

なぜ国土強靭化か?				
大災害から国民を守るために				
- 国土	強靭化、そ	れは大災	から人間	命・財産を守ること ~
大規模	莫自然災害に	よる被害(推計)	南海トラフ巨大地震震度分布
	東日本大震災 (2011年)	南海トラフ 巨大地震	首都直下 地震	· ·
人的被害 (死者)	約1.6万人	最大 約32.3万人	最大 約2.3万人	Ing Longington - Concentration
責産等の 直接被害	約17%円	約170元円	約47元円	首都值于地震震度分布 18.449 TB 00111
生産・! による被問	ナービス低下 書を含めた場合	約214 和門	約95.6円	77 E

表1 巨大災害の被害推計					
	経済被害	資産被害	財政的被害		
地震・津波	(20年累計)		(20年累計)		
回海トラフ地震	1,240 兆円	170 兆円	131 兆円		
百都放下地震	731 步时	47 兆円	77 北中		
高潮	(14 か月累計)		(14 か月索計)		
東京調巨大高潮	46 兆円	64 兆円	5 #EP		
大阪湾巨大高潮	65 JEP1	56 兆円	7 3KP		
伊勢湾巨大高潮	9 兆円	10 地田	1 把尸		
洪水	(14 か月累計)		(14 か月累計)		
東京荒川巨大洪水	26 #8[7]	36 兆円	2.8 兆尸		
大阪淀川巨大洪水	7.進門	6 北円	0.7 兆円		
2 -bit for stearing in helle de	12.3810	13 4819	1.3 兆円		

計算	計算結果						
災害発生年	番号	雨量観測点	距離(km)	面積(km²)	谷密度(km-1)	R' (mm)	R'(mm)(ArcGIS使用)
2011	1	奈良県 北股	1.6	0.55	6.92	558.7	557.2
2011	2	奈良県 宇井	0.7	0.50	2.82	476.2	489.0
2011	3	国土交通省 九尾	0.6	0.53	5.96	549.5	531.8
2011	4	国土交通省 九尾	1.3	0.51	2.86	612.1	604.0
2011	5	国土交通省 九尾	1.0	0.50	2.75	598.4	585.9
2011	7	奈良県 迫	0.8	0.65	4.66	414.6	385.1
2011	10	気象庁 風屋	2.0	0.95	5.43	746.6	727.6
2011	11	国土交通省 粮谷	2.2	0.60	4.45	530.6	515.3
2011	12	和歌山県 熊野	1.6	0.97	4.30	612.0	607.7
2011	13	和歌山県 串崎	2.0	0.56	7.65	679.2	670.5
		(雨量観測点は現地より2.5k	以内)				35

成果のまとめ	
谷密度と	 谷密度を計算する際の流域の面積は1km²(0.5km²~
崩壊密度	1.5km ²)程度が適当 谷密度が高くなるに従って、崩壊密度が高くなる
谷密度と	 ・谷密度が高くなるに従って、小さい雨量指標R[*]で崩壊が
雨量指標R ^イ	発生 ・R[*]=1174×D^{-0.85}[mm](谷密度<6km⁻¹) ・R[*]=250[mm](6km⁻¹≦谷密度)
谷密度と 崩壊規模	 ・谷密度が低くなるに従って崩壊規模の最大値が大きくなる ・V=1×10²⁸×D⁻²⁶[m³](6km⁻¹≦谷密度) ・V=1×10⁷[m³](谷密度<6km⁻¹)
土石流	 谷密度と雨量指標R^{(を}用いることで広域・狭域の土石流
危険度評価	危険度評価が可能になる

