

Flash floods in the Himalayas and vulnerability analysis

Arun B. Shrestha abshrestha@icimod.org

International Centre for International Centre for Integrated Mountain Development (ICIMOD)

The East and South East Asia Regional Seminar on Flood Hazard Mapping (FHM) 2007

- 1. About ICIMOD
- 2. Flash floods in the Hindu Kush-Himalayan (HKH) region
- 3. Glacial Lake Outburst Flood (GLOF)
- 4. GLOF vulnerability analysis
 - Case study
- 5. Conclusions

1. About ICIMOD

- ICIMOD is an international independent mountain learning and knowledge centre
- committed to improving the sustainable livelihoods of mountain peoples in the extended Himalayan region.
- ICIMOD serves HKH area Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and Pakistan.
- Founded in 1983, ICIMOD is based in Kathmandu, Nepal,
- Vision: Together with its partners and regional member countries, ICIMOD is committed to a shared vision of prosperous and secure mountain communities committed to peace, equity, and environmental sustainability.
- Mission: ICIMOD's mission is to develop and provide integrated and innovative solutions, in cooperation with national, regional, and international partners, which foster action and change for overcoming mountain people's economic, social, and physical vulnerability.

About ICIMOD

River basins

- Indus
- Ganges
- Brahmaputra
- Irrawaddy
- Salween
- Mekong
- Yangtze
- Yellow

WATER TOWERS OF SOUTH ASIA! Sustaining over 600 million people in the Region

Integrated Programs

IP1: Natural Resource Management (NRM)

- IP2: Agricultural and Rural Income Diversification (ARID)
- IP3: Water, Hazards, and Environmental Management (WHEM)
 - 1: Water and Floods
 - 2: Climate Change and Responses
 - 3: Environmental Services
- IP4: Culture, Equity, Gender, and Governance (CEGG)
- IP5: Policy and Partnership Development (PPD)
- IP6: Information and Knowledge Management (IKM)
 - Mountain Natural Resources Information System (MENRIS)

Comparative Benefit of ICIMOD

Regional Organization

Non-political

- Mountain related
- Transboundary Issues

2. Flash Floods in HKH

Flash floods are

- sudden with little lead time
- usually violent, present high risk to life and properties
- small scale
- short in duration

Intense Rainfall Flood (IRF)

Glacial Lake Outburst Flood (GLOF)

Landslide Dam Outburst Flood (LDOF)

Yigong landslide dam outburst flood, Tibet, China

> Damming: 9 April 2000 Outburst: 10 June 2000

Rapid Snow/Ice Melt Flood (RSMF)Ice Dammed Lake Outburst Flood (IDLOF)

Kande in Shyok sub-basin

Common in Hindu Kush and Karakorum

Flash Flood Events In HKH Region

Characteristics of flash

- Rapid rise and fall in water Floods discharges (minutes)
- Can occur any time in the year
- Occurs mainly in headwater areas
- Highly unpredictable, difficult to forecast
- Most effective measure is early warning, community preparedness and emergency measures

3. Glacial Lake Outburst Flood

Himalaya the Third Pole

- Water reservoir in frozen state
- Deglaciation is widespread
- Retreating glaciers give birth to glacial lakes
 - Glacial lakes might burst out causing GLOFs

Glacier and glacial lakes in the HKH region

There are 15,000 glaciers occupying 33,300 km²
 There are 8863 glacial lakes occupying 796 km²
 26 GLOF events have occurred in the past
 There are more than 50 potentially dangerous lakes in the HKH region

Glacier and glacial lakes in Nepal

- There are more than 2300 glacial lake in Nepal
- There have been 25 GLOF events in Nepal or affecting Nepal (Shrestha and Shrestha, 2005)
- 20 glacial lakes have been identified as potential dangerous lakes (PDL; ICIMOD/UNEP, 2001)
- A GLOF carries enormous amount of water and debris and can be devastating for the downstream riparian communities

Glacier: AX010

4. GLOF vulnerability analysis

Flood risk

Area characterization

Selection of area under question
Inventory of glaciers and glacial lakes
Lake development trend
Lake volume
Surrounding environment

Hazard Identification

- Collecting information about the physical process
 - Hydrology
 - Ice calving
 - Buried ice in the moraine dam
- Dam properties
 - Stability
 - Karst areas
 - piping
- Triggering mechanism
 - Ice avalanche
 - landslide

Hazard Assessment

Vulnerability Analysis

- · Susceptibility and exposure
- Physical vulnerability
 - Lithology
 - Channel slope
 - River meandering
 - Land use
- Social Vulnerability
 - Accessibility
 - Health
 - Communication
 - Emergency response system
 - Economic diversity
 - Awareness, attitude ...
- Total Vulnerability

Vulnerability Analysis

- Susceptibility and exposure
- Physical vulnerability
 - Lithology
 - Channel slope
 - River meandering
 - Land use
- Social Vulnerability
 - Accessibility
 - Health
 - Communication
 - Emergency response system
 - Economic diversity
 - Awareness, attitude ...
- Total Vulnerability

Case Study Imja GLOF

The Imja Glacial Lake

800 Km

Dig Tsho Lake Development

11 December 1989 (Landsat5 TM) 15 December 1962 (Corona image) 15 October 1975 (Landsat MSS) Area - 334,861 sqm. Area - 315,865 sqm Area - 201,172 sqm. 22 September 1992 (Landsat5 TM) 02 December 1983 (Space Shuttle) 30 October 2000 (Landsat7 ETM+) Area – 376,575 sqm. Area - 597,923 sqm. Area - 361,867 sqm.

Methodology

Geometric and topographic information

- Topographic info from DEM (Dept. of Survey)
- Geometric info extracted using HEC GeoRAS
- Stream centreline and banks digitized using IKONUS images
- Lake information
 - Bathymetric survey of 2001
 - Moraine topography: survey of 1994 and 2001
 - Dig Tsho- data from literature (area and max depth)

Methodology (contd.)

Breach Simulation

- NWS BREACH
- Geometric data from 1994 &
 2001 survey (Imja) and DEM
 (Dig Tsho)
- Geotechnical info from
 Iiterature (mainly Tsho Rolpa Da case study)

120	Parameters/Input Data	Values for GLOF Simulation		Unit
	and the second	Dig Tsho	Imja	
	Lake surface area	0.4	0.86	km ²
	Lake maximum depth	42.9	90	m
	Dam top elevation	4395	5030	m a.s.l.
&	Dam bottom elevation	4360	4960	m a.s.l.
M	Dam inside slope	1:0.47	1:8	
	Dam outside slope	1:1.7	1:6	
	Dam width	210	600	m
ba	Dam length	600	650	m
	d50	1	1	mm
	d90	300	300	mm
	d30	0.1	0.1	mm
	d90/30	3000	3000	
	Unit Weight	2000	2000	kg m-2
	Porosity	0.4	0.4	
	Manning's n of outer core of the dam	0.15	0.15	
	Internal Friction Angle (ø)	34	34	
	Cohesiveness	0	0	

Methodology (contd.)

Flood Routing

- NWS FLOODWAVE
- NWS BREACH output hydrograph upper boundary condition
- Routing up to SNP buffer zone border (Dig Tsho ~35 km; Imja ~45 km)

Flood Map

- NWS FLOODWAVE result → HEC GeoRAS
- Inundation area and depth of inundation
- GLOF Vulnerability Assessment
 - Method of RGSL (2003)
 - Input: topography (slope), geology and geomorphology (compactness), hydrology (river meandering) and land use

Methodology (contd.)

Flood Routing

- NWS FLOODWAVE
- NWS BREACH output hydrograph upper boundary condition
- Routing up to SNP buffer zone border (Dig Tsho ~35 km; Imja ~45 km)

Flood Map

- NWS FLOODWAVE result → HEC GeoRAS
- Inundation area and depth of inundation
- GLOF Vulnerability Assessment
 - Method of RGSL (2003)
 - Input: topography (slope), geology and geomorphology (compactness), hydrology (river meandering) and land use

Results

Main output of NWS BREACH

Breach Output	Unit	Dig Tsho	Imja	6000
Maximum Outflow (Q _{max})	m ³ s ⁻¹	5613	5463	
Duration of the Outflow (T _{out})	hr	2.0	3.2	E
Initial Water Level	m a.s.l.	4395.0	5030.6	1000
Final Water Level	m a.s.l.	4373.6	4982.3	0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Time (hr)
Final Depth of the Breach	m	35.0	65.2	
Final Width of the Top of the Breach	m	231.0	300.5	

Shrestha et al., 2006

Shrestha et al., 2006

Results (contd.) Comparison with measured flood depth

Shrestha et al., 2006

Results (contd.)

- Alexandre

Imja lake							
Place	Time (min)	Elevation (m a.s.l.)	Maximum Flood Depth (m)				
		E (50					
Imja lake outlet	0.0	5458					
Dhumsum	6.0	5419	3.92				
Syalja goth	7.2	5409	5.06				
Dinboche	8.4	5401	5.81				
Chure	10.8	5387	8.12				
Orse	12.0	5382	5.77				
Panboche	14.4	5374	6.76				
Litho goth	18.0	5356	7.79				
Confluence	22.8	5329	8.68				
Bengkar	25.2	5316	9.29				
Gumela	26.4	5315	8.47				
Thulo Gumela	27.6	5310	7.76				
Sano Gumela	28.8	5304	8.01				
Ghat	30.0	5297	8.13				
Nakchung	33.6	5275	5.71				

Dambreak flood scenarios

Methodology (contd.) GLOF vulnerability rating scheme

Vulnerability Rating Maps	Scoring Criteria	Vulnerability Index Score	Weighting
Map 1.	Glacial Deposit	1	
Compactness	Cohesive Sediment	2	2
	Loose Sediment	3	
Map 2: Slope map	0-2°	1	
	2-11°	2	1
	>11°	3	
	Inside bend of a		
Man 2. Divor	meander	1	
Moandoring	Straight 2		1
weathering	Outside bend of a		
	meander	3	
	Scrub/forest, no		
	human activities	0	
	Pasture	1	
Map 4:	Agriculture,		2
Land Use	commercial		5
	forestry	2	
	Infrastructure	2.5	
	Settlement	3	

RGSL (2003)

Total vulnerability

Conclusion

- HKH region is highly prone to flash floods
- Capacity to manage the risk of flash flood is low
- ICIMOD is supporting capacity building
- FHM is important as a DS tool
- Attempt to use GIS and hydrodynamic modeling to simulate GLOF impact in Himalayan catchment
- GLOF vulnerability analysis
 - Physical + Social vulnerability
 - Community involvement
- Results- input for early warning system (EWS)
- Several limitation: data, appropriate tool, ownership, etc
- But most important thing is how the information is transferred to the communities

Thank you

