Title	A11-1 Development of technology to support the planning of basin-wide flood management
De alcanossa d. Pr	
Background &	There is no doubt that global warming is causing climate change, and rainfall events are
Needs	anticipated to become more extreme, resulting in more severe flood and drought damage.
	In response, the Ministry of Land, Infrastructure, Transport and Tourism in Japan has
	updated design rainfall based on future projections, announced a shift towards "basin-wide
	flood management," and established related laws. As a basis for setting an appropriate
	design rainfall, they analyzed d2PDF, a large-scale
	climate prediction dataset, and estimated that the
	rainfall under future climate will be 1.1 times the
	икудо обла карта соверо rainfall under current climate across Japan, except
	the Hokkaido region. Given that the impact of
	илина и сlimate change on extreme phenomena such as
	heavy rain is likely to vary geographically and
	topographically, it is crucial to further improve
	methods for projecting future rainfall. In the meantime, basin-wide flood management
	expects various entities in the basin to participate in the project, for example, by
	implementing small-scale rainfall storage and infiltration measures. For their efforts to
	continue sustainably, it is essential to integrate and evaluate them as part of the basin-wide
	effort and visualize their contribution to the goal.
Goals	(1) To analyze rainfall characteristics, such as the scale of heavy rainfall, considering
	regional characteristics, and present the regional distribution of each rainfall characteristic.
	(2) To develop components to predict future water-related hazards considering urban
	drainage and basin-wide flood control measures and construct a system to support public
	and private entities in planning basin-wide flood management. The system will be
	developed using the WEB-RRI and RRI models developed at ICHARM as the core models.
Method &	To develop analytical components that can simulate water-related hazards, we applied the
Outcomes	WEB-RRI model to the Tokachi River basin, where a drought occurred in 2021, and
	investigated a drought trend based on the root zone soil moisture content bias, which is
	calculated by subtracting the root zone soil moisture in the normal year from the root zone
	soil moisture in the drought year. The results show that the drought trend area almost
	matches the eight municipalities where the wheat yield decreased in 2021. We also
	performed test calculations using the WEB-RRI model to estimate how much irrigation
	water would have been needed in addition to the rainfall that the study area received for the
	eight municipalities to secure the normal-year wheat yield in 2021. The calculations using
	the root zone soil moisture content as the indicator found that they would have needed
	about 51 tons per day of irrigation water. These findings suggest that national irrigation
	about 51 tons per day of inigation water. These initialities suggest that national inigation

	projects should be expanded to the eight municipalities as they have been conducted since several decades ago in other parts of the Tokachi River basin.
Collaborators	Professor Honma of Tohoku University in incorporating a rice-plant growth model into the proposed system.
Duration	FY2022-FY2027
Researchers	Chief Researcher: KUBOTA Keijiro; Senior Researchers: USHIYAMA Tomoki, Mohamed
	Rasmy Abdul Wahid, TANAKA Yozo; Research Specialists: Ralph Allen Acierto,
	TAMAKAWA Katsunori, TSUTSUI Hiroyuki