流域の地質構造と河床材料構成の関係について: 砂礫の元素組成, 磨耗・破砕特性からみた 流下方向変化と生態的影響

流域の土砂動態:流砂系

<u>流域地形特性量の算出</u>

H

H_{min}:流域最低点 *L_h*:流域最長距離 A_b:流域面積 P_b :流域周長 *ω*:流路次数 *N_ω*: ω次河川の本数 *L_ω*: ω次河川の延長 面積高度比曲線 Strahler(1952) ①比積分值H_v

a / A

1.0

③最大起伏
$$R_{h} = \frac{(H_{max} - H_{min})}{L_{h}}$$

④円形度 $\frac{A_b}{{P_b}^2}$ $R_c = -$

⑥流路頻度

 $F = \frac{\sum N}{A_b}$ $\left(\frac{4}{k}m^{2}\right)$

流域の地質構造による地形特性の違い

代表地質の異なるサブ流域を対象とした主成分分析 (括弧内は各主成分の寄与率)

各地質区分の特徴(相澤(2005)にしたがい作成)

地質区分	主な構成岩類	表層状態	斜面崩壊
領家帯	花崗岩,片麻岩	風化部では 真砂 , 未風化部 では 玉石 を産出	円弧すべり, ガリー侵食, 落石
三波川帯	結晶片岩	岩片と残積土(粘土)	土石流(アースフロー)
秩父帯	粘板岩,砂岩	表層は貧弱	山体のブロック崩壊

・層状構造で異方性が高い.剥離崩壊しやすく,扁平な材料を 産出. ・流下する過程で大きく破壊されやすい. 流域地質と河床材料構成

▶地質構造と関連付けて河道 特性を調査する

①上流域の地質が一様

2上流域の流域面積

 5 km^2 A_b 10 km^2

③流路勾配

1/150 tanθ 1/10

ダム・砂防堰堤下流, 護岸など人為の 影響のある場所は回避.

表層地質による河道特性の違いを検証できるように調査地を 選定

山地河川の河床材料構成

均質な地質条件下での比較(流域面積5~10 km2,水流次数1~2) 領家帯:5河川,三波川帯:2河川,秩父帯:5河川

140 120 (cm) а 100 а 粗粒分粒径 80 60 b 40 20 0 領家帯 三波川帯 秩父帯

粗粒分の平均粒径(上位5位まで)

河道の勾配には有意な差が無いにもかかわらず、
□領家帯:
→粗粒分大~細粒分小
□三波川帯:
→粗粒分小~細粒分大
□∺☆帯:
→粗粒分小~細粒分大

表層地質, 流域地形と河床材料構成

流域の地質構造による地形特性の違い
 *外帯は傾斜が大きいが、領家帯・三波
 川帯・秩父帯の河谷の発達は同程度
 *流路網の形状と地形の急峻度、平面形
 状による流域の類型化は地質構造と対応

上流域の地質構造による河道特性の違い *水面勾配(河道特性,右図)には大きな 差が無いにもかかわらず,河床材料構成 には大きな違いが見られる

スクリーニングを踏まえた目的・課題抽出

流域の地質構成と河床材料構成の関係について, その生態的影響を含めて明らかにすること

具体的には・・・

<u>地質構成の異なる流域</u>をもつ河川における<u>河床材料構成</u> <u>の変化</u>に着目して、材料の粒度分布、破砕・磨耗特性、元 素組成、底生動物の群集組成を把握する

櫛田川流域における調査項目の一覧(例)

	対象地				
項日	山地	河道		目的	
	(地質)	支川	本川		
粒度分布	0	0	0	粒度の空間分布特性, 流 下方向変化を把握	
破砕∙磨耗特性	0			流下(運搬)過程での材料 変態特性を記述	
元素組成	0	0	0	地質による特徴を把握し, 支川からの流出比推定の ための基礎資料を得る	

河床材料構成の流下方向変化

対象河川流域と調査設定 領家帯

火成岩(花崗岩)類 (特徴)一般的に基盤として優秀. マサ化という特殊な風化.

→単相地質流域:仁柿川

三波川帯

堆積岩類

変成岩(結晶片岩)類 (特徴)片理の存在.層状剥離. →単相地質流域:相津川

※各調査地点の瀬と淵で河床材料をサンプリング(N=4): 瀬で石(64~256mm)を4つ, 淵で礫分(河床表層2L: 20cm×20cm×5cm)を4セットずつ採取(田代ら, 2008).

(特徴)材質は様々.年代によって 固結度が大きく異なる.

→単相地質流域: 蓮川

本川における河床材料粒径の流下方向変化

河道特性が粒径の流下方向変化に及ぼす影響

河床材料構成の粒度分布(支川調査地点)

河床材料の元素組成分析

地質による元素組成の特徴を把握し、支川からの流出比推 定のための基礎資料を得るため、蛍光X線分析(XRF)を実 施する、分析した試料中の含有元素を質量割合(weight%) で検出可能.

分析試料・・・粒度分析の結果から得られた各試料中の最細 粒分(粒径0.075~0.85mm)を使用

(直径2.5cm, 高さ2.2cm)

元素構成比を用いた砂礫流出比推定

仮定: 完全混合であり、合流点における

流入土砂と流出土砂は等しい. 使用元素:Si, Al, Fe, K, Ca (93~97%)

(地質に共通な主要構成元素)

~ 櫛田川は3つの地質の複合体になっている ~

- ★ 粒度分布~領家帯,三波川帯で細粒分,秩父帯で粗粒分が多い
- ★ 砂礫の堆積量~領家帯では流下に伴う増加が著しい

★ 元素分析~領家帯でCaが多くK, Siが少ない
 ★ 元素構成比を用いた砂礫流出比推定
 ~三波川帯(相津川)で比生産土砂が大きい

※ 分析試料のサイズ(今回は粒径0.075~0.85mmを対象)※ 試料採取点(~滞留時間)による影響

→ 生産される土砂の粒度が細かく, 貯留されることなく流出する
 ⇒ 流下による破砕磨耗によって細粒分が派生!?

流域の表層地質の生態的影響

対象河川流域と調査設定 領家帯

火成岩(花崗岩)類 (特徴)一般的に基盤として優秀. マサ化という特殊な風化.

→単相地質流域:仁柿川

三波川帯

堆積岩類

変成岩(結晶片岩)類 (特徴)片理の存在.層状剥離. →単相地質流域:相津川

※各調査地点の瀬と淵で河床材料をサンプリング(N=4): 瀬で石(64~256mm)を4つ, 淵で礫分(河床表層2L: 20cm×20cm×5cm)を4セットずつ採取(田代ら, 2008).

(特徴)材質は様々.年代によって 固結度が大きく異なる.

→単相地質流域: 蓮川

※ ただし、ここでの粒度分布は(底生動物分析と対応する)各1地点の情報比較

淵の砂礫中

オニヒメタニガワカゲロウ

http://www.eonet.ne.jp/~suiseikontyu/xonihimetanigawa.htm

フタスジモンカゲロウ

http://www.eonet.ne.jp/~suiseikontyu/xonihimetanigawa.htm

http://www.city.kaizuka.lg.jp/lkkrwebBrowse/material/image/g noup///gumagatobikerazy100504.jpg

http://www.cgr.mlit.go.jp/yasaka/ikimono/sakana/ futabako/futabako.htm

		第1	第2	第3	第4	共通性
		優占種(個体 数 ース)	地質,崩壊 性,粗い材料	河川水の 物質	細かな 材の 量, 生物量	
		-0.08	-0.07	0.18	0.87	0.91
	三波川帯	0.13	-0.79	-0.20	-0.41	0.86
	秩父帯	-0.07	0.80	0.03	-0.37	0.87
流域特性	流域面積	-0.03	-0.08	-0.10	-0.18	0.82
	流域平均傾斜	0.12	0.83	0.00	-0.29	0.81
	面積高度曲線の比積分値	-0.23	-0.18	0.06	0.34	0.35
	河川水の率	-0.11	0.38	-0.64	0.19	0.63
河川特性	<u>細粒分の中央粒径d50</u>	0.10	0.58	-0.34	-0.20	0.66
1.3.1.1.1.1.T.	個体数合計	0.90	0.28	0.02	-0.22	0.97
	重量合計	0.01	-0.03	0.02	0.62	0.41
群集特性	植数	0.92	0.03	-0.03	0.08	0.89
	<u>Simpsonの多様度数</u>	-0.04	-0.29	-0.31	-0.13	0.71
	オニヒメタニカワカゲロウ	0.72	-0.02	-0.04	-0.29	0.86
And Personnelling	フタスジモンカゲロウ	-0.22	0.15	0.82	0.18	0.78
傷占循		0.02	-0.24	-0.13	-0.04	0.54
13月月度 50%)		-0.04	-0.14	-0.12	0.45	0.28
		0.02	0.07	0.91	-0.01	0.84
	モンスリカ亜科	0.43	-0.06	-0.05	-0.32	0.55
	ビメトロムン田科	0.79	-0.20	-0.06	0.08	0.67
		3.13	2.79	2.25	2.24	10.42
	平(%)	16.48	14.69	11.85	11.82	54.84

※重み無し最小

バリマックス(直

)による

分析②: 大礫に付着する底生動物

		第1	第2	第3	共通性
		地质 品体性	流域の未成	ःच । ।	
		地 頁,朋 场 任	,	;н])	
	領家帯	0.43	-0.10	-0.13	0.97
冻试性性	三波川帯	0.56	0.03	0.25	0.79
加功的工	秩父帯	-0.84	0.05	-0.14	0.80
	流域面積	-0.04	0.10	0.86	0.86
	流域平均傾斜	-0.79	-0.34	0.10	0.83
	<u>面積高度曲線の比積分値</u>	0.14	0.48	-0.19	0.42
Annual and a later that	河川水の率	-0.02	-0.12	0.06	0.43
河川特性	大礫の扁平度	-0.15	0.08	0.14	0.44
	大礫の長短度	-0.02	0.08	0.12	0.59
	個体数合計	0.30	0.47	0.52	0.97
고상 /는 내는 내내	重重合計	0.00	0.89	0.39	0.99
群果特性	植致	0.25	0.33	0.31	0.96
	<u>Simpsonの多様度 致</u>	0.41	0.33	0.03	0.70
		0.27	0.02	0.51	0.//
	ノダハコカケロ・ノ	-0.17	0.06	0.84	0.91
and the second	シロハフコカクロウ	0.15	-0.02	-0.07	0.70
and the second		0.01		-0.01	0.38
		0.55	0.00	-0.02	0.00
傷占績		-0.25	0.07	-0.02	0.85
(出現規度 50%)	マルートビケラ	-0.12	-0.04	-0.05	0.75
		0.12	-0.09	0.10	0.78
		0.11	0.08	0.04	0.03
		0.15	-0.10	0.00	0.02
	ガースリカ属	0.60	0.10	-0.13	0.01
		3 33	2.82	2.86	9.07
	<u> </u>	12 21	11 52	11.46	36.29
	<u></u> \/0/	10.01	11.52	11.40	30.23

結論と課題

 底生動物組成・・・細粒分の有無がいくつ かの種の生息 要 であって、複相的 な地質区分からなる流域の河川で多様 度が高い可能性が された.
 生息場所の 析・・・流域、河川、底生動 物に関する 標を用いた 分析により、

瀬, 淵それ れにおける流域特性に応じた た標種が抽出された.

, >分析を め,統計手 などにより,「仮 」の有意性を検証 >微生息場所特性による影響をどのように して 論するか

河床材料の磨耗・破砕特性

破砕・磨耗試 による石の質量減少

磨耗・破砕試 :材料の磨耗・破砕プロセス

<u>splitting, chipping</u>: **領家帯, 秩父帯**では生じにくく, 三波川帯は高頻度に発生 crushing, cracking:本試 では観察されず grinding : 質量減少率は少なく, 粒度構成への影響小

河 床 粒 度 構 成 の 推 定: 構 成 比 変 化 の モ デ ル 化
A. 構成比変化の 似
石集 の変化は かなので本モデルでは考えない
⇒ 礫集 ,粗砂集 ,細砂集 の構成比変化を推定
Type1 : 数関数的に減少する集 (礫集)
$$\alpha_i = \alpha_{i0} \exp(p_i X)$$

Type2 : 線形的に増加する集 (細砂集) $\alpha_{fs} = \alpha_{fs0} + p_{fs} X$
ここで, X:流下方向距離(mまたはkm), p_i : 質量減少率(m⁻¹またはkm⁻¹)
Type3 : 一様の傾向のない粗砂集
⇒ 中 生成物的位置 けであり,他集 の構成比から定める.
B.試 時間 流下距離
的に 下を用いて距離に 算する.
算距離 コンクリートミ サーの円周 × 回 度

4. 残存していた砂礫分と完全混合され, 各zoneの粒度構成が変化. この状態が1 step

磨耗・破砕による河床材料の流下方向の細粒化は地質 にその特徴が異なり, 領家 帯・三波川帯は相対的に細かく, 秩父帯は細砂が生じにくいため粗かった. これは実河 川の粒度(田代ら, 2007 2008)と同様の傾向を した.

結論と課題

コンクリートミ サーを用いた磨耗・破砕 内試 から・・・ 1) 石の磨耗・破砕に関する結果から、領家帯、秩父帯は chipping, splittingの発生が低頻度であるのに対し、三波川帯 では高頻度であった。

2) 集 特性の 析結果から、粗砂集 では**領家帯が比較的細かく**、細砂集 では地質による明 な違いがなかった.
 3) 秩父帯では磨耗・破砕による細砂集 の派生が少なかった.

流下に伴う河床粒度構成推定モデルを構し、 な試算を ったとこ ・・・ 4) 磨耗・破砕作用による河床材料の縦断方向変化が地質によっ て異なることを明らかにした.

5) **地質が異なる河川の流下に伴う細粒化の傾向を表現できた**. ⇒実河川の河床粒度構成と同じ傾向(田代ら, 2007 2008)

今 の課題 礫集 の特性, splitting, chippingの記述, <mark>流砂モデルへの</mark>

流砂モデルの 発に向けて

<u> 掃流現象は、pick-up rate と step length を用いた stochastic model</u> 中川・本・原(1977)によりモデル化

析条件

一定勾配,一定流量,等流を仮定(Manning)

区間のみに落下すると 化
 具体的には, step length = dx =1m(D=1cmの礫の平均値に相)とする.
 最上流区間は 状態のまま不変とする

▶ 析条件 区間数:k_n=10000 (=10km) 計算step:dt=1sec 勾配:I=0.001, 0.005, 0.01 流量:q=1.0, 2.0(m²/sec)

▶ 対象地質:秩父帯(堆積岩類)→粒径集の代表粒径, 確率

析結果(q=1.0, l=0.01の例)~試 中

<u>構成比の縦断変</u>化(上:質量比,下:面積比)

<u>浮遊砂発生量(m³/sec)</u>

<u>現状</u> 対数

分布に う粒径集 として 集

粒谷	平均值(mm)	
細砂	finer sand	-1
粗砂	coarser sand	<u>ផ្</u> រៃកាល C
礫	gravel	2-64mm
	stone	64mm-

<u>改</u>					
モデルの対象: セグメント					
⇒礫を細かく区分					
	粒径区分	粒径(mm)			
	粘土・シルト	-0.075			
	砂	0.075-2			
	細礫	2-4.75			
	中礫	4.75-19			
	粗礫	19-75			

75-

石

q=1.00(m2/s), I=0.001, 秩父帯 coaser_sand finer_sand stone gravel 0.00 2.32E-02 1.00 pick-up_rate 1.00 しない 浮遊 しない する する ■ 粘土・シルト ∎砂 ■細礫 ■粗礫 ■中礫 ■石 60% 50% 40% 30% 20% 10% 0% 60min 120min 180min 0min 10min 30min

内実 結果例(領家帯)

ご清聴ありがとうござりました

地質図は,産
合研究所地質調査
合センターに
供いただき, 岩種
定は名古屋
大学大学院環境学研究科のSimon R. Wallis
生に
いただいた.

平 (三重県), 之谷仁大 (東)), 土屋 人 (名古屋市)を め とする名古屋大学水理学研究 には現地調査・分析等を 的に いただいた.