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ABSTRACT 

 

The nonlinear relationship between rainfall and water levels is one of the most complex hydrologic 

phenomena to figure out due to the involvement of spatial and temporal inconsistent geomorphic and 

climatic factors. In this study, attempt is made to recognize the water levels pattern in the Surma-

Kushiyara River system of Bangladesh by artificial neural network. Only recorded past rainfall and 

water levels information are utilized. Multilayer perceptron (MLP) and radial basis function network 

(RBFN) are the two feed forward neural networks which are applied for this envisagement.  In MLP, 

logistic sigmoid activation function with unit steepness parameter is exercised for non-linear 

transformations in both hidden and output layers. Synaptic weights are adjusted using modified delta 

rule through error back propagation algorithm. Batch mode of training is adopted for global error 

minimization. The back propagation algorithm is considered to have converged when the absolute rate 

of change in averaged square error per epoch approaches to zero. The basis function for the RBFN is 

Gaussian in form. Numbers of centers which determine the dimension of space nonlinearity in the 

hidden layer are chosen by k-means clustering. The transformations from input to hidden layer and 

hidden to output layer are nonlinear and linear respectively. Finally, statistical indicators are used to 

evaluate the prediction performance of neural network. It is observed that both MLP and RBFN are 

capable to identify the intricate pattern of water levels in the Surma River. One, two and three day 

lagged rainfall in conjunction with one day lagged water levels is capable to recognize the water level 

patterns. With the increase of lead time, the performances of statistical indicators became inferior 

slightly. Higher water levels are predicted more fairly than the lower water levels. In the case of MLP, 

single hidden layer with two hidden neurons are found adequate to train the network. Higher numbers 

of hidden neurons are speeding up the training procedure with unacceptable generalization for 

application. The learning rate and momentum coefficient equal to 0.10 and 0.50 respectively 

formulates better results. Higher number of hidden neurons is required for RBFN. In RBFN, the 

numbers of iterations that are required to produce the acceptable results is lower than multilayer 

perceptron but better generalization is achieved in multilayer perceptron.    

Keywords: multilayer perceptron, error back propagation, modified delta rule, batch mode, radial 

basis function network.  

 

INTRODUCTION  

 
Prediction of water level in a river system is of great interest for water management and flood control. 

In Bangladesh, the simulation model ‘MIKE11’ and a special version of ‘MIKE11 FF’ conceptual 

hydrodynamic model are in operation to forecast water levels (FFWC, 2008). It involves runoff 

calculation, flow routing to the desired downstream location from the upstream observation and 

conversion of flow to water level by using a rating curve. But difficulties are associated to construct 

an authenticated rating curve and accurately present spatially distributed heterogeneous geomorphic 

and climatic factors to the model. The study area is located at the agriculturally and ecologically 
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important northeast hydrological 

region of Bangladesh where flash 

flood during pre-monsoon (March-

May) season is very common and 

one of the major concerns for the 

economy. Steep upstream basin 

topography, short concentration 

time, sudden excessive rainfall and 

flashy character of the rivers are 

the driving components of rapid 

water level rises and falls with little 

or no advance warning. The 

principal river is the Barak which 

divides into Surma and Kushiyara 

River at the border of Bangladesh 

and India. Total catchment areas of 

Surma and Kushiyara River are 

approximately 8176 km
2
 and 36945 

km
2
 (BUET, 2008) respectively 

which are stretched in India and 

Bangladesh. Surma River is fed by 

the heavy rainfall of Meghalaya 

and Assam area. Unfortunately 

available rainfall information of 

Indian hilly area is very limited 

which is a big challenge for water levels prediction in these rivers. Figure 1 shows the Surma and 

Kushiyara River along with water levels measuring station. 

 

DATA 

 

Daily water levels and rainfall data are collected manually by the Bangladesh Water Development 

Board (BWDB). Data from 18/8/1980 to 28/8/2008 at Sylhet and Sunamganj gauging stations of river 

Surma are utilized for training, validating and application by splitting into three equal parts. Table-1 

summarizes the data that are used in this study in different phase of simulation.  

Table 1: Summary of used data in training, validation and application phases of simulation 

Data 

source 
Station River 

Total data 

range 

Training 

range 

Validation 

range 

Application 

range 

BWDB Sylhet Surma 
18/8/1980 to 

28/8/2008 

21/8/1980 to 

23/12/1989 

24/12/1989 to 

27/4/1999 

28/4/1999 to 

28/8/2008 

BWDB Sunamganj Surma 
18/8/1980 to 

28/8/2008 

21/8/1980 to 

23/12/1989 

24/12/1989 to 

27/4/1999 

28/4/1999 to 

28/8/2008 

 

THEORY AND METHODOLOGY 

 
The adopted methodology is consisted of correlation analysis, principal component analysis, 

designing the architecture of MLP and RBFN, finding suitable data normalization range, training the 

network and generalization for application. Initial combination of rainfall and water levels in an input 

pattern are selected by autocorrelation, cross-correlation and principal components analyses. 

Sensitivity analysis is performed to decide an appropriate rainfall and water levels combination in an 

input pattern, data normalization range, number of hidden neurons in the hidden layer, learning rate 

Figure 1: Surma and Kushiyara River with water levels 

measuring stations 
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parameter and momentum coefficient. These selected parameters are applied for higher lead-time 

prediction.   

The activities of MLP are composed of forward and backward passes. The forward pass starts with the 

presentation of the input data to the network. These inputs are the stimulus signal of the network. 

Before presenting the data to the network, the input and desired output data for training, validation 

and application are normalized using the relationship as delineated below:  

Normalized Value=Lower bound+
�Value-Minimum��Upper bound-Lower bound��Maximum-Minimum�  

where ‘Lower bound’ and ‘Upper bound’ are expected minimum and maximum response of the 

network, ‘Maximum’ and ‘Minimum’ is the highest and lowest value of a data set. 

The feed-forward type neural network with sigmoid activation function is adopted in this study 

because of its simplicity and ability to approximate any continuous function (Flood & Kartam, 

1994a). Mathematically, the general form of response function of two-layer perceptron network with 

single output neuron, I� number of variables in an input pattern and 'h' number of hidden neurons is 

expressed in Eq. 1. Figure 2 shows the working principle of MLP. 

y=f�w0

�2�
+�wα

�2�
f�wα0

(1)
+�wαβ

(1)
xβ

I�

β=1

�h

α=1

�                                                         (1) 

where, xβ are the input variables, f�·� is logistic sigmoidal nonlinear activation function, wαβ
(1)

 and wα0

(1)
 

are input weights and thresholds, wα
(2)

 and w�(2)
are second layer weight and threshold. 

 
Figure 2: Forward and backward pass details of MLP 

Initial weights and biases for both hidden and output layers are chosen randomly. The difference 

between network output and target output corresponding to the input pattern determines the error. 

Backward pass starts with the back propagation of the error through the network. The batch mode of 

training in back propagation learning and weight updating is used because of its capability to 

accurately estimate the gradient vector (Haykin, 1998). The objective of training is to reconstruct the 

hyper-surface of input-output mapping by reducing the global error E which is defined by Eq. (2).  
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E=
1

2N
�	y

i
-di
2

                                                                                       (2)

N

i=1

 

where, N=total number of training pattern, yi=network output for i
th
 input pattern and di= 

corresponding desired output.  

Steepest descent or gradient descent algorithm is involved for the minimization of the global error. 

The network weights and biases, on which the global error depends, are adjusted by moving a small 

step in the direction of the negative gradient of the error function after an epoch. The iterations are 

repeated until the absolute rate of change in averaged square error per epoch approaches zero.  

The function defined by Poggio and Girosi (1990) is exercised with the intention of reconstructing the 

solution surface during the application of radial basis function network. The general mathematical 

form is given as below:  

F�x�=�wiG�x,ti�C

i=1

 

G�x,ti� is the basis function which can be expressed as shown in Eq. 3. 

G�x;ti�=exp �-
1

2σ2
�x-ti�2
=exp �- 1

2σ2
��x-ti�2

C

i=1

�                                          (3) 

where, C is the number of center, � is the common variance, wi is weight from hidden to output layer, 

ti is the selected centers of the data set by k-means clustering, x is an input pattern. 

 

RESULTS AND DISCUSSION 

 
Sensitiveness of rainfall water levels combination: A number of rainfall and water level 

combinations are used for both stations 

to select the appropriate rainfall and 

water levels arrangement to predict the 

water levels with twenty four hours 

lead-time. Sensitivity analysis 

indicates that one, two and three day 

lagged rainfall along with one day 

lagged water levels is capable to 

comprehend the water level pattern 

splendidly. Concordance between 

measured and predicted water level 

pattern along with their linear 

relationship are shown in Figures 3 and 

4 as an example in the form of time 

series and scatter plotting for the 

application phase of simulation at 

Sylhet gauging station.  

The value of mean absolute error 

which measures the closeness of 

prediction is lowest. The overall 

spread of predicted water levels with 

respect to the mean of the observed 

water levels is also lowest. Nash and 

Stucliffe’s (1970) coefficient of 

efficiency (EF) measures how well the 

plot of the observed versus simulated 
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Figure 3: Concordance between measured and predicted 

water levels 
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value fits the 1:1 line. In the training, validation and application phases of simulation, the attained 

value of EF is 0.99 for both stations which is very close to the optimum value. Scattering of the 

predicted and observed values is measured by taking the ratio of the variance of the observed water 

levels to the predicted water levels around the mean of the observed water levels. The optimum value 

is 1.0. The obtained value of this indicator is 1.03 and 1.02 for application phase of simulation at 

Sylhet and Sunamganj gauging stations respectively. This represents that the measured and predicted 

water levels follow same straight line. 

Influence of learning rate parameter and momentum coefficient: The changing patterns of 

relative root mean square error 

per epoch for different values 

of learning rate parameter 

(momentum coefficient=0.50) 

at Sunamganj gauging station 

are shown in Figure 5. The 

analysis indicates that for lower 

momentum coefficient and 

learning rate parameter, the 

required numbers of epochs to 

attain the convergence point are 

higher than that of the higher 

value of these parameters. Larger momentum coefficients are able to improve this slowness. But there 

exists the potential danger of oscillation in the generating error surface. Learning rate constant and 

momentum coefficient equal to 0.10 and 0.50 respectively gives best generalization. 

Outline of selected parameters of multilayer perceptron: Based on the results of the sensitivity 

analysis one, two and three day lagged rainfall in conjunction with one day lagged water levels are 

selected as the variables in an input pattern. The number of hidden layer is one and it is composed of 

two hidden neurons. The chosen learning rate parameter and momentum coefficient are 0.1 and 0.5 

respectively. These values are used in both layers. Using the normalization range (0.20-0.80), synaptic 

weight of the network is computed. 

Application for forecasting with longer lead-time: The parameters which are selected based on 

sensitivity analysis are applied for 

prediction of water levels with 48 

hours lead-time. Statistical indicators 

suggested that the performance of 

prediction is dwindling with the 

increase of lead-time though these 

indicators are very close to their 

optimum value. The value of R
2
 is 

close to 1.0 which signifies a very 

good linear regression correlation 

between the measured and predicted 

values. Mean absolute error is 

becoming higher in the case of longer 

lead-time prediction. This indicates that the deviation of predicted values from the measured values is 

increasing. The agreement between the measured and predicted water levels at Sunamganj gauging 

station with 48 hours lead-time is shown in Figure 6. The plotting represents good co-linearity 

between measured and predicted water levels. 

Application of RBFN: Application of RBFN indicates that with the increase hidden layer dimension, 

the performance of the prediction is becoming better for both stations. The colinearity between 

measured and predicted water levels at Sylhet gauging station in application phases of simulation for 
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number of centers equal to twenty are illustrated in Figures 7. The value of MAE is getting lower with 

the increase of dimensionality. R
2
 is 

very close to 1.0 which signifies good 

linear regression relationship between 

measured and predicted water levels. 

The performances of relative root mean 

square error are almost similar in both 

methods. The value of Nash and 

Stucliffe coefficient of efficiency (EF) 

is 0.98 which indicates that most of the 

predictions are fitted well with the 1:1 

line. This is same for Sunamganj 

station as well. The scatter of the 

predicted and observed values around 

the mean of the observation indicates that the variances of predicted and measured water levels are 

almost same. So RBFN is capable to recognize the water levels pattern. 

 

CONCLUSIONS 

Both multilayer perceptron and radial basis function networks are capable of predicting the water 

levels in the Surma river system. Radial basis function network has relatively higher dimensions in 

hidden layer than that of the multilayer perceptron. Number of iterations required to produce a 

desirable results in the case of multilayer perceptron with back propagation algorithm is higher than 

RBFN. One hidden layer consisting of two hidden neurons is adequate to train the network for MLP. 

Multilayer perceptron is giving better generalization results than radial basis function networks. The 

performance of forecasting results is receding with longer lead-time. 

 

RECOMMENDATION  

 

Future study should be conducted to reduce of the dimensionality of the radial basis function network 

by searching optimum number of centers using the statistical properties of the data pattern. 
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