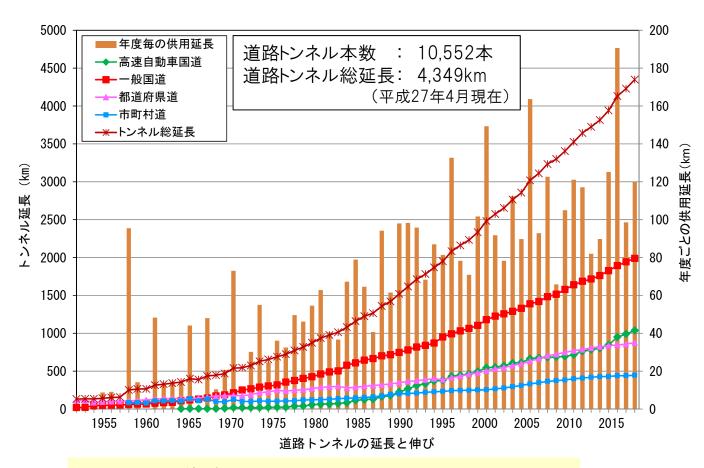


トンネルの補修技術(NAV工法)

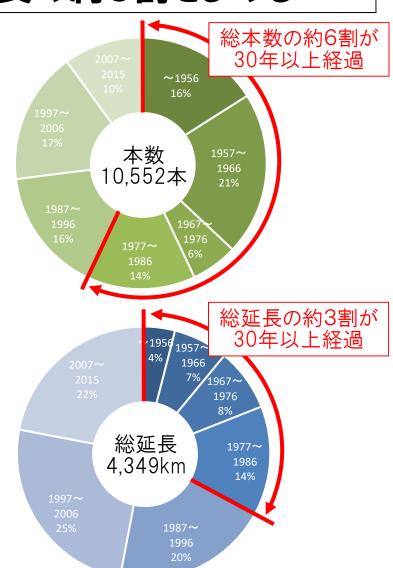
一可視性の高い覆エコンクリート片はく落防止対策工法ー



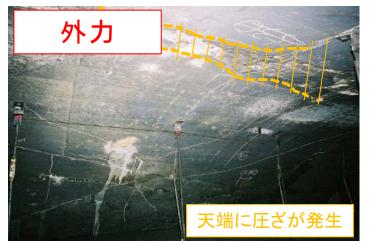
(国研)土木研究所 つくば中央研究所 道路技術研究グループ(トンネル) 研究員 森本 智

道路トンネルの現況

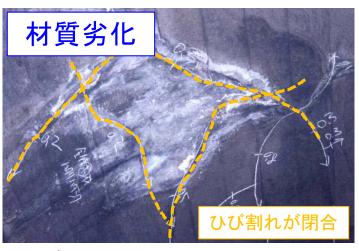
- 全国の道路トンネル延長は年々増加 総本数10.552本、総延長4,349km(平成27年4月現在)
- 30年以上経過は,総本数の約6割,総延長の約3割をしめる

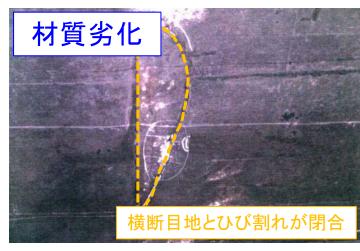


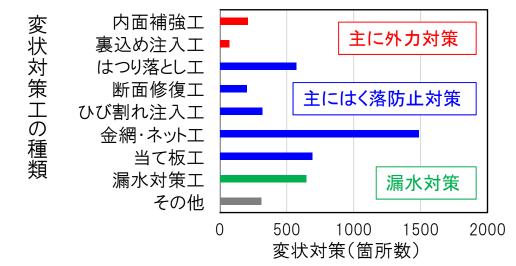
香川県 道路トンネルの現況(平成27年4月現在)


■本数:46本 (45/47都道府県),

•延長16.6km (46/47都道府県)


徳島県,171本,58.3km 愛媛県,319本,163.4km 高知県,385本,147.9km

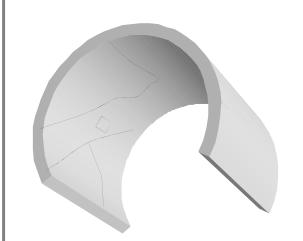

- 変状は、「外力」、「材質劣化」、「漏水」に区分
- 材質劣化による変状が多い。「はく落防止対策工」が多く適用


→構造の安定性が低下 【補強対策工が必要】

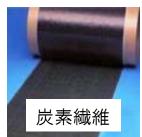
→ブロック化し落下のおそれ 【はく落防止対策工が必要】

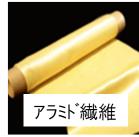
→ブロック化し落下のおそれ 【はく落防止対策工が必要】

- 変状対策工の適用実績(H26,27点検結果)
 - ・はく落防止対策工の適用が多い
 - ・金網・ネット工について, 当て板工が多い


【データ数】

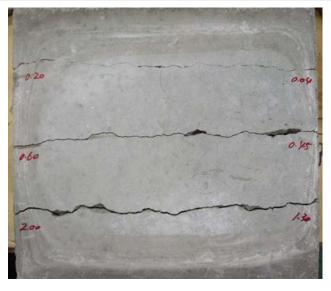
矢板工法 266本 NATM 157本 変状対策箇所数 4.521箇所



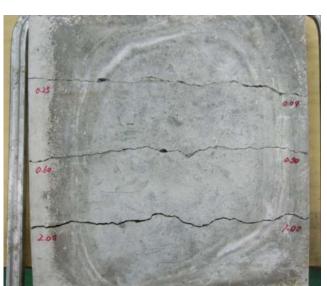

- 従来のはく落防止対策工※は、対策後、覆工コンクリート表面の観察ができない(※例)炭素繊維シート接着、アラミド繊維シート接着、鋼板接着等)
- 対策後においても、覆エコンクリート表面の変状が観察可能なはく落防止対策工の開発が必要 → NAV工法の開発

材質劣化による変状が 発生したトンネル

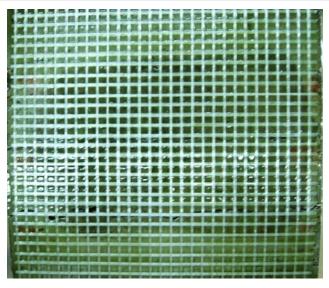
うき・はく離等, コンクリート 片の落下のおそれ 【はく落防止対策エが必要】 従来技術

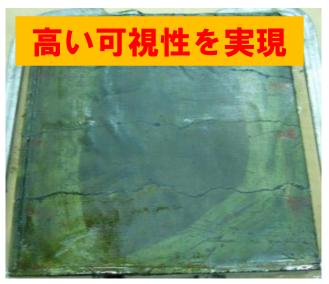

- ・覆工表面の観察が不可能
- 変状の進展の確認ができない

NAV工法


- •覆工表面の観察が可能
- ・変状の進展の確認ができる

- NAV工法(Nylon Acrylics Visible工法)
- サイロンクロス(不透明な繊維シート)に,接着材料を繊維のフィラメント間に十分含浸させる ⇒ 可視光透過FRPの形成




従来技術

NAV工法

● 可視性

ナイロンクロスは接着剤を含浸硬化すると透明度が高く、可視性に優れる

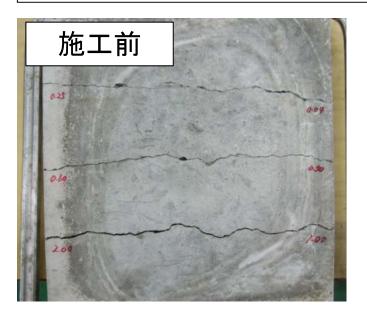
● はく落防止性能

押抜き載荷試験等によりコンクリートへの接着性、押抜き耐荷力を確認

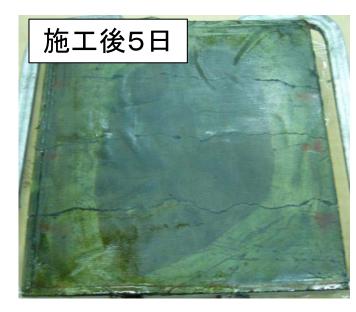
● 施工性

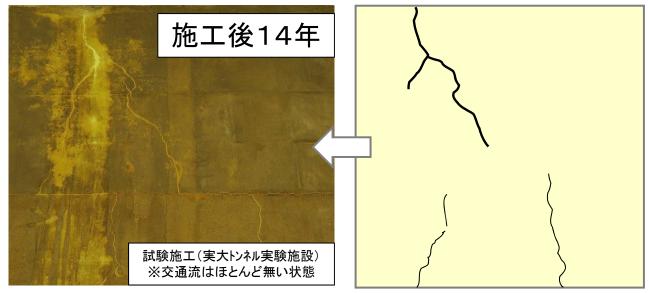
材料が柔らかいので、施工面の凹凸に対する<u>追従性が高い</u> 接着剤として用いるアクリル樹脂は、低温硬化性で寒冷地での施工が可能

● 工期

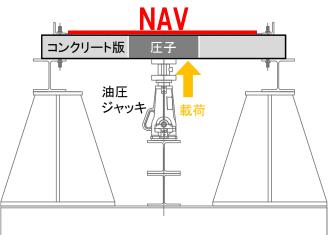

接着剤として用いるアクリル樹脂は、速硬化性を有するため工期短縮が可能 凸凹に追随しやすいため、不陸修正と接着の工程を短縮可能

● 経済性

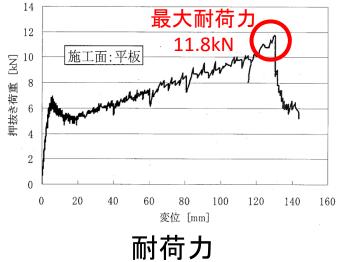

ナイロンクロスは炭素繊維・アラミド繊維の価格の約1/3~1/5程度経済性に優れる

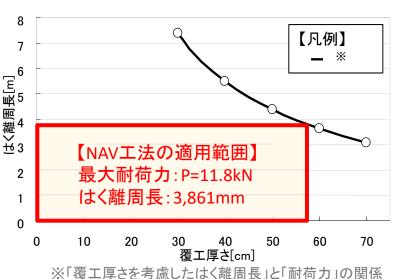


- 施工直後から短期の段階において, 可視性を確認
- 長期経過(約14年)の段階においても, 可視性の耐久性を確認



NAV工法のはく落防止性能(耐荷力と適用範囲)

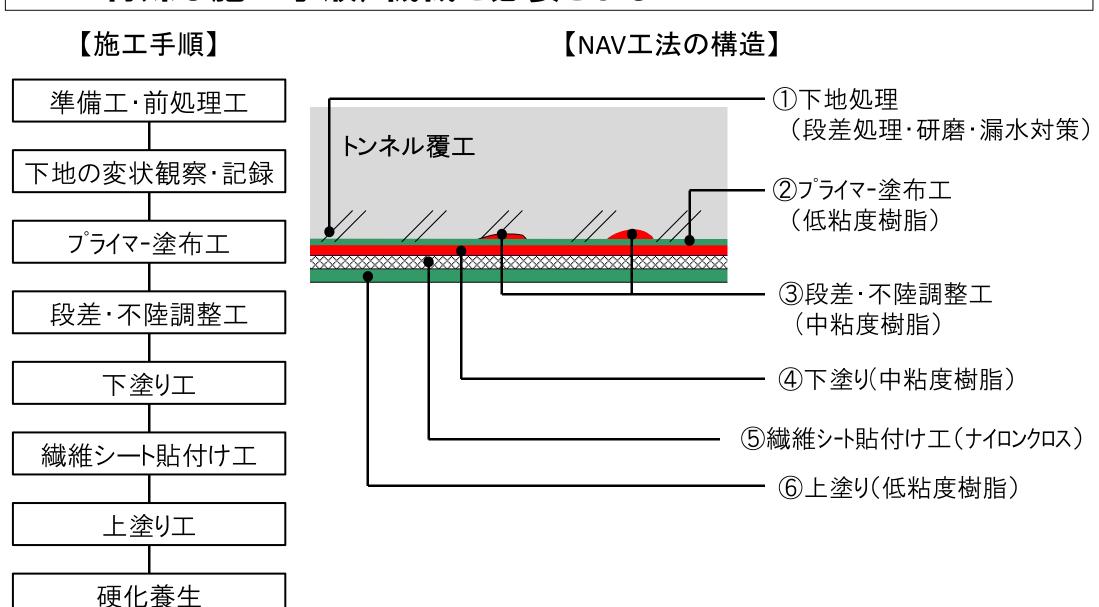

- 押抜き載荷実験により、はく落防止性能(耐荷力)を確認
- 載荷荷重の増加に伴い、シートがはく離進展する形態
- 最大耐荷力は約12kN, 適用範囲はは<離周長約3.8mとなる



NAV寸法: 1,200mm×1,200mm コンクリート版: 1,500mm×1,500mm×150mm 圧子: 直径500mm

実験状況

適用範囲

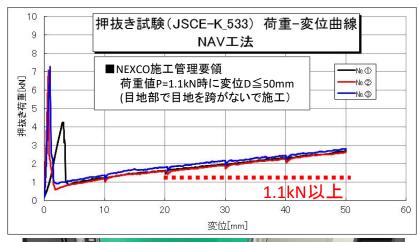

●耐荷力は,式(1)により算出可能

耐荷力:Pは,「単位はく離強さ:S(N/mm)」と「はく離周長:L(mm)」の積で評価が可能 NAV工法の場合,実験結果から,単位はく離強さ:Sは「3.17(N/mm)」が得られた よって,NAV工法の耐荷力:Pは式(1)により算出が可能 耐荷力P(N)=3.17×はく離周長L(mm)-440(切片) --(式1) (ただし,最大荷重11.8kNを上回ってはならない)

● 適用範囲は, はく離周長3,861mmとなる 適用範囲は, (式1)から, 最大荷重が11.8kNのとき. はく離周長3.861mmとなる。

- 一般的な繊維接着工法と同様の施工手順
 - →特殊な施工手順. 機械を必要としない

- 一般的な繊維接着工法と同様の施工手順
 - → 特殊な施工手順, 機械を必要としない



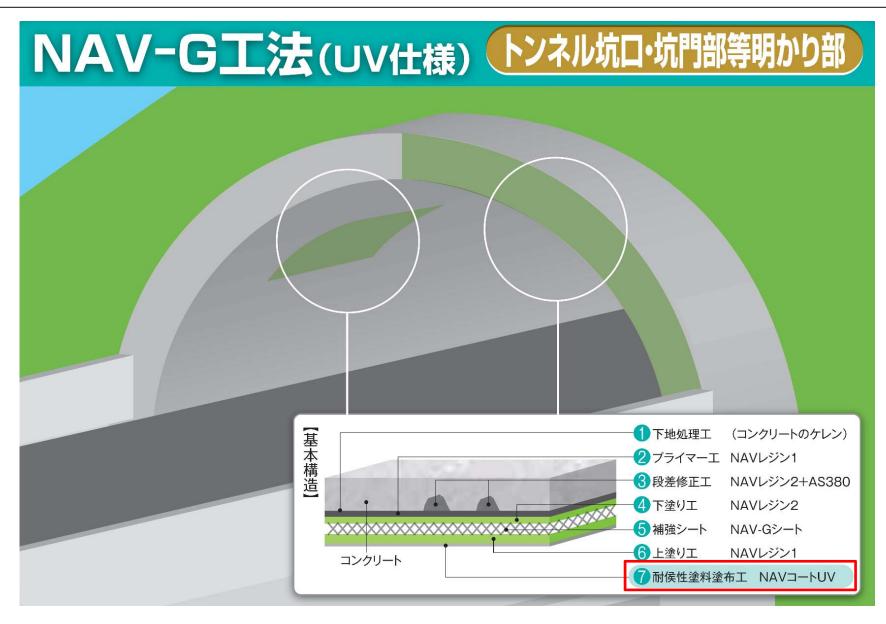
NAV工法の改良 -耐火性能の向上-

- ●「NEXCOトンネル施工管理要領」の規格適合を目的に改良
- 耐火性能の向上を図るため、NAV-G工法を開発
- 難燃性の高い繊維シートに変更(ナイロンクロス → ガラスクロス)
- 燃焼試験により自己消火性、発生ガスの安全性を確認
- NAV-G工法の押し抜き性能, 付着強さ性能も確認

	NAV-G工法試験値	NEXCOトンネル施工管理要領	判定
被着体	_	ケイ酸カルシウム板	
火炎温度	_	≥1,200°C	
延焼時間	_	10分	
消炎時間	0秒	≦30秒	適合
延焼範囲上端方向	480mm	≦ 600mm	適合
発生ガスの安全性	8.1分	マウスの行動時間≧6.8分	適合

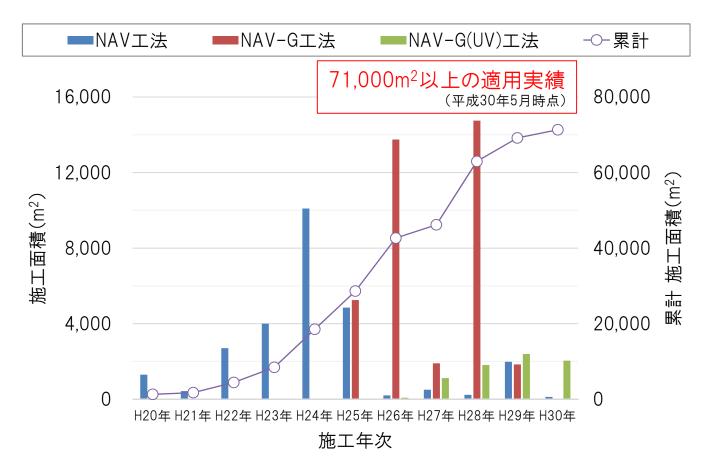
NAV工法の改良 -NEXCO施工管理要領に適合-

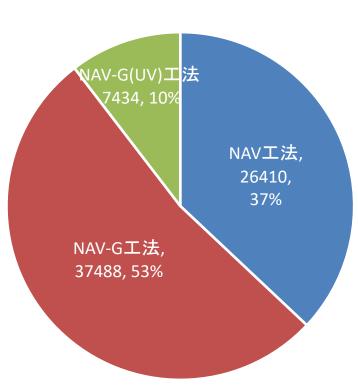
● NEXCO施工管理要領の基準試験(「押し抜き試験」,「湿潤接着強さ試験」,「温冷繰り返し接着強さ試験」,「延焼性試験」)に適合


NAV-G工法 NEXCO施工管理要領基準試験による規定値と試験結果一覧

	種別	IJ		試験方法	規定値	試験結果	判定
				試験法734	荷重値P=0.7kN時に <mark>変位D≦50mm</mark> (目地部以外に施工)	荷重値P=0.7kN時に変位 D=0.61mm	適合
	公士	小片	押し抜き 性能	(プレキャスト鉄筋コンクリート版: 400×600×60mmを用いて	荷重値P=0.8kN時に <mark>変位D≦50mm</mark> (目地部で目地を跨いで施工)	荷重値P=0.8kN時に変位 D=0.64mm	適合
		はく 落 が		直径100mm孔の押し抜き)	荷重値P=1.1kN時に <mark>変位D≦50mm</mark> (目地部で目地を跨がないで施工)	荷重値P=1.1kN時に変位 D=1.48mm	適合
はく	繊維接着系工法	片はく落対策工の材		試験法735 ^(温潤接着強さ)	1.5N/mm²以上	4.8N/mm ² (最大荷重7.6kN)	適合
く落対策		材料	付着強さ	試験法736 (温冷繰り返し接着強さ) (-20℃で3時間→50℃で3時間 →23℃湿度80%で18時間)を1サイク ルとして30サイクル	1.5N/mm²以上	4.2N/mm ² (最大荷重6.1kN)	適合
	 共通	材料	延焼性· 自 己消火性	試験法738	消炎時間:t≦30秒 延焼範囲上端方向:L≦600mm	消炎時間:t=0秒 延焼範囲上端方向: L=480mm, 450mm	適合
	通 	料	発生ガス の安全性	_	建築基準法に定める防火材料の性能 要求基準のうち「避難上有害な煙又は ガスを発生しないこと」を満たす	マウスの平均行動停止時間 8.4分, 7.8分 (6.8分以上)	適合

NAV工法の改良 -トンネル坑口部等への適用-


- 坑口部等への適用を想定し,NAV-G工法(UV仕様)を開発
- 表面に耐候性塗料を塗布することにより、紫外線劣化に対応



NAV工法の適用実績

- 平成20年に適用後, 平成30年5月時点で, 適用実績は, 71,000m²を越える
- 今後においても、うき・はく離部の落下による、利用者被害の防止の観点から、引き続き、多くの適用が見込まれる

【施工面積100m2を想定した場合の試算例】

● 工期

従来工法(炭素繊維) : 約**10**日 /100m²

NAV工法·NAV-G工法 : 約5日 / 100m²

NAV-G工法(UV仕様) : 約6日 / 100m²

● 経済性

従来工法(炭素繊維) : 約23,000円/m

NAV工法·NAV-G工法 : 約11,000円/㎡

NAV-G工法(UV仕様) : 約14,000円/㎡

- ・接着剤のNAVレジンは速硬化性
 - →直ちに施工可能
- ・少ない使用材料
 - →NAVレジン1 · 2, NAV-Gシートの3種類
- ·最短2日
 - →①下地処理~上塗り工,②耐候性塗料塗布工

項目	NAV-G工法 (UV仕様)	従来技術	単位
プライマーエ	1,520	1,480	円 $/\mathrm{m}^2$
不陸修正工	2,830	6,480	円/m²
シート接着工	7,260	14,760	円 $/m^2$
塗装工	2,010	_	円 $/m^2$
合計	13,620	22,720	円/m²

- ・足場・交通規制等の仮設費用は含まない。
- ・施工数量は連続した箇所で100㎡以上
- ・1日の実作業時間は6時間以上

NAV工法の普及

- NETISへ登録 (登録NO.「KT-100023-VR」) 「有用な新技術」として、「活用促進技術」に位置付け
- 国交省「新素材繊維接着工(コンクリート剥落対策技術)」へ応募→ NETISテーマ設定型「新素材繊維接着工」技術比較表に掲載

首都高:首都高速道路(株)試験方法 JR:東日本旅客鉄道(株)

Ι.	基本情報								
					16	17	18	19	20
					「NAV工法」・「NAV-G工法」 ・「NAV-G工法(UV仕様)」	タフガードスマートBeメッシュ工法	ショーボンドハイブリッドシート工法	二方向アラミドシート補修・補強工法	はく落防止対策工法 FF-VSE工法
					ガラスクロスとアクリル樹脂による透明 性を有するFRPを形成する剥落防止工法	重続機能シート接着はく落防止工法	特殊フミネートシートを用いたはく落工 法	橋梁および変状トンネル等の補修・補強 工法(フィブラメッシュ工法)	
		NETIS番	号		KT-100023-VR	KT-150051-VR	掲載期間終了(TH-010017-V)	掲載期間終了(CB-000024-VE)	掲載期間終了(KT-060137
クリ レク 技術概要 ・					デンカ(株) ((独)土木研究所、鹿島建設(株)) こっちのガラスクロスを含むは、ものアクリルはとはもコン	日本ペイント娘	ショーボンド建設機 東京支店	大成ロテック(興 (ファイベックス(順)	前田工総典
					クリート画が相似がする他の設定上書で、カラスのロハイ クリル相談が下が、出版を与いこと、成別のおけるやの 利用は「銀化」が、近日後が下がかた自然単位をいった 再発しまりも、近日後が最初をと使用することで、ト ン利しばればいるではい場に、近が発展で必然来で ある場合いる海ボケ州生	お供存金でコングリート機能が高からけ、かだし、ほく 会別とかよりと、あ月本・中日本・戸日本の日本内は (日日本の名がの) 様と地工で観点が、広く関心上の は対象の次でも、	スネートシート(ショーボンドHBシート) 居をエポイシ機関	物に接着して揺倒する土法、シートの貼付けにあたり、事的 にシートに接着限制を高度させたのちにシートを述り付ける	機能クロスを用いたはく必防上上法で対応して の項目: より、上続い相比が「標準額面」では 単4月、日本の高公司」から3の意味性能を調べ
		Et.	較表掲載仕様		・NAV-G工法(U V 仕様)	-	-	- AKM-5/5	_
	仕様等		その他仕様		・NAV工法 ・NAV-G工法	-	_	• AKM-10/10 • AK-40/40 (659/)") • AK-50/50 (879/)")	_
		新素材繊維等B	国定方法		接着削	接着剤	按着剎	按着例	按着劍
	外形状況					655		③	
		Ã⊟ _{8.1}	備考	単位					
		押抜試験 15款が法:JSCE K533	試験測定値	kN	2.46	2.39	3.25	3.24	4.84
	耐荷性 ²²	引抜試験 試験方法: JHS737	試験測定値	kN	-	-	-	-	-
		その他試験	測定值(試験方法)	kN	3.3(JSCE K533)	2.83以上(JHS424)	1.5(首祁高)	3.78(JHS734)	6.57以上(JHS424)
	施工厚max		建築基準等を考慮	mm	0.7	1.2	1	0.6	2程度
逈	仲び性能		試験時の最少変位別定値	mm	17	11.4	27.1	20	34.6
用			本体構造物の形状を考慮	-	可	可	可	可	可
条件	寒冷施工(気温5℃以下)の可否	条件:蚕生未施工	_	可	否	否	否	否
l			紫外線雾化左考慮	_	有	有	有	有	有
	nd捻性		トンネル内火災等を考慮	-	有	不明	有	有	有
	耐塩性 海岸付近、精雪地		海岸付近、精雪地等を考慮		有	有	有	不明	有
	透過性		本体構造物の目視点核を考慮	-	有	無	fit.	無	無
施工性	コンクリー	ト表面の接着条件	コンクリート表面含水率	%以下	8	8	8	8	8
	作業日数		試験施工結果	H/m2	2/2.1	-	3/1.7	3/1.6	3/1.7
	施工単価			円/m2	1,362,000/100	4,860,000/300	12,050/1	18,396/1	14,350/1
92 10	推定使用可	北年数		年	15	10~15	20	10	20
12	長期曝露試	険による1年後の状況	試験施工結果	_	0	0	0	0	0
	直轄工事!	おける施工実績		-	3	2	36	107	9

● 技術名称

NAV工法·NAV-G工法·NAV-G工法(UV仕樣)

● NETIS登録

KT-100023-VR (活用促進技術)

● 連絡先

NAV工法研究会

・研究会事務局(デンカ(株))

03-5290-5363

・(国研)土木研究所トンネルチーム

029-879-6791

※NAV工法研究会

(国研)土木研究所, 鹿島建設(株), オリエンタル白石(株), カジマ・リノベイト(株), デンカ(株)

- ※各技術の詳細等は、上記連絡先等へお問合せ下さい。
- ※NETIS登録技術は、NETIS新技術情報提供システムのHPで詳細情報が確認できます。