

ICHARM: Delivering best available knowledge to local practices

United Nations Educational, Scientific and Cultural Organization International Centre for Water Hazard and Risk Management under the auspices of UNESCO

Hydrological Modeling Framework for Climate-resilient Water Resources and Disaster Managements under Changing Climate

On behalf of Water-related Hazard Team: Hydrology Division

Dr. Mohamed Rasmy Senior Researcher, Water-related Hazard Team Professor, GRIPS

- Water-related disasters (i.e. floods and droughts) are on increasing trend, particularly the lower-middle income countries become more vulnerable.
- Reliable and timely information on water-related disasters and water availability is a key
 - To develop an affordable and proactive IWRM plans and Disaster Risk Reduction (DRR) strategies
 - To ensure the security of water availability and food productions
 - To achieve sustainable development goals and prosperity for all !
- ICHARM's hydrology team is developing several cuttingedge tools and systems for implementing integrated approaches for climate-resilient IWRM & disaster managements under changing climate

Development of a Simple, Inexpensive Flood Forecasting System for Small and Medium Rivers

- Real-time flood prediction models focusing on <u>"Information on the river water levels that required evacuation"</u> to support the evacuation of residents during floods in small and medium rivers in Japan.
- Develop and provide a tool that enables prefectural river managers to handle and predict timely water-level, easily.

Seamless Modeling Approach : IWRM under changing climate

ICHARM has developed a highly reliable hydrological model for addressing various water-related issues, to strengthening water-related disaster resilience, water resources management and then enabling sustainable development under climate change:

Water and Energy Budget based Rainfall-Runoff-Inundation

(WEB-RRI) model (Rasmy et al., 2019)

Image: Comparison of the strategy of the stra

• Physical formulations for ET and soil moisture dynamics for reliable of flood and drought related risk assessments

Verification in Kalu basin, Sri Lanka

Application 1: West-Africa(Niger & Volta basins)

Predictions in Ungauged Basins (PUB)

Application 2: Philippines (Pampanga)

Seamless Modeling Approach

Drought monitoring & seasonal prediction system

Brazilian Northeast.

-System monitors soil moisture profiles and crop growth and predict them for up to approximately three months ahead.

-It can also estimate water requirement to maximize crop yields.

-Locally, drought status is determined through monitoring and seasonal prediction from this system, and the results are used to formulate farming plans.

-it will be further improved to provide information useful for farming.

Thank you for your kind attention !!!