長距離移動する地すべりの発生条件と堆積規模・範囲の推定に関する研究

研究予算:運営費交付金 研究期間:平29~令元 担当チーム:雪崩・地すべり研究センター 研究担当者:秋山一弥、野坂隆幸

【要旨】

長い距離を移動する地すべりは広範囲に被害をもたらす場合があり、地すべりの堆積規模・範囲を予測することは被害を防止・軽減する上で重要である。本研究では、地すべり運動のシミュレーションモデル(LSFLOW)を用いて、長距離移動する地すべりの堆積規模・範囲の予測に必要なパラメータ(条件)について検討を行った。 その結果、地すべり範囲、崩壊範囲、堆積範囲などの要素において、異なる属性の領域ごとに適切な動摩擦角を設定することで、精度よく長距離移動する地すべりの堆積規模・範囲を推定できることがわかった。

キーワード:長距離移動地すべり、シミュレーション、LSFLOW、動摩擦角

1. はじめに

地すべり現象の中には、土塊が流動化して長い距離 を移動し、通常よりも広範囲に被害をもたらす場合が ある。地すべりが流動化して長距離移動する要因につ いては地形的特性から検討した事例¹⁾はあるものの、 移動土砂の堆積規模・範囲を予測する手法は確立して いない。

このため本研究では、平成 29 年に新潟県糸魚川市 釜沢地区で発生した地すべりを対象として、数値シ ミュレーションを用いて地すべりの移動量と到達範囲 を再現することで、長距離移動する地すべりの堆積規 模・範囲の予測に必要なパラメータについて検討を 行った。

2. 研究の対象とした地すべりの概要

新潟県糸魚川市釜沢地区では、平成29年9月8日 に到達距離の大きな地すべりが発生した。地すべりの 規模は幅100m、斜面長200m、流出域の長さ200mで、 右岸側の沢地形が抜け落ちた後に左岸側の地すべり斜 面が活動したと報告されている²⁾。地すべりの発生範 囲では、平成25年に航空レーザ測量(LP)データお よび空中写真撮影によるオルソ画像が作成されていて、 地すべりが発生した後の平成29年9月15日に無人航 空機(UAV)による地形データおよびオルソ画像が得 られている(図-1)。

地すべりが発生した地区の基盤となる地質は、新第 三系鮮新統の西山層、名立層、河内層相当層の分布域 に属する砂岩並びに砂質泥岩で構成されている³。近 隣の気象観測所であるアメダス糸魚川では9月6日か ら8日にかけて129mmの降水が記録されており、地す べり発生前の降雨と相まって地すべりの主たる誘因に なったと考えられている²⁾。

図-1 地すべり発生前後の釜沢地区のオルソ画像

3. 数値シミュレーションによる地すべりの再現

3.1 数値シミュレーションの概要

地すべり運動のシミュレーションモデルには、崩土 を非圧縮性粘性流体の流れと仮定して、斜面上の土砂 の移動開始、流下、堆積という一連の過程をシミュレー トするプログラムである LSFLOW⁴⁾⁻⁸⁾を用いた。モデ ルでは、地表面と基盤面の標高値を設定し、2 面間の 地盤として定義された移動土塊の流下・氾濫を評価す る。本研究で使用した LSFLOW のパラメータ設定値 を表-1に示す。

表-1 LSFLOW のパラメータ設定値

変数	単位	設定値	補足説明	
時間刻み幅	s	0.01	計算が発散しない程度に大きな値を設定	
単位体積重量	kN/m³	18	地すべり発生後の調査結果から設定	
土塊の動摩擦角	•	司亦	再現可能なパラメータをトライアルし、再現性	
すべり面の動摩擦角		刊友	の高くなる値を探索	
すべり面の粘着力	kN/m²	0.0098	長距離のすべり運動により残留強度に低下して いると考え、0に近い値として扱われる	
動粘性係数	m²/s	0.001	土塊内部の抵抗やすべり面のせん断抵抗に較べ て非常に小さく、0に近い値として扱われる	
新規氾濫セルへの 流入係数	-	0.5	多くの解析事例で用いられる0.5に設定	

プログラムでは、地すべりブロックとその他の堆積 範囲など、異なる属性の領域に地形を区分し、領域ご とに動摩擦角を設定して移動土砂量と到達範囲を算出 した。算出結果は後述する地形モデルと比較し、高い 再現性が得られるまで領域の区分と動摩擦角の値を変 えて計算を繰り返した。

3.2 地形モデルの作成

計算に用いる地表面および基盤面の条件を設定する ため、地形モデルとして地すべり発生前の LP データ から地表面モデルを、地すべり発生後の地形データお よびボーリング調査結果などを基に基盤面モデルを作 成した。また、発生後のオルソ画像から土砂移動範囲 を抽出し、発生前後の標高データの差分解析を実施す ることで、土砂移動量を41,000m³と定義した。

3.3 再現性の検証

本研究では、領域の分割と各領域の動摩擦角の組み 合わせで合計 19パターンの計算を実施した。代表的な 計算結果として4事例の動摩擦角の設定条件と土砂移 動量を表-2に、シミュレーション結果を図-2に示す。 表-2 代表的な4事例の動摩擦角の設定条件と土砂

移動量

		土砂			
条件	地すべり	抜け落ち	地すべりと	この供	移動量
	ブロック	(崩壊)	崩壊の境界	その他	(m³)
1	30	-	-	8	9,810
2	10	-	-	8	44,490
3	10	8	-	10	44,230
4	12.5	5	30	10	41,020

図-2 代表的な4事例のシミュレーション結果(赤枠 は地すべり発生後のオルソ画像から抽出した土砂移動 範囲を示す)

計算では、領域を3段階で分割した。まず、地すべ りブロックとその他で分割したところ、途中で地すべ りブロックが停止(条件①)したり、到達範囲を過大 評価(条件②)したりして、動摩擦角を変化させても 高い再現性が得られなかった。次に発生域の右岸側の 崩壊(抜け落ち)、左岸側の地すべりブロック、その他 の3つに分割したところ、右岸側の到達範囲を過大評 価(条件③)した。これは、LSFLOWが地すべり土塊 を流体として扱うため、図-3のとおり地すべり範囲 の土塊が標高の低い崩壊範囲に流れ込んだことが原因 と考えられた。

図-3 土塊の流れ込みのイメージ図 このため、崩壊範囲、地すべり範囲、崩壊範囲と地 すべり範囲の境界部分、その他の4つに分割して境界 部分に大きな動摩擦角を設定したところ、地すべり範 囲から崩壊範囲への流れ込みを抑制して土砂移動量、 到達範囲ともに高い再現性が得られた(条件④)。

4. まとめ

地すべり運動のシミュレーションプログラムであ る LSFLOW のパラメータについて、地すべり範囲や 崩壊範囲、堆積範囲のような異なる属性の領域に地形 を分割し、流体としての挙動を抑制させる条件を設定 したところ、長距離移動する地すべりの堆積規模・範 囲を精度よく再現することができた。

本研究では、一つの地すべり現象を対象に検討を 行ったため、今後は本研究で検討した領域を分割する 考え方や、属性ごとに設定した動摩擦角が他の地すべ り事例にも適用が可能かどうかを検証する必要がある。

参考文献

- 木村誇、桂真也、丸山清輝、石田孝司:長距離移動した 融雪地すべりの発生域・移送堆積域の地形特性、地すべり、日本地すべり学会誌、53巻、2号、pp.31-42、2016
- 新潟県:緑(県営)第7809号緑のばんそうこう(県営) 委託報告書、2017
- 3) 石田孝司、金澤瑛、丸山清輝、石川茂、平松晋也:糸魚 川市海川流域の2箇所で発生した地すべりの特徴と移

動体の土質性状、平成 30 年度砂防学会概要集、 pp.513-514、2018

- 中村浩之、綱木亮介、中島茂:地すべり移動土塊の到達
 範囲の一予測手法、土木技術資料、Vol.31、No.6、pp.43-39、
 1989
- 5) 吉松弘行、近藤観慈、石濱茂、綱木亮介、小嶋伸一、中 村浩之:準三次元地すべり運動解析プログラムによる地 すべり性崩壊の被害範囲の予測、土木研究所資料、 No.3057、111p.、1992
- 6) 郎燈華、中村浩之:黄土地すべりのすべり面形状の特性 と崩土の拡散範囲の予測、地すべり、35巻、1号、pp.9-18、 1998
- 7) 佐光 洋一、森 俊勇、中村 浩之、遊佐 直樹、大野 亮 一、福田 睦寿、寺田 秀樹:深層崩壊に伴い形成される 天然ダム形状の予測について、砂防学会誌、68 巻、1 号、 pp.44-51、2015
- 8) 中村浩之:技術者の疑問に答える地すべり・崩壊、株式 会社総合土木研究所出版、188p.、2011