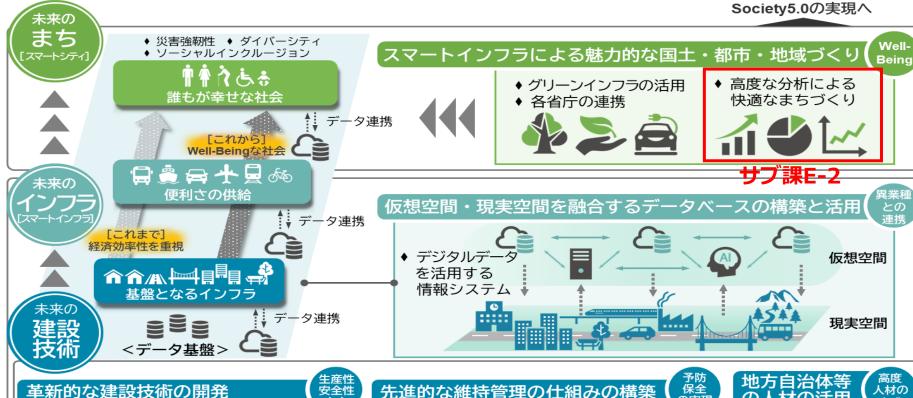

スマートインフラマネジメントシステムの構築


研究開発責任者 東北大学 大学院工学研究科 インフラ・マネジメント研究センター 特任教授 楠葉 貞治

本研究開発の位置づけ

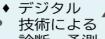
♦ 施工や危険作業の 自動化・無人化

◆ 計測困難な箇所の モニタリング

デジタルデータによる一貫した管理

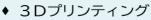
調査 計画 設計 施工

維持管理


先進的な維持管理の仕組みの構築

診断・措置の進展による サイクルの効率化

維持管理の サイクル


措置 記録

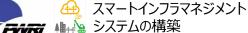
診断・予測 ♦ 見えない箇所の

変状・予兆を検知

♦ 高品質な材料

地方自治体等の人材の活用

- ♦ 育成カリキュラム 維持管理対応を
- 効率化する技術



インフラの社会的・経済的な 価値の定量化

災害時における

発生確率および被害リスクの 定量的評価

価値の最大化

経済、社会

工学経営 等の融合

リスクの軽減

空間的評価

時間的変化

合理的根拠に基づく政策立案

EBPM (Evidence Based Policy Making)

インフラ維持管理事業への予算投資効果の最大化

東北大学グループ

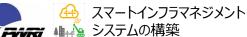
対象インフラ:**舗装**

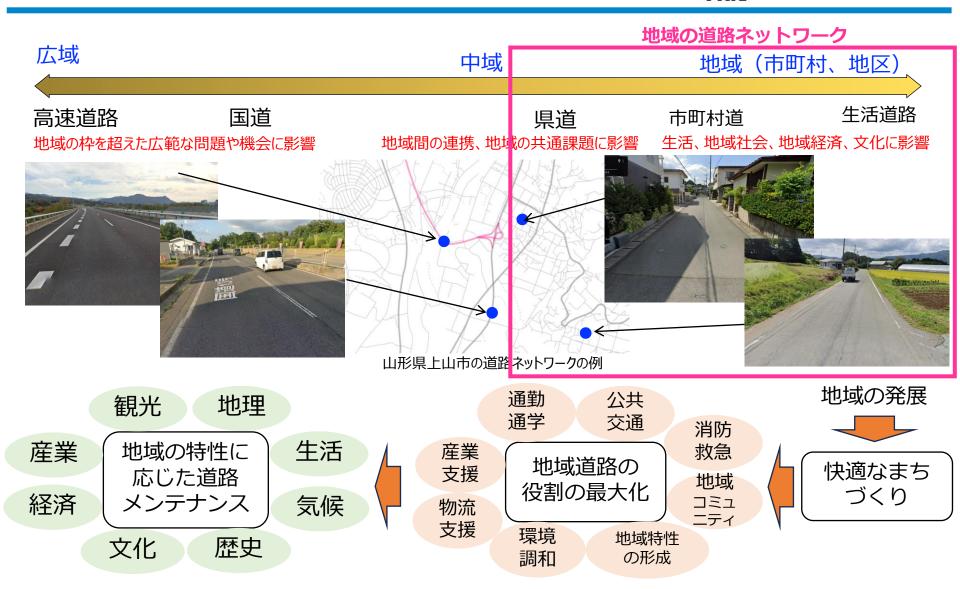
実装地域:山形県内市町ほか 一、日本章 · 中国 · 日本 大崎総合研究所グループ

対象インフラ:橋梁

実装地域: **鳥取県**

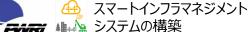
未来のまちのインフラが


レジリエンス と サステナビリティ_{を兼備する}


スマートなインフラ と インフラを支えるスマートな仕組み

Society5.0 の実現

【道路SIP】地域の道路ネットワークのメンテナンス



地域道路は交通量は少ないが、<u>人々の生活や地域の経済、文化、資源等との関わりが強い</u>

【道路SIP】研究開発の全体像と研究体制

「データ分析による道路維持管理支援システムの構築」

地域インフラ群マネジメント

東北大学IMC 湧田 雄基

Openデータ

地理・気候・交通・

人口・人流・物流・

環境・生活・医療・ 教育・防災

地域Aの特性

文化 歴史

気候 地理

共通課題

産業 観光

経済 牛活 地域Bの特性

文化

歴史

気候

地理

舗装データ

点検・修繕・材料

措置管理区分

(地域の課題に応じた重み付け、補修工法、直営・住民参加型補修)

多種多様なデータの分析により地域 における多様で細かな条件を反映

データ活用支援ツール

舗装寿命推定/費用対効果算定

「EBPM に基づく地域道路群のマネジメントシステムの社会実装」

ータに基づく

政策立案の支援

東北大学IMC 楠葉 貞治

予算の投資 安全・安心・生活 の利便性の向上 効果の最大化

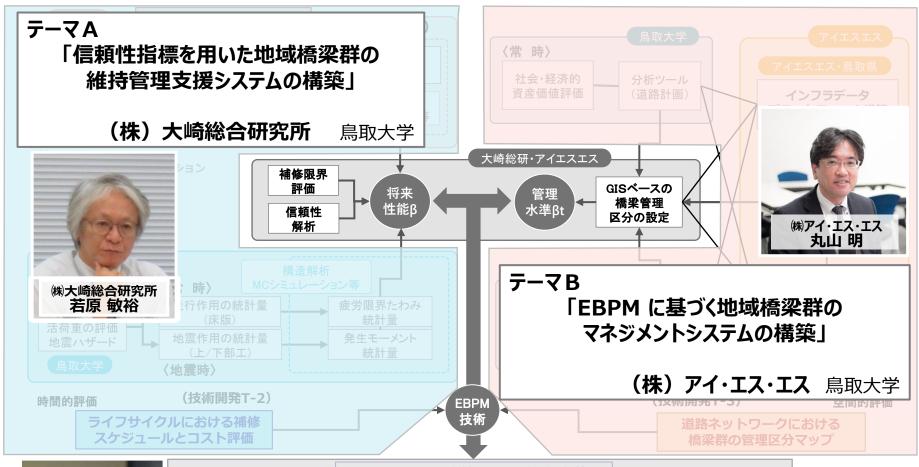
自治体

住民説明や合意形成 のためのツール

施策

EBPMによる政策PDCAサイクル

EBPM波及効果の自治体への提案例(山形県上山市・南陽市、鳥取県・島根県)

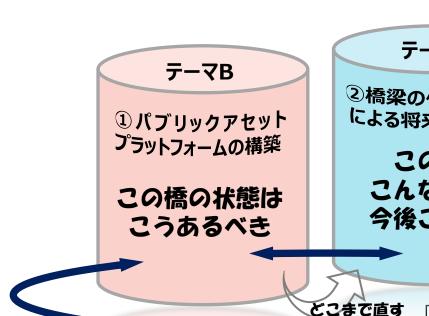

道路 材料耐久性 =融雪剤耐性に優れた舗装材料の適用(LCCで評価) 凍結

耕作地、 道 農業 =交通規制、渋滞による出荷遅延防止(苦情数で評価) 補修時期 収穫期

アクセス時間_× 観 資源、 =地域間のメンテ連携、利便性の向上(アンケート等で評価) 人流

【橋梁SIP】研究開発の全体像と研究体制

EBPMによる政策展開=社会実装


テーマC 「鳥取大学 地方創生ラボによる研究成果の社会実装・政策展開」

鳥取大学 鳥取県(株)大崎総合研究所(株)アイ・エス・エス

【橋梁SIP】3つの主要研究開発技術

スマートインフラマネジメント **ニノルディ All**

テーマA

②橋梁の信頼性解析 による将来性能推定

> この橋は こんな状態で 今後こうなる

テーマB

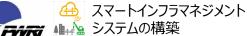
③インフラデータプラット フォームの構築

> この橋は こう直すべき

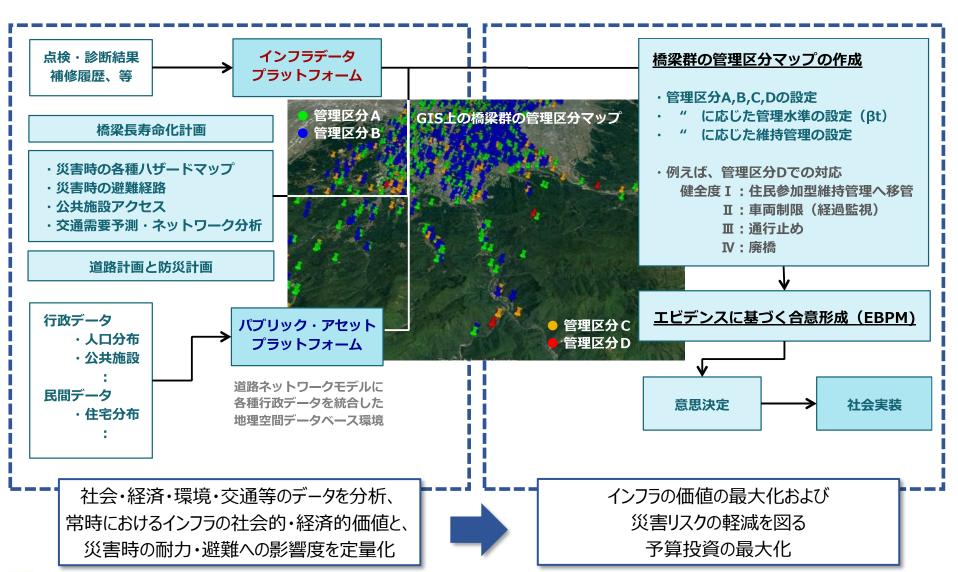
どう直す

いつ直す

橋梁の現在の性能 に対して **橋梁の価値に合わせた管理性能水準** を


②の技術開発

効率的に上回る処置 を 適切なタイミング で施す


③の技術開発

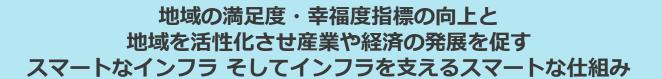
EBPMに基づく鳥取県の橋梁維持管理投資効果の最大化

テーマB「EBPM に基づく地域橋梁群のマネジメントシステムの構築」

【橋梁SIP】最終出口戦略(社会実装)

スマートインフラマネジメント **ニルディ 4** 4 システムの構築

どの橋を・いつ・どのように・どの程度まで直す かを示す**EBPMに基づく予算投資計画**を、鳥取大 学に設置された**「地方創生ラボ」で実践**する。橋 梁区分により異なる維持管理体制、導入技術、教 育プログラム等をSIPの他の課題からの成果と連 **携して実装**し、スマートなインフラをスマートな 仕組みで、その**資産価値を向上**させる。



Well-being

EBPMによる予算の投資効果の最大化を実現

工学のみでなく、社会学・経済学などの総合知を活用し 新しい地域インフラ維持管理「総合知」体制を確立