III-1 高速流路施設の設計手法の高度化に関する研究

研究予算：運営費交付金（一般研究）
研究期間：平11～平14
担当チーム：先端技術チーム
研究担当者：村松敏光（H11）、持丸修一（H11）、新田義士（H11）、水野紀明（H11-12）、江本平（H12）、荒井猛（H12-13）、吉田正（H13-14）、山本幸広（H14）

【要旨】
低地の冠水を防ぐ排水施設では、ポンプ吸込口の土木構造物寸法が施設全体の規模を決める大きな要因となっている。この部分の流速を上げることで施設規模を縮小することができ、施設費やコストの縮減、既設排水施設の能力向上が期待される。

このため本研究は、ポンプ吸込口の水理特性を模型実験およびコンピューターシミュレーションにより把握した上で、標準的な高速流路施設の形状・寸法を提案した。

本研究の成果により、単機排水能力10m³/s以下の揚排水ポンプ設計において、吸水槽内流速を従来より30%程度早くしでも渦の発生しない吸水槽の寸法・水深が規定され、平成13年2月に発行された揚排水ポンプ設備設計指針（案）に反映された。また、吸水槽の設計計画に際し、事前に渦発生有無の検証、渦対策などを実施できるポンプ吸水槽の模型実験方法を「ポンプ吸水槽実験計画マニュアル（案）」としてとりまとめた。

キーワード：排水ポンプ、設備、コスト縮減、吸水水槽、模型実験、CFD

1. はじめに
揚排水機器は設備の機能と信頼性の確保とともに、設備の簡易化、メンテナンスフリー化、低コスト化が求められている。このため、小中規模の排水機器については、標準的な構造や寸法が定められ設計コストの縮減が図られている。この標準的な構造では、流入水路から水を迅速で引き込み、一旦水槽に溜めた後にポンプで吸い上げる形になっている。そのため、大きな水槽が必要となり、吸水槽の寸法が揚排水機器の建築など土木構造物の敷地面積に大きく影響している。

しかし、最近では揚排水機器の建設用地の取得が困難になりつつあり、効率的な構造に改修して限られた敷地面積で大きな吸込容量を発揮させることが求められている。とりわけポンプ吸水槽に関して、省スペースで高速流化が可能な水路形状の開発が強く望まれている。高速流化においては、振動・騒音の発生やポンプ性能の低下につけが有効な渦の発生を防止し、寸法精度や設計・施工上の課題を整理する必要がある。

このため本研究では、小・中規模の排水機器における吸水槽形状の小型化を新たに提案し、コンピューターシミュレーションや模型実験による有効な渦の発生ならびに水理特性を見通し、高速流化吸水槽の標準寸法を提案したものである。

2. 吸水水槽の高速流化
2.1 概念
図-1に小・中規模の排水機器における高速流化の概念を示す。揚排水機器の高速流化は図-2に示すポンプ入口部流速V₂および吐口部流速V₁の高速化を図るものである。これにより旧基準の水槽と同等の揚排水機器を同規模の揚排水量を確保しつつ吸水槽

図-1 高速流化の概念
流路の構造と各部の流速

の縮小化が可能となり、吸込水槽建設時の掘削土量やコンクリート打設の縮減が可能となる。またポンプ吸込流速 \(v_f \) を高速化した高比速度ポンプを本吸込水槽と組み合わせて効率的に運転させることができる。ポンプ設備関係のより一層の小型・軽量化が図られ、建設コストの低減効果も期待できる。

しかし、ポンプ入口部流速 \(v_1 \) とポンプ吸込流速 \(v_f \) のバランスが悪いと、キャピテーション等によりポンプ効率は低下する。このため、コンピューターシミュレーションや模型実験を行い、流路各寸法の最適化および渦発生状況の確認を吸込水槽の形状ごとに行う必要がある。

標準的な構造・寸法が定められていない大型の揚排水機場では、除圧機からペルマウス近傍までの流速を高速化して土木構造物の規模縮小化が図られている。この高流速化技術を中規模の揚排水機場にも適用することが考えられるが、相似則の関係から吸込水槽の大きさが小さいほど同流速での水理特性は厳しい条件となり、渦の発生率は高くなる。このため、小・中規模の揚排水機場に高流速化を適用するには、ポンプの排水運転に有害な渦の発生防止や寸法精度等の設計・施工上の課題を整理する必要がある。

2.2 適用範囲

高流速化吸込水槽の標準化検討範囲は、揚排水ポンプ設備技術基準（案）で標準寸法が規定されているポンプ容量と吸込水槽形状の関係を踏まえて整理した。

この基準では表-1 に示すようにポンプの吐出量10㎥/s までを標準化している。これに対応するポンプは口径2,000mmまでで、オープンピット形式とされているので、今回も同様にポンプ口径2,000mm以

<table>
<thead>
<tr>
<th>ポンプ口径 [mm]</th>
<th>従来基準</th>
<th>本研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>8</td>
<td>吊下構造</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>吊下構造</td>
</tr>
<tr>
<td>2000超</td>
<td>10超</td>
<td>コンクリート一体化構造</td>
</tr>
</tbody>
</table>

表-1 標準化の範囲と効果

<table>
<thead>
<tr>
<th>概略形状</th>
<th>概略寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ハッチング部分は二次コンクリートを示す)</td>
<td></td>
</tr>
</tbody>
</table>

| 吸込水路 | 広い(100%) | 狭い(77%) | 狭い(74%) | 最小狭い(62%) |
| 底盤深さ | 深い(100%) | 浅い(65%) | 浅い(52%) | 浅い(65%) |

※ () 内の数値は低流速事例を100%としたときの比率を示す

表-2 大規模の揚排水機場における従来基準と高流速化事例

-232-
下の範囲を検討する。
また、流路高流速化の対象は、除塵機からポンプ入口までとした。
2.3 基本構造の検討
現在、我が国や米国工兵隊標準のように大型の排水機場で高流速化されている例は表2に示すように、いずれも渦発生防止策として流路内自由水面を無くし流速全車後続するクローズドビットとなっている。このクローズドビット形式は流路の抵抗摩擦及び渦発生防止能力が高い反面、複雑な形状の吸込水槽を作製する必要があるため、形状の追加が容易な二次コンクリートで施工される場合が多く、一次コンクリートで吸込水槽の製作が可能であるオープンビット形吸込水槽に比べて経済性が悪い。また、ポンプ設計を待たなければ土壌構造物の基本的な形状が決定できないと問題がある。その際米国工兵隊標準のように吸込ベッド盤を鋼構造物で構成して、二次コンクリートや型枠工を削減することも考えられるが、常時水中に設置されるためメンテナンスに課題が残る。
そこで、土壌構造物と機械設備の設計・施工分解点を明確にして、設計及び構造を単純化するとともに、機械設備工事における二次コンクリート施工量を極力抑えるため、一般的に用いられている吊り下げ式ポンプとオープンビット形式の吸込水槽を基本構造として、次のように検討した。
吸込水槽はクローズドビット形式の水路抑制力が効果的な部分を参考に、より水質の拘束が可能なオープン形式吸込水槽としてセミクローズドビット形式を提案した。表3にこれらのポンプ吊り下げ式の吸込水槽一般図を示す。また、高流速化吸込水槽の利用とともに、ポンプに高気体度ポンプを利用することでポンプ設備全体を一層小型化させることも可能であるが、運転効率等を含めた得失は揚排水機場の運転条件に左右されるため個別検討が必要である。
2.4 高流速化の限界
ポンプ近傍の水流れの条件は、ファルド数（相対値により寸法比の0.2乗の流速比を示す）に依存するため、大型の揚排水機場で用いられている流速をそのままで型吸込水槽に適用することはできない。そこで、既存のクローズドビット形式の流速やオープンビット形式での流速を参考に各部の流速を設定した。図3に既設機場の吸込水槽の流速分布を示す。これらにより、吸込水槽V1は0.4〜0.6m/s、ポンプ入口水速V2は1.2m/sを適正限界流速とした。
なお、実際のポンプは水位条件によっては設計点より20%程度の流量まで換気することになるので、シミュレーションや模型実験ではこれら基準流速よりも早い条件を含めて実施した。
2.5 流路の標準寸法
流路標準寸法の基本となるポンプ口径の寸法数列は、既設機場での対応も可能とするため、現行の基準で採用されている数列を用いた。
また、水路幅は、その上部に設置される減速機や主原動機といったポンプに付属する機械設備の大きさも考慮する必要があるため、これら設備に必要な装置幅（機器の寸法及びメンテナンス等に必要な機器間所要スペース）を確保できる範囲で設定した。設定に当たっては、近年ポンプの主原動機として用いられ始めているオーガスタビンや小型化されたディーゼルエンジンの利用を前提として設定した。
3.検証実験方法
3.1 高流速化の目標
オープンビット、セミクローズドビット形式の吸込水槽について、表4に示す流速を目標とし
表4 吸込水槽形状と開発目標

<table>
<thead>
<tr>
<th>水槽形状</th>
<th>オープン</th>
<th>セミクローズ</th>
</tr>
</thead>
<tbody>
<tr>
<td>目標値</td>
<td>従来</td>
<td>接近流速</td>
</tr>
<tr>
<td></td>
<td>開発目標値</td>
<td>V₁=約0.6m/s</td>
</tr>
</tbody>
</table>

図4 一般的な吸込水槽模型試験設備の例

高密度化を図る。ポンプ容量は10m3/s以下の斜流および軸流ポンプに適用できるものとする。

3.2 実験条件とパラメータ

オープン形式について表5、セミクローズ形式については表6にそれぞれ示すような実験パラメータを振り評価試験を実施する。パラメータ数削減のため実験は限界が判断できるまで行い、余裕があると見なせる実験駆動は省略してもよいものとした。

3.3 模型試験設備

吸込水槽の模型試験は、日本機械学会基準「ポンプの吸込水槽の模型試験法」JISME 5004-1994に準拠して実施する。一般的な試験装置例は図4に示す。

試験設備は、測定中の水位が一定に保たれ、必要に応じて水位を上下できることが望まれる。図4に示す例は吸込管から吸い上げた水量を水槽の上流に回す回流式となっているが、これは水位を一定に保つのが容易であることから広く用いられており、今回こちらの方式を取り入れる。

3.4 洞発生検討試験

a) 空気吸込溜試験

最も洞を発生しやすい最低水位まで試験を行い、しかも同じ水位でも最大流量付近まで試験を行い、それぞれの水槽形状において、目標流速までの試験を行う。洞の観察は、一つの条件に対して2分間観察し、その洞の発生回数も調べる。

b) 水中溜試験

水中溜も基本的には最低水位、最大流量で試験を行う。但し、水面の波立ちが激しくなることが予想

表5 高密度オープン形式の実験パラメータ

<table>
<thead>
<tr>
<th>項目</th>
<th>パラメータ</th>
<th>目的</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>水路幅 W</td>
<td>2.7D、2.4D、2.2D 有効な水路幅決定</td>
</tr>
<tr>
<td>(2)</td>
<td>パッフルの角度</td>
<td>C</td>
</tr>
<tr>
<td>(3)</td>
<td>面面深さS</td>
<td>1.5D、1.2SD、1.0D</td>
</tr>
<tr>
<td>(4)</td>
<td>面間隔P</td>
<td>1.1D、0.85D</td>
</tr>
</tbody>
</table>

表6 高密度スミクローズ形式の実験パラメータ
3. ポンプ性能への影響試験

前項に示した、高流速化吸込水槽の検証試験で得られた最終形状を採用した場合のポンプ性能への影響を吸込水槽とポンプとの組合せ試験にて検証し、実機ポンプ計画時の設計上の留意事項を明らかにするために実施する。

前述の2種類の高流速化吸込水槽を対象として、従来のオープン水槽の場合と高流速化した吸込水槽で、同一ポンプの性能に何ら影響するか実験を行う。従って、使用する吸込水槽形状は従来吸込水槽（高流速オープン形式より流流防止板を除いた形状）と高流速吸込水槽の組み合わせとし、それぞれの吸込水槽におけるポンプ性能を計測することとする。

4. 研究結果

4. 1 高流速化吸込水槽に関する実験結果

4. 1. 1 オープン形

1) 従来基礎での実験結果

ここでは、従来基礎すなわち計画吐出量の場合において接近流速を0.3m/sとしている吸込水槽形状の高流速化の限界値を見極めることにした。なお、現行基準における浸水深さS=1.35DおよびSが1.25D、1.0D時データも取得することにした。吸込水槽形状を図5に示す。

実験結果判定一覧表を表8に、実験結果図6に示す。今回実験における高流速化吸込水槽のポンプ接近流速の目標値は、ポンプ計画吐出量（100%Q）時において0.4m/sである。したがってポンプ計画吐出量は0.8m/sを許容する。

水中渦は振動、騒音の原因になることが予想されるため許容しない。ただし水中に混入した空気が状状態に達なった程度のもので渦の中心に空洞部の見られないものは許容する。

表7 空気吸込渦・水中渦の判定
(セミクローズド吸込水槽)

a) 試験結果の判定

吸込水槽の模型試験により発生する渦の形態を確認する。渦の形態は、例えばセミクローズド形式の吸込水槽においては表7の様に分類される。高流速オープン形式についてはもはや同様の分類である。排水ポンプは最小浸水深での運転が短時間であり、多少の空気混入は許されたので、空気吸込渦については断続渦5回／2分以下を許容する。

水中渦は振動、騒音の原因になることが予想されるため許容しない。ただし水中に混入した空気が状状態に達なった程度のもので渦の中心に空洞部の見られないものは許容する。

表7 空気吸込渦・水中渦の判定
(セミクローズド吸込水槽)

<table>
<thead>
<tr>
<th>表の項目</th>
<th>表の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) くぼみ渦</td>
<td>水面に発生する渦で、くぼみを形成するが、空気は吸い込まれない渦</td>
</tr>
<tr>
<td>合格</td>
<td></td>
</tr>
<tr>
<td>(b) 扇形渦</td>
<td>空気吸込渦の一例で、空気の吸込が扇形的なもの</td>
</tr>
<tr>
<td>合格</td>
<td></td>
</tr>
<tr>
<td>(c) 水接触</td>
<td>空気吸込渦の一例で、空気の吸込が連続的なもの</td>
</tr>
<tr>
<td>不合格</td>
<td></td>
</tr>
<tr>
<td>(d) 水接触</td>
<td>水槽入口部における水滴による気泡の巻き込み</td>
</tr>
<tr>
<td>合格</td>
<td></td>
</tr>
<tr>
<td>(e) 水中渦</td>
<td>一端が吸込口内にあり、他端は水槽底面、側壁あるいは吸込口面にある渦で、渦の中心に空洞を形成しているもの (渦状は許容)</td>
</tr>
<tr>
<td>不合格</td>
<td></td>
</tr>
<tr>
<td>(f) ポンプ設管断面からの空気吸込渦</td>
<td></td>
</tr>
<tr>
<td>不合格</td>
<td></td>
</tr>
</tbody>
</table>

図5 「従来基礎」吸込水槽形状

- 235 -
出量(100%Q)時に吸水槽の各寸法から決定するポン
プ接近流速が目標値の0.4m/sを満足している必要が
あり、次にポンプの運転を考えればポンプ計画吐存
量×1.3 程度の運転範囲を見込んでおく必要があり、
その点をポンプ最大吐存量(130%Q)とすれば、ポン
プ最大吐存量(130%Q)時（以内）において判定基準
による空気吸込溝、水中渦の発生がないことの二つ
の条件を同時に満足したもの総合判定を○、すな
わち高流速吸水槽形状として合格である。なお、
判定は実機口徑φ700 に換算を行いその値にて判定
を行なった。

水中渦の実験結果については、各水深さにおいて
ポンプ最大吐存量までの範囲において水中渦の発
生は観察されなかった。また、現行基準の吸水槽形
状において、吞口部流速 1.6m/s を満足するため
に、浸水深さ S を 1.0D とする必要がある。この
条件において、本実験では空気吸込溝の発生が見ら
れた。したがって本吸水槽形状における高流速化は
不可能であり、渦流防止対策を設置し、渦の抑制を
図らなければならないことがわかった。

2) 高流速オープン形吸水槽における試験結果

3.2 項において設定したパラメータにおける実験
結果について下記の通り述べる。

①水路幅 W に関する実験結果

実験結果判定一覧表を表-9 に、水路幅 W=2.7D の
実験結果を図-7 に示す。なお、水路幅 W=2.7D、2.4D
の実験における水中渦の発生は無かった。

まず、各水路幅における φ700 ポンプ最大吐存量
時(130%Q)のポンプ接近流速であるが、浸水深さ
S=1.5D では、W=2.7D では 0.57m/s、W=2.4D では
0.57m/s、W=2.2D では 0.63m/s となる。同様に φ700
ポンプ計画吐存量時(100%Q)では、W=2.7D では
0.4m/s、W=2.4D では 0.44m/s、W=2.2D では 0.48m/s
となる。これを前提に空気吸込溝の実験結果につい
てみると、水路幅 W=2.7D であれば浸水深さ S=1.5D、
1.25D において目標値を満足する結果となった。水
路幅 W=2.4D の場合には、浸水深さ S=1.5D におい
て目標を満足するが余裕はなく、S=1.25D、1.0D
においては目標を下回る結果となった。また水中渦
は、水路幅 W=2.7D、2.4D ともに発生しない。水路
幅 W=2.2D の場合には、空気吸込溝、水中渦ともに
発生した。

したがって吸水槽の高流速化の観点から、水路幅
W=2.4D まで縮小可能であることがわかったが、今
回の目標値を満足するためにはポンプ最大流量につ
いての余裕を考慮して水路幅 W=2.7D とすることが
好ましい。

②ポトムクリアランス C に関する結果

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>浸水深さ</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>W=2.7D</td>
<td>S=1.5D</td>
<td>○</td>
</tr>
<tr>
<td>W=2.4D</td>
<td>S=1.5D</td>
<td>○</td>
</tr>
<tr>
<td>W=2.2D</td>
<td>S=1.5D</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>S=1.25D</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>S=1.0D</td>
<td>○</td>
</tr>
</tbody>
</table>

表-9 高流速オープン形における判定一覧(W 比較)
ボトムクリアランスをパラメータとし、そのボトムクリアランスをC=0.75D、0.5Dの2種、流速阻止対策をすべて設置した状態にて実験した。各実験ケース共に、水路幅W=2.7D、背面間隔はF=1.1Dとしている。実験結果判定一覧表を表-10に示す。

両パターンの実験結果について、水中渦の発生は観察されなかった。また、ボトムクリアランスC=0.75Dであれば浸水深さS=1.5D、1.25Dにおいて空気吸込渦の発生はなく、目標値を満足することができる事がわかった。またボトムクリアランスC=0.5Dとした場合は、浸水深さS=1.5D時に空気吸込渦の発生がなく、目標を満足することができるが、同じ浸水深さS=1.5Dについて比較すると、ボトムクリアランスC=0.75Dでは、図中ポンプ最大吐出量にたいして浸水発生限界が20％程度余裕があるが、ボトムクリアランスC=0.5Dでは、余裕が全く無く、したがって、余裕を考慮すればボトムクリアランスはC=0.75Dとすることが好ましい。

表-10 高流速-T〜D型における判定一覧(C比較)

③実験結果まとめ
さらに同様の手順で、渦流防止対策、マウンドの影響、パブルのずれ量に関して実験を行った。上記の結果を併せてまとめると表-12の様になる。

4.1.2 セミクローズ形
セミクローズ吸水槽は、φ1350mm以上のポンプに使用するもので、実機換算流速は条件が最も厳しくなるφ1350mmのポンプの場合に換算して評価する。一般に河川排水用のポンプは、実揚程がほぼゼロの場合に、計画流量の130〜140％で運転される。実揚程がゼロの運転、ポンプ始動時を見込まれることが多く、最低吸水時での実揚程ゼロの運転は、通常存在しない。したがって、最大流量を計画流量の130％と見なし、それに応じた流速を最大計画流速とした。本実験では、最大計画流速でも有害な空気吸込渦や渦内渦が発生せず、ポンプの運転に支障が生じないと判断した場合を合格とした。以下に各パラメータに関する実験結果を絶べる。
図8 セミクリック吸込水槽における空気吸込塩
発生状況(W=2.7D)
実際への適用に当たっては吸水槽上に設置される原
動機や吐出弁の設置スペースやメンテナンススペー
スを考慮する必要があり、種々検討した結果、水路
幅W=2.7D とするのが好ましいといえる。
②ボトムクリアランスCに関する結果
ボトムクリアランス (C) をパラメータとし、C=0.75D、0.5D の2ケースで実験を行った。各実験
は水路幅W=2.7D、吐口角度α=45°、マウンド無
しの条件で実施した。実験結果の判定一覧表を表14
に示す。
表14から判る通り、空気吸込塩に関する許容吸水
深さは、ボトムクリアランス C=0.75D では 0.7D、
C=0.5D の条件では 1.0D であるといえる。水中塩に
まして、いずれのケースでも合格であった。この
結果から、ボトムクリアランス C はいずれのケース
においても S=1.0 においてポンプの運転が可能であ
ることがわかる。しかし、ボトムクリアランスは土
木構造物の施工時の制約を受け、0.5D で φ2000
以上のポンプにしか適用できないため、φ1350 以上
のポンプへ適用できるように C=0.75 とする。

<table>
<thead>
<tr>
<th>トムクリアランス C</th>
<th>吸水深さ S</th>
<th>判定</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75D</td>
<td>0.7D</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>0.6D</td>
<td>×</td>
</tr>
<tr>
<td>0.5D</td>
<td>1.0D</td>
<td>○</td>
</tr>
<tr>
<td></td>
<td>0.9D</td>
<td>○</td>
</tr>
</tbody>
</table>

表13 セミクリック型における判定一覧(C比較)

③ポンプ設置孔とベルマウス外縁の間の隙間 ε に関
する結果
当該実験は、ポンプに相当する管径を φ100 とし
た模型水槽設備の実験では、ポンプ抜き出し穴部の水
位低下と波立ちによる影響を受けやすいため、 φ300
ポンプを有する模型試験設備にて実施した。片側隙
間 ε=0.05D、0.2D に付いて、マウンド有り、無し
各々の状態を実験確認した。実験結果判定一覧表を

表14 ポンプ設置孔隙間 ε に関する判定一覧(対策前)

間 ε=0.05D、疑似ブレンド中央部に台形傾斜バッフル
設置、ケース2として上流側隙間 ε=0.05D、後壁側
隙間 ε=0.2D、ポンプベルマウス外軸部に立リブ3
枚（左右、前方）設置するものとした。
この結果、水中塩の対策として、疑似ブレンド中
央部への台形バッフルの設置は流れの干渉を避け有
効であることがわかった。また、空気吸込塩の対策と
しては、図9のケース2に示すような特殊な立てリ
ブも有効であるが、構造が複雑で実用的ではない
ため、ポンプ投入穴とベルマウスの隙間 ε を狭くす
ること、またはポンプ抜き出し穴上部を密閉し、吸
気しないようにする方法が有効であると考えられる。

図9 潟対策形状
表15 ポンプ設置孔周問の実験結果一覧（対策後）

④実験結果まとめ
さらに同様の手順で、マウンドの影響に関して実験を行った。上記の結果と併せてまとめると表16の様になる。

表16 各パラメータ結果まとめ（セミクローズ形）

4.2 高流速化吸込水槽がポンプ性能に与える影響
a) 高流速オーブン形と従来形の比較
モデルでの従来吸込槽及び高流速吸込槽におけるポンプ性能のうち、流量揚程曲線の比較を図10に示す。同図の横軸は従来吸込槽での最高効率点における吐出し量Qoptとの比Q/Qopt、縦軸は最高効率点における全揚程Hoptとの比H/Hoptを示している。
この結果、流速比と流量が50%以上の流量域では高流速吸込槽のポンプ性能は従来吸込槽における性能とほとんど変わらないことがわかる。しかし、ポンプ吸込口下に設置した底面浮子の有無で締切り点付近の特性が変化していることがわかり、これは底面浮子の有無で締切り点付近の特性が変わることもあると考えられる。
b) 高流速セミクローズ形と従来形の比較
両吸込水槽形状の間のポンプ性能を図11に示す。
4.3 シミュレーション結果と模型実験結果の比較

上述の実験において、有限要素法(FEM)によるシミュレーションで得られた渦発生予測を比較する。判定方法と実験結果との比較は次の通りである。

a)シミュレーション判定方法

シミュレーションにより発生が予測される空気吸込渦、水中渦について、判定方法を示す。空気吸込渦の判定例を図-12 に示す。図中に示すが、空気吸込渦が発生すると予測される部分で、空気吸込渦の形態を模擬した表示がされる。この表示結果の中で吸水槽自由表面とポンプベルマウスを結ぶ渦であり連続渦と判定し、吸水槽自由表面からポンプベルマウスを結ぶように表示されず、途中で途切れた場合を断続渦、くぼみ渦と判断する。また水中にて同様の表示がされるが、それらは空気吸込渦とは判断しない。なおこのシミュレーション結果の場合は、ポンプ後流において空気吸込渦の発生が予測される結果となった。

水中渦の判定例を図-13 に示す。空気吸込渦の場合と同様に水中渦が発生すると予測される部分に、水中渦の形態を模擬した表示がされる。このシミュレーション結果の場合は、ベルマウス直下より水中渦の発生が予測できる。また渦の予測結果によっては、吸水槽内の流速分布も考慮して、最終的に判断する。

b)実験結果との比較

表-17 にシミュレーション結果と実験結果をまとめたものを示す。

シミュレーションによる渦予測を、実験結果に一致する傾向が見られた。現状、空気吸込渦の発生であるが、シミュレーションでは断続渦の発生する可能性があると判断しているのに対し、実験結果では、くぼみ渦の発生のみが観察され一方、水中渦については、模型実験において渦が発生していない状況においてもシミュレーションでは渦発生の可能性があるという結果となっている。また、発生位置の特定は解析においても比較的精度よく予測できることがわかる。

シミュレーションと実験結果の比較の現状は、定量的な表現はできず、あまりに確実に予測することは難しくと判断される。ただしシミュレーションによる相対比較は可能であると考える。

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>シミュレーション結果</th>
<th>実験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF-なし</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>銅板吸込有</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>BDF-なし</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>赤銅箔吸込有</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>CDF-なし</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>赤銅箔吸込有</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>DDF-なし</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
<tr>
<td>赤銅箔吸込有</td>
<td>渾発生</td>
<td>渾発生</td>
</tr>
</tbody>
</table>

表-17 結果比較まとめ

4.4 非定常流れ解析

前記のシミュレーションにおいて定量的な比較ができない原因は、主として非定常である実現象を、シミュレーションは定常解析をおこなっていることにある。そこで定量的な渦予測を行うために非定常流れ解析を行おうとしたが、その有効性を検討した。これでは解析手法として渦法を用いた。渦法(Vortex method)は流れ場の連続的な渦度の分布を多数の微小渦要素によって離散的に表し、渦度輸送方程式を数値的に解いて各渦要素の渦度変化を時々刻々捉えながら流れに乗った渦要素の移動を従来することにより非定常解析するものである。基礎方程式は Nabier-Stokes 方程式の回転から得られる渦度輸送方程式および発散から得られる圧力ポアソン方程式からなる。

渦発生予測手法として、渦要素中心圧力を簡易的に算出する手法を利用して空気吸込渦の非定常発
図-17 高速吸込水路の既設機場への適用フロー

図-16 水平断面内の浸透要素分布(オープン水槽 水面近傍)

図-14 壓力低下量の卓越値の時変化(オープン水槽)

図-15 壓力低下を伴う浸透要素位置(オープン水槽)

図-16 水平断面内の浸透要素分布(オープン水槽 水面近傍)

込込の発生を定量的に予測することが可能であると考えられる。解析水槽において水面から200mmの領域に存在する浸透要素を対象に計算を行った。

高密度オープン型における5m/sポンプ(口径φ1500mm)について、計算結果を示す。ポンプの発生が見込まれるQ=5m/s の2種類の流量について計算を行った結果を図-14および図-15に示す。また水面近傍のフローを図-16に示した。Q=5m/s では圧力低下を伴う浸透要素は突入面を流下流れが衝突する箇所の側壁に集中している。Q=15m/s では両側壁近傍に限らず流全体に及んでおり、図-16 のフローを示す。高密度流れにおける再帰流についても同様の状況が生じ、圧力低下量および水路の時変化から、浸透の発生条件を求めることが可能である。

4.5 技術基準への反映

以上の結果得られた高密度吸込水槽の寸法形状をとりまとめ、揚排水ポンプ導入技術基準(案)の改訂版に反映された。本基準の改訂版により、ポンプ吸込水槽における合計流速V1 は従来0.3m/s からオープン型は0.5m/s、セミクローズ形式は0.6m/sまで高速流速化することができた。

また、既設の施設において、高速流速技術を適用させ、排水能力を向上させる際に必要となる吸込水槽の形状寸法、開口部寸法、床荷重などの検討項目を明らかにするとともに、これらの項目に対する能力向上の可否についての判定基準および検討フローをまとめた。また、吸込水槽の設計計画に際し、事前に浸透発生有無の検証、浸透対策などを実施できるポンプ吸込水槽のモデル実験方法を「ポンプ吸込水槽実験計画マニュアル(案)」としてとりまとめた。本マニュアルにおける検討フローの一例を図-17に示す。

5. まとめ

本研究では、揚排水機場の小型化によるコスト削減を目標として、従来基準より高速流速化したポンプ
吸込水槽を新たに提案し、有害な渦の発生を抑制するため、コンピュータシミュレーションや模様実験等によりポンプ吸込水槽における水理特性を明らかにした。

その結果、以下の成果を収めた。
1) ポンプ吸込水槽 3000mm 以下の中小型の揚排水機場において、オープンピット、セミクローズドピットの両形式からなる高速流速吸込水槽の形状及び寸法の標準化案をとりまとめ、揚排水ポンプ設備技術基準を改訂版に反映された。

2) 既設の施設において、高速流速技術の適用可否についての判定基準および検討フローをまとめ、吸水槽の設計計画に際し、事前に渦発生有無の検証、渦対策などを実施できるポンプ吸込水槽の模様実験方法を「ポンプ吸込水槽実験計画マニュアル（案）」としてとりまとめた。

3) コンピュータシミュレーションによりポンプ吸込水槽における有害な渦発生有無を調べた。時間一定の乱流モデルによる流れ解析では定性的な結果しか得られなかったが、非定常解析手法として渦の形状を用いて、従来の解析手法では求められなかった速度場・圧力場の時間変化から、ポンプ吸込水槽に発生する渦の挙動や渦の発生頻度を計算する見通しがついた。以上から渦法は吸込水槽内流れ解析に有効な手法の一つであり得ることがわかった。

今後は、ポンプ内部の流れを内流れを含む揚排水機場内の他の設備において流速設計計画に活用する流れ解析手法について、さらに検討を加える必要がある。

謝辞
本研究は（社）河川ポンプ施設技術協会との共同研究により行われた。ここに感謝の意を表す。

参考文献
1) （社）河川ポンプ施設技術協会：揚排水ポンプ設備技術指針（案）同解説・揚排水ポンプ設備設計指針（案）同解説、1996年3月
2) 水上記明、荒井猛：「小・中規模の揚排水機場における高速流速吸込水槽について」、No.25、p16-21、2001.3
3) 長原ほか：「ポンプ吸込水路の空気吸込発生予防シミュレーション」、機械学会関東支部茨城講演会論文集、p97、1996
4) 小島、亀本：「揚法による水平輸送車周りの非定常流れ解析」、ターボ機械、Vol.29 No.5、p55-63、2001.5

図18 揚排水機場における高速流速吸込水槽の標準寸法