貧毛類による下水汚泥の減容化技術の開発

研究予算:運営費交付金 研究期間:平29~令1

担当チーム:材料資源研究グループ 研究担当者:重村浩之、山﨑廉予

【要旨】

本研究では、下水汚泥の減容化および有効利用の対策として、下水汚泥を貧毛類の餌として利用する、低エネルギーかつ低コストの技術の開発を目指した。初沈汚泥とミミズ堆肥の混合物を餌として、シマミミズの飼育を行った結果、汚泥を脱水せずに投入しても、飼育が可能であることが示された。また、ミミズの生育状況や産卵数が良好であり、汚泥減少率が高いことから、汚泥の減容化が達成できる可能性が高いことが示された。

キーワード: 貧毛類、下水汚泥、汚泥減容化、刈草、堆肥化

1. はじめに

下水道の普及に伴い増加していた下水処理場か ら発生する汚泥量は、約10年前からほぼ横ばいと なっており、各地方公共団体において、汚泥の減 容化・有効利用への取り組みがなされている。汚 泥の減容化過程においては、脱水プロセスが採用 されているが、脱水ケーキの含水率は全国で約 80%と高く1、含水率を低減することにより、そ の後の汚泥の運搬、焼却、炭化等の維持管理費の 削減が期待される。また、下水汚泥の消化におい て、一般的に有機物の分解は50%程度であり、ス ケールメリットが発現しにくいなどの理由により、 小規模の下水処理場での採用は多くない。汚泥処 理技術の革新のため、汚泥の有機物を分解するこ とに着目し、かつ安価で簡易的な手法を模索した。 本研究では、下水汚泥の減容化対策として、貧 毛類に着目した。下水汚泥を貧毛類の餌として利 用することで、汚泥・廃棄物の処理を低エネルギ 一かつ低コストで行う技術の開発を目指している。 貧毛類を用いた汚泥処理に関する研究は、牛糞 等の動物性廃棄物を用いた堆肥化に関する研究が 多く行われている 2)3)。 貧毛類を用いない場合と比 較して、堆肥化の安定化や成熟度が優れており、 廃棄物中に存在する人間の病原菌やその他の細菌

類は、ミミズ堆肥化後に大幅に減少する可能性が

ある450。また、生ゴミや処理場の脱水汚泥を用い

たミミズ堆肥の研究の報告もいくつかあり 677、国内外において数十年前から知見が蓄積されている 87が、生物の管理の難しさや、生物濃縮の懸念などの問題から、広く普及するには至っていないのが現状である。小動物を用いた廃棄物処理は、循環型社会において必要な技術であることから、本研究では、過去の知見をもとに新しい技術を開発するため、下水汚泥を用いた貧毛類の飼育について、改めて基礎的情報の収集を行った。

2. 最初沈殿池汚泥を用いた貧毛類飼育実験


2.1 実験方法

貧毛類は、ツリミミズ科のシマミミズ(Eisenia foetida)を用いた。人工気象器内において、25℃、暗所の環境で、1000mL 容の PP 製びんを用いて、約300gの土中でミミズ5匹を飼育し、土の性状やミミズの成長を観察した。ココピートに、A下水処理場の最初沈殿池の重力濃縮汚泥(以下、「初沈汚泥」)または水を添加する系(系列1、2)、本研究室で事前に作製したミミズ堆肥に初沈汚泥を添加する系(系列3)の3系列を用意した。定期的に、水または初沈汚泥の追加を行い、土の含水率の測定を行った。ミミズは、定期的に取り出し、個々の生重量、産卵数を測定した。

2. 2 実験結果および考察

図-1に、3系列におけるミミズの飼育結果を示

す。初沈汚泥は脱水せずに添加したため、土の含水率が80%以上と高いが、系列1、3で、安定したミミズの成長がみられた。40日以降に初沈汚泥の追加量を増やすと、成長がみられなくなったため、初沈汚泥の添加量は調整が必要であると考えられた。系列2では、25日以降に初沈汚泥の添加に変更した後、成長がみられたことから、初沈汚泥がミミズの餌として有用であることが示された。産卵数は、系列1~3で同程度であった。しかし含水率は、ココピートを用いた系列1、2で上がる傾向を示したため、含水率の安定の観点から、堆肥と汚泥の混合の方がよいことが示された。

(a) 生重量と産卵数 (b) 土の含水率と追加量 図-1 シマミミズの飼育結果

3. 汚泥種類による貧毛類飼育比較実験

3. 1 実験方法

2.の結果をうけて、初沈汚泥、余剰汚泥の機械 濃縮汚泥(以下、「余剰汚泥」)および消化汚泥を 餌とした、ミミズの成長比較実験を行った。 1000mL 容の PP 製びん内において、ミミズ堆肥約 200~300g に、初沈汚泥、余剰汚泥、消化汚泥を それぞれ 50~300g を 2 週間に 1 回添加した。そ れぞれミミズを10 匹ずつ添加する系を2 系列(I, II(汚泥投入量に違い))、ミミズを添加しない系を 1系列 (III) 用意した。**2** と同様のシステムにおいて、約3カ月飼育を行った。2週間に1回、全体重量および土の含水率、pH、電気伝導率(EC)を測定した。ミミズは、生重量、産卵数を測定した。

3.2 実験結果および考察

表-1 に、各汚泥を用いたミミズ飼育の実験結果 を示す。汚泥投入量、汚泥減少率、含水率は、2 週間毎の平均値を示している。ミミズの生重量は、 初沈汚泥では投入量に関わらず増加傾向を示した が、余剰汚泥や消化汚泥では、投入量で差がみら れ、消化汚泥では、終了時に死滅してしまった。 含水率は、汚泥を添加後84~92%まで上昇したが、 2週間後は、汚泥種類や投入量に大きな差はなく、 いずれも79~87%に低下した。生重量増加率は、 汚泥添加後および2週間後の含水率と高い相関を 示しており、本研究の範囲では、含水率が高いほ ど生重量増加率が高い傾向を示した。また、ミミ ズを添加した系において、しない場合と比較して、 含水率が高く保持される傾向を示した。産卵数は、 初沈汚泥において、他の汚泥よりも多く、初沈汚 泥がミミズの飼育に適していることが示された。 余剰汚泥においては、Ⅰ系とⅡ系で産卵数に大き な差がみられた。産卵数はpH とやや相関がある 傾向を示しており、I系ではpH が低いことが、産 卵数が低い原因と想定された。消化汚泥では、ミ ミズの成長が終了時直前までみられたが、産卵は ほぼみられなかった。汚泥減少率は、初沈汚泥の Ⅰ系、Ⅲ系および消化汚泥のⅠ系で1以上であっ た。また、いずれの汚泥もミミズを投入する方が、 汚泥減少率が高い傾向を示し、ミミズの飼育によ り汚泥減容化の傾向がみられることが示された。

表-1 汚泥種類での貧毛類飼育比較実験結果

	汚泥投	汚泥	含水率(%)		рН		EC(mS/cm)		産卵	生重量	
	入量	減少	汚泥添	2週間	開始	終了	開始	終了	数	増加率	
	(g)	率*1	加後	後	時	時	時	時	(個)	*2	
初沈I	300	1.16	89	85	7.3	7.6	0.98	1.16	504	1.27	
初沈II	200	0.85	87	84	4.6	5.9	0.96	1.52	401	1.37	
初沈Ⅲ	200	1.07	86	84	5.3	6.0	1.99	0.66	ı	_	
余剰I	120	0.92	87	81	7.1	4.9	>4	>4	10	0.87	
余剰II	100	0.66	88	83	4.9	5.1	1.81	3.42	134	1.32	
余剰Ⅲ	100	0.83	83	81	5.5	4.1	1.78	1.97	_	_	
消化I	150	1.41	92	87	6.3	5.7	3.22	1.23	3	(2.35)*3	
消化II	100	0.98	87	79	4.7	6.4	0.92	0.15	2	(0.7)*3	
消化III	100	0.98	84	82	5.4	3.5	2.7	1.75	I	_	
	*1 2周問表の汪沢浦小号 / (九] 汪沢号 _ 2 流号)										

^{*1 2}週間での汚泥減少量/(投入汚泥量ーろ液量 *2 終了時の牛重量合計/開始時の牛重量合計

^{*3} 終了時に死滅していたため、終了時前までの増加率

また、汚泥減少率は、含水率、pH および生重量増加率と比較的相関が強い傾向を示していた。初沈汚泥の系において、実験終了時の EC を比較すると、I、II において、III よりも高く、シマミミズによる堆肥化がみられた。また、余剰汚泥では、Iでは EC が高すぎて、測定できなかった。II では堆肥の EC として数値に問題なく、ミミズの生育も良好であったことから、余剰汚泥を用いたミミズ飼育においては、汚泥の減容化には不向きであるが、堆肥化には適している可能性が示唆された。消化汚泥では、汚泥減少率は比較的高く、ミミズの生重量の増加も一定期間みられていたため、汚泥投入量や混合方法等を工夫することで、ミミズによる持続的な汚泥減容化の可能性が考えられる。

4. 刈草混合による貧毛類飼育実験

A 処理場の初沈汚泥を遠心脱水したものに、イネ科の刈草を粉末化したもの、10 mmにハサミで裁断したものを適量混合し、底に空気穴を開けた 1L のポリビンに、各混合物を 500mg 程度入れ、同程度の大きさのシマミミズを 5 匹ずつ投入し、下部から空気を送り、温度 20±5℃程度において、飼育を 70 日間行った。結果を図-2 に示す。刈草 10 mmの系では、ミミズの糞粒が見られるが、刈草の分解は見られなかった。刈草粉末の系では、ミミズの糞粒がみられ、かさも減少していたため、本実験の範囲では、刈草を粉末化して脱水汚泥と混合することで、汚泥の堆肥化および減容化が可能であると示唆された。

図-2 刈草と脱水汚泥の混合物によるミミズ飼育 状況の経時変化

5. まとめ

初沈汚泥とココピートまたはミミズ堆肥の混合物を餌として、シマミミズの飼育を行った結果、

汚泥を脱水せずに投入しても、混合量の調整により飼育が可能であることが示された。

また、汚泥の種類によるシマミミズの飼育状況の比較実験を行った結果、初沈汚泥でのミミズ飼育において、ミミズの生育状況や産卵数が良好であり、汚泥減少率が高いことから、汚泥の減容化が達成できる可能性が高いことが示された。消化汚泥では、汚泥減少率は比較的高く、ミミズの生重量の増加も一定期間みられていたため、汚泥投入量や混合方法等を工夫することで、ミミズによる持続的な汚泥減容化の可能性が考えられた。余剰汚泥は、ミミズの餌とすることで、減容化は難しいが、汚泥の混合割合の調整によって、堆肥化が可能であることが示唆された。イネ科の刈草は、粉末化して混合することで、汚泥の堆肥化および減容化が確認できた。

謝辞 汚泥の採取には、各処理場関係者の多大なるご協力を賜りました。ここに記して謝意を示します。

参考文献

- 1) 公益社団法人日本下水道協会:平成29年度版下水道統計,2019.
- Elvira, C., Sampedro, L., Benftez, E., Nogales, R.: Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: A pilot-scale study, Bioreso. Technol., Vol.63, No.3, pp.205-211, 1998
- Xie, D., Wu, W., Hao, X., Jiang, D., Li, X., Bai, L.: Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida. Environ. Sci. Pollut. Res. Vol.23, pp.7767– 7775, 2016
- 4) Huang, K., Xia, H., Wu, Y., Chen, J., Cui, G., Li, F., Chen. Y., Wu, N.: Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Bioresour. Technol. Vol.259, pp.32-39, 2018
- Soobhany, N., Mohee, R., Garg, V.K.: Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review, Waste Manag. Vol. 64, pp.51-62, 2017
- 6) Fu, X., Cui, G., Huang, K., Chen, X., Li, F., Zhang, X., Li, F. :Earthworms facilitate the stabilization of pelletized dewatered sludge through shaping microbial biomass and activity and community, Environ. Sci. Pollut. Res. Int., Vol.23, No.5, pp.4522-4530, 2016
- 7) 川下好則ら, 一般廃棄物を資源 としてミミズに給餌するシステムの開発研究, 環境技術, Vol.23, No.2, pp.92-94, 1994
- 8) 森忠洋ら,シマミミズによる汚泥処理の可能性に関する研究(I),水質汚濁研究,No.1, Vol.2, pp.127-132, 1978