structure interaction effects. In particular, the changing stiffness and 
energy dissipation either by means of hysteretic damping or radiation damping are the 
most important characteristics of soil-structure interaction.  In this study, the radiation 
damping and its effects are evaluated for bridges sitting on shallow foundations. 
Although various models are available to account for radiation damping of shallow 
foundations on elastic soil medium (Veletsos and Verbic 1974; Luco and Westmann 
1972; Hryniewicz 1981; Gazetas 1991 and Veletsos et al. 1997 among others), there are 
essentially no previous studies on evaluating the radiation damping of shallow 
foundations on nonlinear soil medium.  

 
In this study, finite element method is adopted to compute the dynamic response 

of an infinitely long strip foundation resting on an elastic and inelastic half-space. 
Numerical results from finite element method are compared with theoretical solution of 
strip foundation resting on elastic half-space so as to provide guidance on choosing 
appropriate domain scale, mesh size and boundaries for subsequent nonlinear analysis. 
Closed-form formulas are developed to describe the linear frequency-dependent dynamic 
stiffness. The study utilizes realistic nonlinear constitutive models to exhibit yielding and 
kinematic hardening behavior of soil. An extensive parametric study has been conducted 



to reveal the amplitude and frequency dependent response of strip foundation. In 
particular, the radiation damping is evaluated when there is yielding in soil medium.  
 
Dynamic Stiffness of Rigid Strip Foundation on Elastic Soil Half-space 
 

Consider an infinitely-long rigid strip foundation sitting on elastic half-space, as 
shown in Figure 1. Its dynamic stiffness can be obtained analytically. Muskhelishvili 
(1963) first conducted the static analysis and revealed the zero stiffness of strip 
foundation in either vertical or horizontal direction. Luco and Westmann (1972) later 
derived theoretic dynamic compliance of rigid strip foundation bonded to an elastic soil 
half-space using the theory of singular integral equations. An exact solution was 
presented for incompressible soil (Poisson’s ratios ν=0.5) while approximate solutions 
were obtained for soil of Poisson’s ratio ν=0, 1/4, and 1/3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hryniewicz (1981) obtained the dynamic stiffness of rigid strip foundation on an 

elastic half-space of Poisson’s ratio ν=0.25. Under a harmonic motion, the reacting forces 
are related to displacements by the general form shown in Eq. (1):  
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where G is the shear modulus of soil, πG(c11+id11)  and πG(c22+id22) is the dynamic 
stiffness in vertical and horizontal directions respectively. The force-displacement 
relationship in Eq. (1) is analogous to that of a spring-dashpot system with spring 
constant πGcii and dashpot coefficient πGdii/ω, i =1 or 2. The dynamic stiffness 
parameters c11, d11, c22, d22 depend on both displacement excitation frequency and soil 
properties. The dynamic stiffness parameters are conventionally plotted versus 
dimensionless frequency a0= ωb/vs for a given Poisson’s ratio, where b is the half-width 
of strip foundation and vs is the shear wave velocity in soil medium. 
 

Uv0  sinωt 

Uh0  sinωt

Fig. 1  Foundation geometry and 
           excitation conditions 

soil half-plane 
  finite domain 

2H 

D
 

Fig. 2  Finite domain and 
          absorbing boundary 

absorbing boundary 



Finite element method is used in this study to conduct the dynamic analyses of 
strip foundation under harmonic displacement excitation in vertical and horizontal 
directions respectively. The soil half-space is represented with a finite domain where an 
absorbing boundary condition needs to be present to correctly model the outgoing waves 
of an infinite domain (Fig. 2). Maximum element size, boundary condition and scale of 
the finite domain dominate the accuracy of finite element analysis results of dynamic 
response of strip foundation. Judicious selection of domain scale and mesh size is 
required to minimize the numerical oscillations that were often observed with finite 
element method. 
 

The maximum element size is controlled by the shear wave length L. Kuhlemeyer 
and Lysmer (1973) and Lysmer et al. (1975) suggested that the maximum element size 
lmax should satisfy 
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For a given finite element mesh, this rule equivalently puts an upper limit on the 
applicable dimensionless excitation frequency, a0, on a specific mesh, i.e. 
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Finite element simulation of wave propagation requires an absorbing boundary 

along the finite domain to allow an effective transmission of the outgoing waves. The 
energy dissipation mechanism of transmitting waves outwards is referred as radiation 
damping. Viscous damping boundary (Lysmer and Kuhlemeyer, 1969) and infinite 
element boundary (Lynn and Hadid, 1981) are most widely used absorbing boundaries, 
both of which are available in the commercial software ABAQUS Version 6.4. However, 
either viscous damping boundary or infinite element boundary in ABAQUS results in 
unexpected numerical oscillations if the selected domain is not large enough. 
 

To avoid the uncertainty of absorbing boundary, a reliable alternative is to set up 
a finite domain large enough to achieve steady state response before the wave reflection 
at boundary contaminates the dynamic response of foundation (Borja et. al., 1993). For 
this purpose, the scale of the finite domain needs to satisfy 
 

rp LnTv ≤  (4) 
 
where Lr is the length of the shortest wave reflection path within the finite domain, vp is 
the longitudinal wave velocity, T is the period of harmonic excitation,  n is the number of 
periods from beginning including one full cycle of steady state response. Substituting 



dimensionless frequency a0 into Eq. (4) for period T yields the lower bound on the 
applicable dimensionless excitation frequency, a0. 
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A finite mesh of H=250m, D=250m, lmax=1.25m (refer to Fig. 2) was set up for a 

strip foundation of half-width b=1m on soil medium of vs=201.5m/s, ν=0.25, 
ρ=1600kg/m3. Eq. (5) gives lower bound of excitation frequency as a0≥0.04 while Eq. (3) 
gives upper bound of excitation frequency as a0≤1.0. For input frequency within this 
range, the numerical oscillation is limited. The dynamic stiffness parameters computed 
by Finite element method using commercial software ABAQUS are plotted in Figure 3 
against the analytical solution given by Hryniewicz (1981). The results show an excellent 
agreement, which validates the capacity of finite element method in modeling of the 
foundation-soil system. 
             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Dynamic stiffness parameters from FEM model:       
           (a)(b) vertical direction, (c)(d) horizontal direction 
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Further analyses show that the effect of either foundation half-width or Young’s 
modulus of soil medium on dynamic stiffness parameters can be normalized by means of 
dimensionless frequency a0 as shown in Figure 4 where the results of a foundation half-
width b=1m and 2m (a and b) and different Young’s modulus (c and d) are compared.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another important property of elastic soil, the Poissson’s ratio ν, also affects the 
relationship between dimensionless dynamic stiffness parameters c11, d11, c22, d22 and 
dimensionless frequency a0 (Figure 5). The family of c11−a0 curves and d11−a0 curves 
corresponding to different Poisson’s ratio describe completely the vertical dynamic 
stiffness of rigid strip foundation on elastic soil half-space (Figure 5 a and b). Similarly, 
c22 −a0 curves and d22− a0 curves describe completely the horizontal dynamic stiffness 
(Figure 5 c and d). For practical use, the following simplified formulas are developed 
based on finite element analysis results: 
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Fig. 4  Effect of foundation half-width and Young’s modulus of soil 
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Fig. 5  Effect of Poisson’s ratio of soil on dynamic stiffness along vertical 
(a and b) and horizontal direction (c and d) 
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The predicted c11 values with Eq. (6) and d11 values with Eq. (7) are compared 
with the finite element results in Figure 5 and showed excellent agreement. Similarly, the 
predicted c22 values with Eq. (8) and d22 values with Eq. (9) are also compared well with 
the finite element results in Figure 5 for horizontal direction. In computing the 
parameters cii and dii by finite element method, equations (10) to (12) are followed.  
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where )(ωC  is equivalent dashpot value, dW  is the dissipated energy per loading cycle, 

0U  is the displacement amplitude, )(tP  is the reaction force at time t. 
 
Radiation Damping of Rigid Strip Foundation on Nonlinear Soil Medium  
 

During strong earthquakes, soil often behaves nonlinearly. The plasticity 
experienced in soil reduces the energy dissipated through outgoing waves. As result, 
radiation damping of nonlinear soil is quite different from that of linear soil. Analytical 
derivation meets big difficulty to deal with the dynamic response of shallow foundation 
on nonlinear soil half-space. Alternatively, finite element modeling is an effective way to 
reveal the amplitude and frequency dependent nature of the foundation-nonlinear soil 
system. 

 
In this section, the finite element method is used to evaluate the radiation 

damping of rigid strip foundation on nonlinear soil medium. It is recognized that the 
response of an infinitely long strip foundation sitting on nonlinear soil medium behaves 
differently under static cyclic loading and dynamic harmonic excitation, as shown in 
Figure 6. The area within static loop accounts for hysteretic energy Wh only and is 
frequency independent. On the other hand, the area within dynamic loop accounts for 
total dissipated energy Wt through both hysteretic and radiation damping, which depends 
on excitation frequency. The difference between Wt and Wh is therefore the nonlinear 
radiation energy, Wd, which is related to nonlinear radiation dashpot coefficient C in Eq. 
(10) and nonlinear radiation damping parameter d in Eq. (11).  

 
 A simple procedure has been developed to derive the model parameters for 
nonlinear constitutive model of soil based on widely available shear modulus reduction 
curves. Stress-strain relationship for simple shear can be easily obtained from shear 



modulus reduction curves. By applying the Masing rule to this 1D stress-strain 
relationship, one can obtain a cyclic loop, similar to the one shown by continuous line in 
Figure 7, where the soil parameters associated with Painter Street Bridge (Zhang and 
Makris 2002) are used. The Bouc-Wen model (Wen 1976) is then used to simulate the 
cyclic loop as shown by the dashed line in Figure 7. Excellent agreement can be obtained 
easily by adjusting the model parameters of Bouc-Wen model. This procedure allows for 
easy generation of cyclic behavior of different soil types so that the effects of various soil 
properties such as initial stiffness, yield stress and post-yielding stiffness can be 
evaluated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 An elasto-plastic material model of Von-Mises yield criterion and nonlinear 
kinematic hardening rule in ABAQUS was chosen to model nonlinear soil behavior. The 
elasto-plastic material model was defined by a few representative points on the steady-
state cyclic loop, e.g. the one given by Bouc-Wen model in Figure 7. Figure 8 compares 
the response of a single plane-strain element subjected to simple shear predicted by 
ABAQUS and the input curve based on Masing rule. The input to ABAQUS was done 
by picking up four representative points from the Bouc-Wen loop in Figure 7 and the 
program computes the nonlinear kinematic hardening parameters automatically. The 
excellent agreement shown on Figure 8 verifies this procedure.  
  
 
 
 
 
 
 
 
 
 
 

Fig. 6  Static response and 
dynamic response of nonlinear soil 
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Fig. 7  Bouc-Wen model for simple shear
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Parametric studies are performed on three distinct pairs of soil models to evaluate 
the effects of initial stiffness, yielding stress and post yielding stiffness on dynamic 
stiffness of the strip foundation on nonlinear soil medium. Three Bouc-Wen simple shear 
loops, Case A, B and C, were generated for this purpose (Fig. 9). Case A differs from 
Case B only in yield shear stress τy, which is 3.0x104 N/m2 and 2.1x104 N/m2 for Case A 
and B respectively. Case A differs from Case C only in shear modulus G, which is 
6.0x107 N/m2 and 1.0x108 N/m2 for Case A and C respectively. Poisson’s ratio 0.25 is 
specified for all three soil material cases. 
 

Besides Eq. (3) and Eq. (5), the possible development of plasticity in soil medium 
should also be taken into account to set up finite element mesh for nonlinear dynamic 
analysis. Development of plasticity results in smaller wave velocity, which requires finer 
mesh in the region where soil yields. Following all the restrictions and taking advantage 
of symmetry or anti-symmetry, two plane strain finite element meshes was set up for 
different excitation frequency ranges. For frequency range 0.4Hz~1.0Hz, the mesh is of 
H=D=1800m, lmax=10m and has uniform finer rectangular elements of 0.1mx0.1m within 
the 12mx12m region near the foundation. For frequency range 1.0Hz~3.0Hz, the mesh is 
of H=D=700m, lmax=3m and has uniform finer rectangular elements of 0.1mx0.1m within 
the 14mx14m region near the foundation. 
 
 Effect of soil density is discussed at first. Dynamic finite element analyses of a 
strip foundation of half-width b=1m on soil medium of material Case A under vertical 
harmonic excitation ttU ωsin02.0)( = (meter) were performed with different soil 
densities ρ=800kg/m3, 1600kg/m3, 2000kg/m3 respectively. Figure 10 plots d11 vs. a0 
curves for different soil density. It shows that soil density does not affect the 
dimensionless nonlinear radiation damping parameter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It is anticipated that the amplitude of displacement excitation will affect the 
development of nonlinearity in soil medium. As a result, nonlinear radiation damping is 
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displacement-amplitude dependent, as differs from linear radiation damping. Figure 11 
plots the nonlinear radiation damping for soil material Case A with density of 
ρ=1600kg/m3 and different combinations of foundation half-width b and displacement 
amplitude U0. It is observed from Figure 11 that the nonlinear radiation damping 
parameter depends on the ratio U0/b rather than U0 itself. Analyses with soil material 
Cases B and C gave the same conclusion. Larger U0/b results in more nonlinearity in soil, 
which leads to smaller radiation damping due to outgoing waves. 
 
 Besides the ratio U0/b, soil properties affect the nonlinear behavior of strip 
foundation. Figure 12 shows the static responses of a strip foundation of b=2m under 
vertical cyclic displacement of amplitude 0.04m with soil material Case A, B, C 
respectively. Case A and Case B lead to different yield displacement in foundation 
behavior. Case A and Case C lead to different initial stiffness in foundation behavior.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Static analysis of the strip foundation on nonlinear soil with finite element 
method gave a nonlinear initial loading curve as shown in Figure 13. Assuming small 
deformation, the initial linear portion of the nonlinear curve can be extended to any 
displacement level to get the linear counterpart. The deviation of the nonlinear curve 
from its linear counterpart indicates the degree of nonlinearity in the soil medium. To 
quantify the degree of nonlinearity in soil medium under displacement excitation at 
foundation, nonlinearity indicator δ is defined as 
 

linear

nonlinearlinear

W
WW −

=δ  (13) 

 
where Wlinear is the work done along linear loading path from the origin to U0, Wnonlinear is 
the work done along nonlinear loading path from origin to U0. The shaded area in Fig.13 
illustrates the numerator in Eq. (13). Essentially, the nonlinear indicator covers both the 
effect of U0/b and the effect of nonlinear soil properties at a global level. 

Fig. 12 Static cyclic behavior of foundation 
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Fig. 13 Static behavior of foundation  
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 Static finite element analyses were performed to get nonlinearity indicators for 
the combinations of different soil material cases and U0/b ratios as listed in Table 1. 
Larger nonlinearity indicator indicates more nonlinearity in soil. Nonlinear dynamic 
analyses with finite element method gave nonlinear radiation damping parameters of the 
combinations of different soil material cases and U0/b ratios as plotted in Figure 14. 
Referring to Table 1, Figure 14 reveals that the radiation damping decreases 
monotonically with development of nonlinearity in soil medium i.e. increase of 
nonlinearity indicator. The results show the great promise of using the nonlinearity 
indicator as quantifying parameter for radiation damping of strip foundation on nonlinear 
soil medium. 
 
                       Table 1. Nonlinearity indicators for different combinations 

 U0/b=0.005 U0/b=0.01 U0/b=0.02 

Soil Case A 4.37E-03 3.95E-02 1.54E-01 
Soil Case B 1.08E-02 8.32E-02 2.16E-01 
Soil Case C 3.11E-02 1.49E-01 3.16E-01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion 
 
 In this study, the dynamic stiffness of strip foundation on linear and nonlinear soil 
medium is analyzed by finite element method. The numerical results are compared with 
the theoretical solution of strip foundations resting on elastic half-space. Special 
attentions are paid to choosing appropriate domain scale, mesh size and boundary 
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conditions so that the wave propagation in an infinite domain can be correctly modeled. 
Excellent agreement between finite element analysis and theoretical results can be 
achieved by judicious selection of domain scale and mesh size. Closed-form formulas are 
then developed to describe the spring and dashpot constants of dynamic stiffness as 
function of frequency as well as their dependency on foundation width, Young’s 
modulus and Poisson’s ratio.  The analysis of strip foundation on nonlinear soil medium 
shows that energy dissipation depends on the amplitude of the motion and frequency. 
The plasticity in soil reduces the energy dissipated through outgoing waves. As result, 
the radiation damping of nonlinear soil is significantly lower than the elastic soil 
counterpart. The study investigated the effects of initial elastic stiffness, yielding stress 
and post-yielding stiffness on radiation damping. A nonlinearity indicator is developed 
and has been shown to directly relate to the reduction of radiation damping due to soil 
yielding. The findings are important to dynamic responses of bridges supported on 
shallow foundations since the reduced radiation damping at foundation level will result in 
increased structural response. 
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