ISSN 0386-5878 土木研究所資料 第4309号

土木研究所資料

平成26年度下水道関係調查研究年次報告書集

FY2014 Annual Report of Wastewater Management and Water Quality Control

平成27年10月

国立研究開発法人 土木研究所

National Research and Development Agency Public Works Research Institute

Copyright © (2015) by P.W.R.I. All rights reserved. No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the Chief Executive of P.W.R.I.

この報告書は、国立研究開発法人土木研究所理事長の承認 を得て刊行したものである。したがって、本報告書の全部又 は一部の転載、複製は、国立研究開発法人土木研究所理事長 の文書による承認を得ずしてこれを行ってはならない。

土 木 研 究 所 資 料 第4309号 平成27年10月

平成26年度下水道関係調查研究年次報告書集

材料資源研究グループ リサイクルチーム 水環境研究グループ 水質チーム

概要

本報告書集は、平成26年度に独立行政法人土木研究所において実施された下水道に関係 する調査研究の成果を集約して資料としてとりまとめたものである。

キーワード:下水道、下水処理、高度処理、汚泥、水質浄化、リサイクル

目 次

I リサイクルチーム

			頁
1	消毒によるウイルス不活化評価に関する調査	(受託業務費)	3
2	脱水汚泥によるメタン発酵に関する検討調査業務	(受託業務費)	10
3	地域バイオマスの資源管理と地域モデル構築に関する研究	(運営費交付金)	13
4	下水道を核とした資源回収・生産・利用技術に関する研究	(運営費交付金)	20
5	低炭素型水処理・バイオマス利用技術の開発に関する研究	(運営費交付金)	28
6	水環境中における病原微生物の対策技術の構築に関する研究	(運営費交付金)	37
$\overline{7}$	開発途上国における都市排水マネジメントと技術適用に関する研究	(運営費交付金)	44
8	震災時の機能不全を想定した水質リスク低減手法の構築に関する研究	(運営費交付金)	48
9	新規省エネルギー型下水処理技術の開発	(運営費交付金)	53
10	遺伝子解析による嫌気性消化槽の維持管理技術の開発	(運営費交付金)	57
11	21 世紀型都市水循環系の構築のための水再生技術の開発と評価 (水の衛生学的評価)	(戦略的創造研究推進事業)	59
12	下水再生水の紫外線消毒による病原微生物の感染リスク評価と適用管 理手法に関する研究	(科学研究費助成事業)	64
Π	水質チーム		
13	下水道における化学物質等の除去特性等に係る検討業務	(受託業務費)	71
14	流域スケールで見た物質動態特性の把握に関する研究(2)	(運営費交付金)	75
15	土地利用や環境の変化が閉鎖性水域の水質・底質におよぼす影響に関 する研究	(運営費交付金)	83
16	水環境中における未規制化学物質の挙動と生態影響の解明	(運営費交付金)	91
17	下水処理プロセスにおける化学物質の制御技術に関する研究	(運営費交付金)	97
18	生物応答手法を用いた下水処理水の評価の高度化に関する研究	(運営費交付金)	108
19	地球温暖化が水環境に与える影響評価と適応策に関する研究	(運営費交付金)	115
20	微量金属を対象とした藻類抑制手法の提案	(運営費交付金)	120
21	レポータージーンアッセイを用いた再生水の安全性評価に関する研究	(運営費交付金)	136
22	消毒副生成物の水環境中での挙動とその影響に関する研究	(運営費交付金)	144
23	河川水における溶存態有機物の粒径画分の特性解析と生体・生態影響 評価	(運営費交付金)	146
24	下水処理水が両生類の変態に及ぼす影響に関する基礎的研究	(運営費交付金)	153
25	21 世紀型都市水循環系の構築のための水再生技術の開発と評価	(戦略的創造研究推進事業)	157

付録 平成 26 年度 下水道関係刊行報告書一覧

*受託業務費とは、国土交通省からの受託によるものである。 *流域スケールで見た物質動態特性の把握に関する研究(1)は、水文チームによって行われており、本報告書には、掲載していない。 I. リサイクルチームによる研究

消毒によるウイルス不活化評価に関する調査

研究予算:下水道事業調査費 研究期間:平26 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、諏訪守、安井宣仁

【要旨】

近年、ノロウイルスの検出定量には、リアルタイム RT-PCR 法が用いられている。その濃度指標はノロウ イルス遺伝子の一部を変換した DNA 断片を定量するものであり、ノロウイルス遺伝子量の約7,500bp の内、 90bp 程度のみの領域を対象として評価しているが、細胞培養法による培養が確立されていないため、下水処 理場で多用されている塩素消毒がノロウイルスの感染価に及ぼす影響の把握が困難な状況である。

本調査は、消毒によるノロウイルスの不活化効果をより詳細に把握できる手法の評価を目的に、標的遺伝 子の増幅域を拡張した遺伝子定量法により、塩素、紫外線消毒による減少割合を評価した。また、代替ウイ ルスとして野生株の大腸菌 MS2 ファージを利用した塩素、紫外線消毒実験を行い、標的遺伝子の減少割合を ノロウイルスと比較した。その結果、ノロウイルスの標的遺伝子の増幅域を拡張することで、拡張量に応じ て消毒による標的遺伝子の減少割合が大きくなることが確認された。各消毒法において、ノロウイルスと野 生株の大腸菌 MS2 ファージの標的遺伝子減少割合が同様の傾向を示したことから、野生株の大腸菌 MS2 フ ァージはノロウイルスの代替指標として適用の可能性があると考えられた。

今後、MS2 ファージの感染性試験による不活化データの蓄積とともに、標的遺伝子の増幅域を拡張した MS2 ファージの評価が必要と考えられた。

キーワード:ノロウイルス、不活化評価、塩素消毒、紫外線消毒

1. はじめに

下水道普及率の向上に伴い下水処理水量は年間140億m³に及び、安定した水資源としてさらなる再利用方策を構築 することで有用な水資源となり得る。現在、下水処理水の再生利用を行う上での基準に関しては、下水処理水の再利用 水質基準等マニュアル(平成17年4月)のもと、水質基準や施設基準等が提示されている。衛生学的な安全性を評価 するため、現状では大腸菌(群)を主とした管理が行われているが、病原微生物の知見の集積により、ウイルス、原虫 といった病原微生物がもたらす水系リスクが顕在化している。それらの病原微生物は、それぞれ消毒耐性や存在濃度が 異なるため、消毒プロセスを含む下水処理工程での挙動に関する知見は不十分であり、一律の評価は困難である。これ らの病原微生物のうちノロウイルスは、冬季における感染性胃腸炎の大流行に際し、感染者から排出されるノロウイル スによる水系感染症拡大が懸念されることから、下水道管理者に対し国土交通省は、処理水の消毒を適切に行うなど、 終末処理場における水質管理の徹底を図るよう通達を行っている。しかしながら、ノロウイルスは細胞培養法による感 染価の測定が現状では実現していないことから、消毒プロセスによる水系リスクの低減効果が適切に評価できない。消 毒プロセスでのノロウイルス感染価の低減効果を評価できないことから、目標とすべき消毒レベルの設定が困難である 課題が生じている。

本調査では上記の課題を踏まえ、下水処理場で多用されている塩素消毒がノロウイルスの感染価に及ぼす影響把握を 目的に、以下に示す評価手法を検証した。検証にあたっては、代替ウイルスを利用した感染価と比較することで、最適 な感染価の推定手法の構築に向けた評価が必要である。そのため、塩素消毒によるノロウイルス遺伝子減少量を標的遺 伝子の増幅域の拡張に基づき評価した結果と、代替ウイルス利用による評価結果との比較により、ノロウイルス感染価 の推定手法の構築を試みた。併せて、ウイルス、原虫類といった耐塩素性病原微生物への消毒効果が期待される紫外線 消毒による評価を加えた。

本調査結果は、水系リスクの低減技術の適正な評価に繋がることから、放流水や再生水の水系リスク低減に資することができる。

2. ノロウイルス検出感度評価

現状においてノロウイルスは、動物感染試験、細胞培養法による感染能力評価方法が確立されておらず¹⁾、定量には、 一般的に Real-time qPCR(RT-qPCR)法が用いられている。しかしながら、ノロウイルスの全ゲノム長は約7500 bp で あるに対して、測定手法の精度上の課題等から RT-qPCR 法では、全ゲノム長に対する1%程度の約100bp を標的遺伝 子として評価している。本調査では、感染性の定量不可能なノロウイルスの感染性を把握することを目的に、標的遺伝 子の増幅域を数倍に拡張した Long target Revers Transcription PCR 法 (LTRTPCR)を用い、その適用性について検 証した。過年度の調査では、増幅域を拡張した LTRTPCR 法による増幅域を拡張したプライマーを用い、下水試料中 のノロウイルスの定量評価を行った結果、増幅域の拡張量に応じて検出濃度の低下が見られた。その原因は、試料中に おけるウイルス遺伝子の存在形態の影響、RT (逆転写)反応阻害、または、それらの複合的な要因などが推定された。

そこで本調査においては、ノロウイルスの検出法²⁰の手順に準拠した定量方法を一部改良するとともに、PCR反応に対する供試水量の割合を 0.1 (PCR反応量=50 μ L に対して 5 μ L の試料を添加)~0.01 とし検出感度の向上を試みた。 供試水量の割合を低下させ試料と PCR 試薬との反応をより進行させることで、検出感度の向上を期待した。

2. 1評価手順

A 下水処理場の活性汚泥処理水を、ポリエチレングリコール沈殿法 (PEG 沈殿法) によって濃縮するため、試料中 に PEG # 6000 (終濃度 8%) および NaCl (終濃度 0.4M) を添加、撹拌し完全に溶解させた。4℃で 1 夜静置の後、 10,000×G で 30 分間遠心分離し沈渣を回収した。この沈渣を RNase-free 水(遺伝子分解酵素を除去した水)に再浮遊 させてウイルス濃縮液とした。濃縮液からのウイルス遺伝子の抽出は、QIAamp Viral RNA Mini Kit (QIAGEN 社) の抽出カラムを用いたグアニジン法とした。なお、ウイルス濃縮液をウイルス遺伝子抽出カラムに通水しノロウイルス 遺伝子を捕捉させる際、検出感度にバラツキが生じないよう抽出カラム1本あたりの濃縮試料の通水量は、SS 負荷量 を基準とし全ての測定試料で抽出カラム1本あたり0.05mg-SSとなるように統一した³。抽出した RNA に微量に含 まれている DNA を除去するため DNaseI 処理し、RNeasy MinElute Clean up Kit(QIAGEN 社)でウイルス RNA を精製した。上記で抽出したウイルス RNA 試料 1.0µg をランダムプライマー、Omniscript RT Kit (QIAGEN 社)を 用い全量 40 µ L 系で逆転写を行い、cDNA を得た。得られた cDNA を Ex Taq Hot start ver ((TAKARA 社)を用い、 手順書に従い各試薬を調整し、各増幅域の異なるプライマー、Forward primer および Reverse primer (表-1)を最 終濃度で 0.5μ Mとなるように添加し、全量 99μ L系とし、cDNAを 1μ L添加した(供試水量の割合:0.01)。LT-RT-PCR 法の反応条件として、94℃で10秒間を1サイクル実施し、94℃で30秒、56℃で30秒、72℃で60秒を1サイクルと して 50 サイクルで PCR 反応を行った。PCR 反応後の産物は 2% アガロースゲルを用い電気泳動装置(i-Base, Life technologies 社製)にて泳動を行い、バンドを確認した。濃度の定量方法は、希釈範囲の異なる cDNA 溶液を作成し、3 連の MPN 法にて各増幅域のノロウイルス遺伝子を定量した。

増幅域	Sense	塩基配列				
Ollar	Forward (+)	5' GAG CCA ATG TTC AGR TGG ATG AG 3'				
94bp	Reverse (-)	5' CGA CGC CAT CTT CAT TCA CA 3'				
200hm	Forward (+)	5' CAC ACT CCC AAA GAC CCA TAC A 3'				
Suoph	Reverse (-)	5' TCC ARA GCC ATA ACC TCA TTR TTG AC 3				
477hm	Forward (+)	5' GGG CCA ACA AAA YGT AAT TGA CC 3'				
477bp	Reverse (-)	5' CGR CAA GAR ACT GTG AAG ACA TC 3'				
676hm	Forward (+)	5' GTC AAY AAT GAG GTT ATG GCT YTG GA 3				
07000	Reverse (-)	5' CCA AAG GAA TGG GGA ATC TTG AAT 3'				

表-1 LT-RT-PCR法に使用したノロウイルスのプライマー

_混合塩基: Y= C or T, R=A or G

2. 2 評価結果

評価結果を図-1 に示す。増幅域の拡張量に応じて検出濃度の低下傾向が確認されたが、PCR 反応における供試水量 割合を 0.1 から 0.01 とすることで 308bp では 11 倍、477bp では 6 倍程度検出濃度が向上し、676bp においても定量 値が得られるようになった。昨年度の結果では、308bp までの定量値が得られ、477bp、676bp では検出限界値以下で あったが、PCR 反応における供試水量割合を考慮することで、検出濃度の向上が可能となった。

供試水量割合を 0.1 から 0.01 とすることで検出濃度が高まったが、この要因としては供試水量を減らしたことによる酵素反応阻害の低減や、PCR 反応に要する酵素量を増加させたことに起因するものと推定された。すなわち、LT-RT-PCR 法によるノロウイルスの検出においては、PCR 反応に要する供試水量や PCR 酵素量を考慮することで、検出濃度を高められると考えられた。

図-1 PCR 反応における供試水量の割合と各増幅域での NoVG II 濃度

3. ノロウイルスの標的遺伝子減少量の評価

塩素消毒および紫外線消毒がノロウイルスの感染価へ及ぼす影響を把握するために、標的遺伝子の増幅域を拡張し評価を行った。消毒条件として塩素消毒ではCt値を0~50mg・min/L、紫外線消毒は平均紫外線量を0~40mJ/cm²とした。なお、消毒実験に用いた試験水は、上記2.のA下水処理場の活性汚泥処理水とした。

3.1 塩素消毒実験における標的遺伝子減少量の評価手順

図・2 に示すように、塩素消毒実験は回分式にて行った。試験水 200mL に対して初期投入塩素濃度を 0.75mgCl/L、 1.5mgCl/L、3mgCl/L となるように次亜塩素酸ナトリウム溶液を添加した。接触時間を全ての実験系で 15 分間とし、 設定 Ct 値が 10~50mg/L・min 程度となるように調整した。塩素添加後から 5 分間隔で全塩素濃度を適宜モニタリン グした。設定 Ct 値に達した試料は、残留塩素の中和のために直ちにチオ硫酸ナトリウム溶液を添加した後、上記 2.1 で 示した手順にて、試料を濃縮し表-1 に示すプライマーを用い LT-RT-PCR 法によりノロウイルス濃度を定量した。

3.2 塩素消毒実験における標的遺伝子減少量の評価結果

塩素消毒によるノロウイルス標的遺伝子の拡張量ごとの残存割合を図・3 に示す。ノロウイルスの遺伝子は Ct 値(塩 素濃度×接触時間)に比例して減少する傾向が確認された。従来の Real-time PCR 法と同様の増幅域を 94bp とした評 価では、標的遺伝子の減少割合は Ct 値が約 50mg/L・min で 0.2Log であったが、増幅域を 308bp とすることで 0.8 Log 、 477bp では 1.1Log となった。PCR 法による遺伝子定量においては、対象領域の遺伝子が損傷していなければ感染性を 有していない場合でも増幅可能である。標的遺伝子の増幅域の拡張量に応じて、塩素消毒による標的遺伝子の減少量が 大きくなったことから、増幅域を 94bp とした従来の Real-time PCR 法では、塩素消毒効果を過少評価していると考え られた。下水処理場における次亜塩素酸ナトリウムによる塩素消毒の平均的な Ct 値は 40mg/L・min 程度であること から⁴⁾、この場合、感染性を有するノロウイルスが少なくとも塩素消毒によって 1Log 以上は不活化している可能性が 考えられた。

図-3 Ct 値と増幅域ごとのノロウイルスの標的遺伝子残存割合

3.3 紫外線消毒実験における標的遺伝子減少量の評価手順

紫外線ランプとして6Wの低圧紫外線ランプ(UL0-6DQ、ウシオ電機社製)を用い、図-4 に示す紫外線実験装置にて 上部より紫外線を照射した。設定線量が10、20、40mJ/cm²となるように予め波長 254nmの紫外線吸光度を測定し、 照射時間を設定した。滅菌ガラスシャーレ(直径=9cm、深さ=1.7cm)に試験水を120mL添加し、気泡が入らないよ うに厚さ2mmの石英ガラスで蓋をし、マグネティクスタラーにて試験水を攪拌した。

照射後の試験水は塩素消毒実験と同様の方法でノロウイルスの遺伝子量を定量した。試験水に照射された紫外線量を 適切に評価するために、紫外線積算光量計(UIT-250、ウシオ電機社製)および化学光量計⁵⁾を用い、石英ガラス表面から ガラスシャーレ底面までの紫外線照度を測定し、式(1)を数値積分により平均紫外線照度(Iavg)を算出した。式(1)に照射 時間を掛け紫外線量を求めた。

$$I_{avg} = \frac{1}{d} \int_0^d I_x \cdot exp(-2.3Abs_{254} \cdot x) dx \quad (1)$$
$$I_x = \alpha (L_d + x)^{-\beta}$$

ここで、Ixはランプ表面からガラスシャーレ底面までの距離 xcm での紫外線照度、d は水深(4.2cm)、Ld は紫外線ランプからガラスシャーレ表面までの距離(8.1cm)、Abs254 は試験水の波長 254nm での吸光度(cm⁻¹)である。

3.4 紫外線消毒実験における標的遺伝子減少量の評価結果

紫外線消毒によるノロウイルス標的遺伝子の拡張量ごとの残存割合を図・5 に示す。図中の横軸は、式(1)より算出した平均紫外線量(mJ/cm²)とし、縦軸は紫外線照射後の標的遺伝子濃度を照射前の初期濃度で除した標的遺伝子残存割合とした。ノロウイルスの遺伝子は平均紫外線量に比例して減少していく傾向が確認され、従来の Real-time PCR 法と同様の増幅域を 94bp から 308bp、477bp へと拡張することで減少割合がより大きくなり、紫外線量を 40mJ/cm²と

することで、477bpにおける評価では検出限界値以下となったことから、2Log以上の不活化効果が得られていると考えられた。本実験結果では、標的遺伝子を1Log減少させるのに必要な紫外線量は、増幅域が94bpの場合で約30mJ/cm²、308bp、477bpへと拡張することで18~20mJ/cm²程度となった。また、308bpと477bpにおける増幅域の違いによる標的遺伝子残存割合の差が塩素消毒と比較して小さかったが、これは紫外線が直接に遺伝子へ作用することに起因しているものと推定された。

※ プロットの白抜き・矢印は、検出限界値以下を示す

図-5 平均紫外線量と増幅域ごとのノロウイルスの標的遺伝子残存割合

4. ノロウイルス代替指標としての野生株大腸菌ファージの指標性評価

消毒効果の把握のための代替指標としては、以下の要件を満たしていることが望ましいと考えられる。

- ・下水試料中に比較的高濃度に存在していること
- ・検出が簡便であり、ヒトに対する感染性を有していないこと
- ・ノロウイルスよりも消毒耐性が同等か強いこと

ノロウイルスの感染価を含めた評価を念頭に置いた代替指標の1つとしてヒトノロウイルスと同じノロウイルス属のマウスノロウイルス(MNV)の利用が検討されている^{60,70}。マウスノロウイルスは培養細胞での分離・増殖が可能であるが、消毒効果を把握するためには予め大量培養する必要があることや、下水中に元々多量に存在しているウイルスではないため、下水中における存在形態がノロウイルスと異なることから、代替指標としての適用に際しては評価途上段階であると考えられる。

本調査では、下水試料中に比較的高濃度で存在している可能性がある、野生株の大腸菌 MS2 ファージ(MS2)がノ ロウイルスの代替指標になりうるかを検証することを目的に、処理水中の実態把握とともに、塩素、紫外線消毒耐性の 評価を行った。

4.1 評価手順

上記 3.の A 下水処理場の活性汚泥処理水を用い、存在実態の把握や塩素消毒、紫外線消毒を実施した。MS2 の定量 は表・2 に示す MS2 用の増幅域を拡張したプライマーを用いた LT RT PCR 法とした。塩素消毒実験の設定 Ct 値は、0 ~40 mgCl·min/L、紫外線消毒の設定線量は 0~40mJ/cm² とした。

増幅域	Sense	塩基配列	濃度 (MPN/L)
106bp	Forward (+)	5' ACT CGC GTT CAC AGG CTT AC 3' 5' GTC TGG GTT GCC ACT TTA GG 3'	8.6×10^{4}
364bp	Forward (+)	5' ATA GAG CCC TCA ACC GGA G 3' 5' CCA CAC CTT CCA TTC CCT TA 2'	9.4×10^2
527hp	Forward (+)	5' CGC GTA CGT AAA GTC TCC TTC 3'	N.D.
007bp	Reverse (-)	5' CTT CGA CAT GGG TAA TCC TCA 3'	(検出限界以下)

表-2 LT-RT-PCR法に使用した野生株大腸菌 MS2ファージのプライマー

4.2 二次処理水の野生株大腸菌ファージ濃度

代替指標として MS2 の指標性を評価するため、まず、二次処理水中の存在実態を把握した。増幅域ごとの検出濃度 を表・2 に示す。標的遺伝子の増幅域を 106bp とした野生株 MS2 の検出濃度は 8.6×104 MPN/L であり、増幅域を 96bp としたノロウイルスの検出濃度(10⁶ MPN/L レベル)と比較して低かった。増幅域を 364bp に拡張した LTRTPCR 法によっても 9.4×10² MPN/L の検出濃度が得られることが確認されたが、537bp の増幅域では検出限界値以下となっ た。

4.3 塩素消毒における野生株大腸菌 MS2 ファージの指標性の評価結果

塩素消毒によるノロウイルスの標的遺伝子の残存割合と比較するために、塩素消毒後における MS2 の標的的遺伝子 残存割合の把握を行った。なお、二次処理水中の増幅域 364bp での初期濃度が 10² MPN/L オーダーであったことに加 え、537bp で検出限界値以下であったため、ここでは、106bp での増幅域を対象に評価を行った。結果を図-6 に示す。 MS2 の標的遺伝子残存割合は、Ct 値が 50mg・min/L の場合ではノロウイルスの標的遺伝子残存割合とほぼ同等であっ たものの、Ct 値がそれ以下では標的遺伝子の残存割合が小さいため、塩素消毒耐性は同等か強いことが推定された。 今後、標的遺伝子の増幅域をより拡張した MS2 の指標性評価を行う予定である。

図-6 塩素消毒によるノロウイルスと MS2 ファージの標的遺伝子の残存割合

4.4 紫外線消毒実験による野生株大腸菌 MS2 ファージの指標性の評価結果

紫外線消毒によるノロウイルスの標的遺伝子の残存割合と比較するために、紫外線消毒後における MS2 の標的的遺 伝子残存割合の把握を行った。結果を図っ7 に示す。ノロウイルス標的遺伝子の増幅域が 94bp と MS2 の増幅域が 106bp において、紫外線量が 20~40mJ/cm²の範囲内において、MS2 の標的遺伝子の残存割合がノロウイルスの遺伝子残存 割合と同様の傾向を示したが、10mJ/cm²では標的遺伝子の残存割合が小さかったため、紫外線消毒耐性は同等か強い ことが推定された。

図-7 紫外線消毒におけるノロウイルスと MS2 ファージの標的遺伝子の残存割合

今回の結果では、評価対象とした二次処理水中の MS2 濃度がノロウイルス濃度よりも低いものの、増幅域を 106bp とした標的遺伝子の塩素、紫外線による減少効果はノロウイルスと同等と推定されたことから、野生株の MS2 がノロ ウイルスの代替指標ウイルスになりうる可能性が考えられた。

今後、ノロウイルスの代替指標ウイルスとしての適用可能性を高めるため、MS2の感染性試験による不活化データや、標的遺伝子の増幅域を拡張したデータを蓄積する予定である。

5. まとめ

本調査は、消毒によるノロウイルスの不活化効果をより詳細に把握できる手法の評価を目的に、標的遺伝子の増幅域 を拡張した遺伝子定量法により、塩素、紫外線消毒による減少割合を評価した。また、代替ウイルスとして野生株の大 腸菌 MS2 ファージを利用した塩素、紫外線消毒実験を行い、標的遺伝子の減少割合をノロウイルスと比較した。得ら れた結果を以下に示す。

1) LT-RT-PCR 法において、PCR 反応時の供試水量割合を通常の 0.1 から 0.01 とすることで、検出濃度の向上が可能 となった。

2) 実下水処理水を用いた塩素消毒や紫外線消毒によるノロウイルスの標的遺伝子の減少割合は、標的遺伝子の増幅域 を 308bp、477bpと拡張することで、通常の Real-time PCR 法で用いられる、増幅域が 100bp 前後の標的遺伝子で の減少割合より大きいことが確認された。

3) 塩素消毒や紫外線消毒において、野生株大腸菌 MS2 ファージとノロウイルスの標的遺伝子減少割合が同等であったことから、MS2 ファージがノロウイルスの代替指標ウイルスになりうる可能性が考えられた。

本調査では、感染価を直接評価できないノロウイルスの消毒による不活化効果を推定するため、ノロウイルス代替指標ウイルスとして処理水中に予め存在している野生株大腸菌 MS2 ファージの適用性を評価した。従来、純培養した指標ウイルスを添加・消毒後、その生残率から消毒効果を推定していたが、純培養した指標ウイルスは処理水中に予め存在しているウイルスとは存在実態が異なるため、適切に消毒効果を評価できない可能性がある。温血動物のふん便から排出される野生株の MS2 ファージを指標とすることで、ヒトのふん便から排出された処理水中のノロウイルスと存在実態がより近い状態で消毒効果を評価できることに加え、他の腸管系ウイルスとは異なり大腸菌による plaque assay により簡便に評価が行える利点を有する。今後、MS2 ファージの感染性試験による不活化データの蓄積とともに、標的遺伝子の増幅域を拡張した MS2 ファージの評価が必要である。

謝辞

本調査・検討を実施するにあたりA下水処理場管理者の関係各位には多大なご協力を頂いた。ここに記して謝意を表 する。

参考文献

- Duizer E., Schwab J.k., Neill H.F, Atmar L.R., Koopmans P.G.M. and Estes K.M.: Laboratory efforts to cultivate noroviruses, Journal of General Virology, 85, pp. 79-87, 2004.
- 2) 厚生労働省医薬食品局食品安全部監視安全課: ノロウイルスの検出法について, p.24, 2007.
- 3) 諏訪守、岡本誠一郎、尾崎正明、陶山明子(2009)、下水処理のノロウイルス除去効果とその検出濃度に及ぼす濃縮 法の影響、下水道協会誌論文集、46(561),91-101.
- 4) (公社)日本下水道協会
- 5) James R. Boltona, Mihaela I. Stefan, Ping-Shine Shaw, Keith R. Lykke (2011), Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors, Volume 222, Issue 1, pp.166-169, Journal of Photochemistry and Photobiology A: Chemistry
- 6) (社) 日本実験動物協会、LABIO21、No.38、2009., ISSN 1345-9147.
- 7) 清水優子、牛島広治、北島正章、片山浩之、遠矢幸伸、ヒトノロウイルスの代替としてマウスノロウイルスを用 いた消毒薬による不活化効果(2009)、環境感染誌、Vol.24, No.6, pp.388-394.

脱水汚泥によるメタン発酵に関する検討調査業務

リサイクルチーム上席研究員津森ジュン主任研究員日高平

東日本大震災以降、下水汚泥のリサイクル率は減少しており、汚泥の積極的な利用が求 められている。また、平成26年4月に閣議決定された、第4次「エネルギー基本計画」 のなかで、「再生可能エネルギーについては、2013年から3年程度、導入を最大限加速 していき、その後も積極的に推進していく。」とあり、再生可能エネルギーの一つとして、 下水汚泥をメタン発酵させることで発生するバイオガスによるエネルギー利用を推進して いく必要がある。

その際、小規模処理場の場合、個々の下水処理場でメタン発酵を行うよりも、汚泥を拠 点となる処理場にトラック輸送の形で集約してメタン発酵する方が、まとまった汚泥量を 確保でき、バイオガスによる発電なども含めて効率的であるが、これまで脱水汚泥のメタ ン発酵は行われていないのが現状である。

本業務は、標準活性汚泥法の処理場における脱水汚泥からのバイオガス転換効率や、既 存施設に与える影響等を把握し、脱水汚泥の集約処理における設計諸元や留意事項を整理 することで、小規模処理場から排出される汚泥の有効利用を促進させることを目的とした。 文献調査を含めた本調査の成果を元に、標準活性汚泥法の脱水汚泥の中温嫌気性消化に関 する施設設計上の留意事項を、以下にまとめる。

投入汚泥濃度および負荷率

投入脱水汚泥の TS 濃度を 10%程度とした中温嫌気性消化実験を行ったところ、pH の 低下やガス発生速度の悪化などは見られず、安定していた。

投入脱水汚泥の TS 濃度の影響について、5、10、15 および 20%程度で比較した実験結果により、投入 TS10%以下で安定した中温嫌気性消化が可能であると報告されている(日高・津森, 2014a)。

有機物負荷率の影響について、通常の有機物負荷率は 1~3 kgVS/(m³・d)とされており (日本下水道協会, 2014)、混合汚泥を TS10%程度に濃縮した連続嫌気性消化実験により 有機物負荷率は 3.2 kgVS/(m³・d)で運転可能であることが報告されている(Hidaka ら, 2014)。

これらより、投入脱水汚泥の TS 濃度 10%で、有機物負荷率 3 kgVS/(m³・d)までなら中 温嫌気性消化が可能であることが示された。

脱水汚泥のメタンガス転換率

脱水汚泥のメタンガス転換率は 0.25~0.35 NL-メタン/gVS-投入程度であり、水処理系 の BOD-MLSS 負荷率が高いほどメタンガス転換率が向上する傾向が示された。水処理系 での負荷率が低く滞留時間が長いほど活性汚泥の自己分解が進行し、メタンガスに転換さ れやすい成分が減少することが、こうした傾向につながっているものと考えられる。

脱水汚泥のメタンガス転換率は、濃縮混合汚泥の場合よりやや低下していた。この理由 として、脱水過程で一部の易分解性有機物が除去された可能性が考えられる。拠点処理場 で生成し長距離運搬の必要のない濃縮前もしくは濃縮混合汚泥については、周辺処理場か ら搬入される脱水汚泥の濃度調整に用い、脱水操作を行わずに嫌気性消化することでメタ ンガス回収量が向上する。ただし、投入汚泥の高濃度化は、加温に要するエネルギー削減 の観点で有用である。単一の処理場での処理を想定した投入 TS 濃度 8%程度の高濃度消化 法は、従来法よりエネルギー的に高効率であることが報告されている(西井・片岡, 2014)。

図 1 回分式実験での投入 VS あたりのメタンガス転換率と水処理系の BOD-MLSS 負荷 率の関係

アンモニア性窒素濃度

脱水汚泥の窒素含有率(%dry)および消化汚泥のTS(%)と、消化汚泥中のアンモニア性窒素濃度から得られた関係式は以下のとおりである。

消化汚泥のアンモニア性窒素濃度(mgN/L) =101.43×【脱水汚泥の窒素含有率(%dry)】×【消化汚泥のTS(%)】

中温嫌気性消化の場合は、消化汚泥中のアンモニア性窒素濃度 4,000 mgN/L 程度でも安定した処理が可能である(日高ら, 2014b)。なお高温嫌気性消化の場合は、アンモニア性窒素の阻害を受けやすい。投入汚泥によりアンモニア放出割合が異なり、消化汚泥中のアンモニア性窒素濃度 2,000 mgN/L 以下に維持する必要がある(日高ら, 2014b)。

図2 脱水汚泥の窒素含有率と消化汚泥のアンモニア性窒素/TS 比の関係

粘度

消化汚泥の TS 濃度と粘度のデータから得られた関係式は以下のとおりである。

消化汚泥の粘度(dPa・s)=0.0642×【消化汚泥のTS(%)】2.395

粘度 8.5 dPa・s を想定した既設嫌気性消化槽の数値流体力学 (CFD) による検討では、 既設の撹拌機で底部流速 0.1 m/s を確保でき、そのまま対応可能であることが示されてい る (Hidaka ら, 2014)。

なお高温嫌気性消化の場合は、粘度が低い傾向が示されており(Hidaka ら, 2013)、撹拌の観点では高温条件が有利である。

図3 中温嫌気性消化汚泥のTSと粘度の関係

【参考文献】

- Hidaka T., Sawahara H., Togari T., Tsumori J. (2014) Anaerobic digestion of sewage sludge with high solid content and its use as fertilizer, 9th IWA International Symposium on Waste Management Problems in Agro-Industries, Proceedings Volume I, Kochi, Japan, pp.528-534.
- Hidaka T., Wang F., Togari T., Uchida T., Suzuki Y. (2013) Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge, Bioresource Technology, 149, pp.177-183.

日本下水道協会(2014)下水道維持管理指針-2014年版-(実務編),東京.

- 西井啓典, 片岡直明(2014) 高濃度・高効率汚泥消化技術の開発(その3), 第51回下水 道研究発表会講演集, 919-921.
- 日高平, 津森ジュン(2014a)都市下水処理場の脱水汚泥の中温嫌気性消化に及ぼす固形 物濃度の影響, 土木学会論文集 G (環境), Vol.70, No.7, pp.III_433-III_440.
- 日高平, 王峰, 津森ジュン, 戸苅丈仁(2014b)高濃度濃縮下水汚泥の嫌気性消化における 中温および高温条件の比較, 第51回下水道研究発表会講演集, pp.925-927.

地域バイオマスの資源管理と地域モデル構築に関する研究

研究予算:運営費交付金

研究期間:平23~平27

担当チーム:材料資源研究グループ(リサイクル)

研究担当者:津森ジュン、日高 平、桜井健介

【要旨】

社会資本のグリーン化に向け公共緑地で大量に発生する草木バイオマスの有望な利用方法の一つとして考えら れる下水処理場での嫌気性消化技術導入に必要な知見を収集するために、刈草もしくは爆砕処理したコナラチッ プと下水汚泥の混合嫌気性消化に関する実験を行った。刈草と下水汚泥の混合嫌気性消化実験について、単独消 化時よりも混合消化時に、メタンガス生成量の増加することが示された。コナラチップと下水汚泥の混合嫌気性 消化実験について、従来の爆砕処理よりも弱い圧力 0.9 MPa および温度 178℃の条件下でも、50%程度のメタン 転換率が得られた。また、地球温暖化対策として有効な刈草の収集範囲を明らかにするため、嫌気性消化槽を有 する既存の下水処理場で、刈草を下水汚泥と混合して嫌気性消化する事業の実施に伴う追加的な温室効果ガス排 出量、および、刈草を嫌気性消化しメタンガスを得て、発電することによる温室効果ガス排出削減量を試算した ところ、地球温暖化対策として有効な刈草の収集範囲は、下水処理場から直線距離で 31km 以下の地域であった。

キーワード:爆砕処理、メタン発酵、地球温暖化対策、温室効果ガス、刈草

1. はじめに

地球温暖化対策の推進の観点から、国は地方公共団体 と連携を図りつつ、温室効果ガスの排出の抑制等のため に必要な施策を推進するように努めるものとされている ¹⁾。

一方で、河川、道路、公園、ダムなどの公物管理のため、草や木が多量に伐採・処分されている。それらをエネルギーや堆肥などの有機資材として有効利用し、化石 資源由来のエネルギーやそのエネルギーの消費により製 造される製品を代替できれば、温室効果ガスの排出を削 減し、地球温暖化対策として貢献が可能である。

本研究は、公共緑地等バイオマスを資源として位置づけ、恒久的に利用していくための要素技術やシステムを 提示することが目的である。平成26年度は、提示にあたり、刈草もしくは爆砕処理したコナラチップと下水汚 泥の混合嫌気性消化実験を行った。また、嫌気性消化槽 を有する既存の下水処理場で、刈草を下水汚泥と混合し て嫌気性消化する事業の地球温暖化対策として有効な刈 草の収集範囲を試算した。

2. 草木バイオマスと下水汚泥の混合嫌気性消化に関する実験

2.1 目的

公共緑地等バイオマスの有望な利用方法の一つとして 下水処理場での嫌気性消化が考えられ、新潟市での検討 事例も報告されている^{2,3}。刈草については、特殊な前処 理を行わなくても裁断のみで、ある程度のメタン転換が 期待できることが示されている^{4,5}。刈草単独よりも下水 汚泥との混合条件下で、刈草のメタン転換率向上が示さ れているものの、混合比の影響についての詳細は不明で ある。また、草木バイオマスの種類によりメタン転換率 は異なり、刈草よりも頑丈な構造のイタドリや木質バイ オマスなどでは、前処理が必要であると考えられる。メ タン転換率向上のための前処理手法として、土木研究所 では木質系バイオマスを対象とした蒸煮・爆砕の技術を 開発してきており、その適用性が示されている^{6,7}もの の、200℃および2MPa以上での処理となり、必要とな るエネルギーや圧力容器管理の点が課題である。

そこで本年度は、異なる刈草と下水汚泥の混合条件下 での混合嫌気性消化特性、ならびに異なる条件の爆砕処 理を施したコナラチップと下水汚泥の混合嫌気性消化特 性を、室内実験により調査した。

2. 2 実験方法

2.2.1 刈草と下水汚泥の混合嫌気性消化

用いた下水汚泥および刈草の性状は、昨年度と同様で ある⁴⁾。下水汚泥は、標準活性汚泥法を採用している都 市下水処理場のものである。混合汚泥の固形物(TS)濃 度は 2%程度であるので、実験室での遠心分離操作によ り、4%程度まで濃縮した。刈草は、土木研究所内で採取 し、10 mm 程度に裁断した。

刈草と下水汚泥の混合比の影響を確認するための回分 式実験を、高温(55℃程度)条件下で行った。実験条件 は、表1に示すとおりである。種汚泥(高温消化汚泥) 1.14gVSに対して、刈草(4段階)×下水汚泥(3段階) で、混合影響を調査した。それぞれの実験を、3ケース ずつ行った。用いたバイアルの容積は130 mLで、消化 汚泥、下水汚泥および刈草を投入後イオン交換水で100 mLにそろえた。そして、窒素ガスで3分間ヘッドスペ ースを置換し、恒温振とう器にて培養しながら、メタン ガス発生量の経時変化を測定した。

	種汚泥 (gVS)	刈草 (gVS)	下水汚泥 (gVS)	種汚泥/ 基質比 (-)
C _{1·1} (ブランク)	1.14	0	0	-
C1-2	1.14	0.09	0	13
C1-3	1.14	0.18	0	6.5
C1-4	1.14	0.26	0	4.3
C2-1	1.14	0	0.18	6.5
C2-2	1.14	0.09	0.18	4.3
C2-3	1.14	0.18	0.18	3.2
C2-4	1.14	0.26	0.18	2.6
C3-1	1.14	0	0.35	3.2
C3-2	1.14	0.09	0.35	2.6
C3-3	1.14	0.18	0.35	2.2
C3-4	1.14	0.26	0.35	1.9

表1 刈草と下水汚泥の混合比影響調査実験条件

2.2.2 コナラチップと下水汚泥の混合嫌気性消化

コナラチップを対象にした爆砕処理の効果を確認する ための回分式実験を、中温(35℃程度)および高温(55℃ 程度)条件下で行った。

コナラチップの爆砕条件は表 2 に示すとおりで、W1 ~W4 の 4 種類を設定した。W4 が、従来の爆砕処理と 同様の条件である。対して、W1 およびW2 は、圧力を 0.9 MPa、温度を 178℃に設定し、処理時間をそれぞれ 60 分および 180 分とした。W3 については、まず圧をか けずに従来と同様の 213℃程度 15 分間の処理を行い、 その後 W1 と同様の爆砕処理を行った。

爆砕したコナラチップ 0.53 gVS および種汚泥 0.86 gVS を混合し、前述の刈草の実験と同様に回分式実験を 行った。

表2 コナラチップの爆砕条件

試	段	圧力	温度	処理時間
料	階	(MPa)	(°C)	(分)
W1	—	0.9	178	60
W2	—	0.9	178	180
W3	1	圧をかけずに	213	15
	2	0.9	178	60
W4	_	2.0	213	15

2.2.3 分析方法

汚泥性状の分析は、主として下水試験方法に従って行った。なお、CODcr は吸光光度計(DR2400、HACH) により分析し、その際にはそれぞれ CODcr 試薬(HR) を用いた。アンモニアの分析は自動比色分析装置 (TRAACS2000、BRAN LUEBBE)を用いた。発生ガ スの分析は、3M 水酸化ナトリウム水溶液を通過させる ことで二酸化炭素を除去し、メタンガス発生量として計 量した。発生量は、水上置換で測定した。

2.3 結果および考察

2.3.1 刈草と下水汚泥の混合嫌気性消化

刈草と下水汚泥の混合比影響調査実験結果を、図1に 示す。ここでは、ブランク(C₁₋₁)における種汚泥から のメタンガス生成量、および下水汚泥のみ(C₂₋₁、C₃₋₁) の場合のメタンガス生成量を差し引き、刈草からのメタ ン生成量としてまとめている。

刈草の投入量 3 段階いずれについても、下水汚泥 0 gVS の場合よりメタン生成量が増加していた。刈草と下 水汚泥を混合した実験なので、刈草からのメタンガス生 成、もしくは下水汚泥からのメタンガス生成どちらが向 上したのかは区別できないものの、混合により個別に嫌 気性消化する場合よりもメタンガス生成量の総和は増加 していることが示された。

混合によりメタンガス生成量が増加する傾向は、異な る下水処理場の汚泥を用いた過去の実験⁴⁾でも同様であ る。汚泥採取処理場が異なっていても、刈草との混合消 化特性への影響は少ないことが、示されている⁵⁾。混合 消化による促進効果は、栄養バランスの改善や、下水汚 泥の酸発酵で活性化する微生物群により刈草の可溶化お よび酸発酵を促進することなどが、その理由に考えられ る。このような観点でも、下水処理場に刈草を受け入れ ることは、相乗効果が期待できる。

図1 刈草と下水汚泥の混合比影響調査実験結果

2.3.2 コナラチップと下水汚泥の混合嫌気性消化

4 種類の爆砕条件を施したコナラチップについて行っ た回分式実験の結果を、図2に示す。ここで、メタン転 換率とは、投入基質量(gCOD)に対する、精製メタンガ ス量(gCOD)の割合である。ここでは、コナラチップか らの寄与分のみとして示している。従来の爆砕処理条件 である W4 のメタン転換率が最も高かった。弱い爆砕条 件である W1~W3 では、メタン転換率がやや低下した ものの、50%程度のメタン転換は可能であった。中温条 件と高温条件を比較すると、高温条件でのメタン転換率 がやや高かった。

下水の余剰汚泥を対象とした嫌気性消化では、中温消 化での仕上げ処理によりメタン転換率が向上することが 報告されている⁸のに対して、刈草を対象とした混合嫌 気性消化でも高温条件下でより安定していたことが報告 されている⁹。草木系バイオマスの嫌気性消化では、高 温嫌気性消化が有効であることが考えられる。高温条件 下ではアンモニア性窒素の阻害を中温条件下よりも受け やすいものの¹⁰、草木系バイオマスの場合は窒素含有率 が低いことから、アンモニア性窒素の阻害影響は少ない と考えられる。

図2 爆砕処理コナラチップと下水汚泥の 混合嫌気性消化実験結果

3. 地球温暖化対策として有効な刈草の収集範囲の検討 3. 1 目的

地球温暖化対策として、下水処理場の周辺で発生する 刈草を、下水汚泥と混合して嫌気性消化する場合、刈草 の運搬距離が、地球温暖化対策としての効果に、大きく 影響を与えると考えられる。しかしながら、刈草の収集 範囲の影響を検討した報告は、ほとんど見当たらない。 そこで、地球温暖化対策として有効な刈草の収集範囲を 明らかにするため、嫌気性消化槽を有する既存の下水処 理場へ刈草を運んで、下水汚泥と混合して嫌気性消化す る事業を一般的と思われる条件で仮定して、実施に伴う 追加的な温室効果ガス(Greenhouse gas, GHG)排出量、お よび、刈草を嫌気性消化しメタンガスを得て、発電する ことによる GHG 排出削減量を試算した。

3. 2 方法

評価対象とした事業は、図3に示したとおり、灰色で 着色した11個のプロセスで構成することとした。刈草、 発生したメタンガス、および、消化残渣は以下の条件で 処理されることと仮定した。

- 除草場所は、肥料や農薬が施用されていない。
- 除草は、1年に2回行われ、発生した刈草はその 都度処理される。
- 刈草は、草刈機で除草・回収された後に、トラ ックで運搬され、嫌気性消化槽を有する既存の 下水処理場へ運搬される。
- 運搬された刈草は、下水処理場内で機械破砕後、
 下水汚泥と混合して嫌気性消化される。
- 発生したメタンガスは発電に使われ、発電の排
 熱は刈草と下水汚泥の加温に利用される。
- 消化残渣は脱水後に焼却されて、灰は埋め立て 処分場へ運搬し、埋め立てられる。

GHG 排出量、および、GHG 排出削減量は、除草面積 1000m²、1年間あたりを単位として、計算した。1000m² は、除草工の積算に使われる単位である。嫌気性消化以 後の各プロセスでは、刈草の追加によって新たに消費し た化石燃料、電力、化学薬品、または、発生した電力に 着目し、既存の下水処理場で汚泥処理に伴い排出されて いた GHG は評価対象外とした。

図3 評価対象とした刈草と下水汚泥の混合嫌気性消化 のフロー(灰色で着色された角丸の長方形は、構成する プロセスを示す)

集計する GHG は、二酸化炭素、メタン、一酸化二窒 素とした。これらを合計する時には、メタンと一酸化二 窒素の放出量に、温暖化係数(GWP100)¹⁰⁰である 28 と 265 をそれぞれ乗じることで二酸化炭素換算量として計算し た。GHG 排出量と排出削減量を、プロセス毎に算出し た。プロセス毎の GHG 排出量を、活動に伴って消費さ れた化石燃料、電力、化学薬品の量に GHG 排出係数 ¹²⁰(表 3)を乗じ、それらを合計して計算した。ただし、化 学薬品の GHG 排出係数は、LCA ソフトウェア(MiLCA, 一般社団法人産業環境管理協会)を参照した。一方、発電 機を用いてメタンガスで発電するプロセスでは、発電さ れた電力が有効利用されたことにより、消費されなかっ た電力量に GHG 排出係数を乗じ、GHG 排出削減量を 計算した。

表3 化石燃料、電力、化学薬品の使用による GHG 排 出係数

八石	八桁 百日		温室効果ガン	ス
万鬼	項目	CO ₂ (kg)	CH₄(g)	N ₂ O(g)
	ガソリン (/L)	2.32	1.87*	0.0215*
化石燃料	軽油(/L)	2.58	-	0.0641
	重油(/L)	2.71	-	0.0665
電力	電力(/kWh)	0.550	-	-
	消石灰(/kg)	1.05	-	-
化学薬品	セメント(/kg)	0.86	-	-
	キレート剤(/kg)	1.37	-	-

*トラックの場合は含まない

除草および集草プロセスでは、刈幅150 cmのハンドガ イド式の草刈り機を用いることとした。草刈り機の性能 は、表4の値を用いた¹³。土木研究所の過去の調査¹⁴から、 1,000 m²あたり、1回の除草から、数日乾燥させた状態(含 水率18%)で334 kg-wetが発生するものとした。

表4 草刈機の性能

項目	作業効率 (h/1000m²)	ガソリン燃費 (L/h)
除草	1.28	9.2
集草	1.04	3.0

運搬プロセスでは、1,000 m²で発生した刈草につき、 2トントラック1台¹⁵⁾を計上し、走行距離を変数とした。 トラックへの積み込みや積み下ろしは人力とし、GHG 排出量は無しとした。走行速度を30 km/h¹³⁾とし、ガソ リン燃費4.9 L/h¹⁶⁾から、ガソリン使用量を算出した。

破砕プロセスでは、刈草を数cmに破砕できる電気式の 破砕機を使うこととし、その効率は、既報¹⁷⁾を参照して、 0.023 kWh/kg-dryと設定した。

消化、脱水プロセスは、高温消化、遠心脱水によるものとした。高温消化は、昨年度の実験¹⁸⁾において安定したメタン転換が行われたことから選択した。消化、脱水による電力消費量は、処理体積に比例するものと仮定し、汚泥体積と電力消費量の実測値¹⁹⁾から、それぞれ7.2、7.6 kWh/m³と設定した。刈草の比重は、220 kg/m³として計算した²⁰⁾。脱水プロセスでは、刈草の含水率が下水汚泥と比べてかなり低いため、刈草が保持していた水分は、脱水後も変化しないことと仮定した。

焼却プロセスは、100 t/dの流動床式焼却炉を使用する ことを仮定した。焼却プロセスのGHG排出量は、電力と 化学薬品の使用に伴うGHG排出量に、刈草が焼却される 際に生じるメタンと一酸化二窒素の発生量を二酸化炭素 に換算して、加えて計算された。刈草のメタンと一酸化 二窒素の発生係数は、一般廃棄物のそれらと同じと仮定 し、それぞれ、0.046 gCH4-C/kg-Cと0.35 gN2O-N/kgN とした。これらは、一般廃棄物を連続燃焼式の流動床焼 却炉で燃焼した時の重量あたりのメタンと一酸化二窒素 の発生係数²¹⁾から一般廃棄物の炭素と窒素の含有率²²⁾で 除して計算された。刈草の投入による、電気と化学薬品 の増加量は、都市ごみの量と質に応じた電気量と化学薬 品量が計算可能なプログラム²³⁾を利用して計算した。焼 却灰のうち、集塵灰は、キレート剤による処理後、セメ ント固化されるものとした。

嫌気性消化槽で発生した消化ガスは、精製された後に、 発電機で使用されることとした。メタン発生量は、昨年 度の実験結果¹⁹より、1kg-VSの刈草の投入につき、0.19 Nm³のメタンが得られることとし、刈草のVS分解率は 40%とした。発電プロセスでは、刈草の追加によって増 加したメタンガスを使ってガスエンジンで発電し、従来 の化石燃料由来の電気と代替することを想定した。発電 機に関する設定値は、既報¹⁹でとりまとめられた値(表5) を用いた。ガスエンジンの排熱は、刈草と下水汚泥の加 温 (20℃から55℃を想定) に利用されることとした。こ れにより、従来、下水汚泥の加温に使われていたメタン ガスの一部が不要になり、それらは、発電機で使われる こととした。刈草の比熱は、既報²⁴⁾を参考に、4 kJ/(kg-dry・K)と設定した。

表5 発電機に関する設定値

項目	値			
消化ガス精製 (kWh/Nm ³⁻ CH ₄)	0.387			
メタン低位発熱量 (MJ/Nm ³ , LHV)	35.9			
ボイラー熱効率 (%)	87.0			
ガスエンジン発電効率 (%)	33.0			
ガスエンジン排熱回収率 (%)	34.0			

刈草の焼却灰は、下水汚泥の焼却灰と混合されて、4 トンダンプを用い、埋め立て処分場への運搬されること とした。刈草の焼却灰の運搬によるガソリン消費量は、 4トンダンプのガソリン消費量に占有率(最大積載量44に 占める刈草の焼却灰重量33 kg/1000m²の割合)を乗じて 算出した。4トンダンプのガソリン消費量は、燃費を6.9 L/h¹⁶、走行速度は30 km/hとし、算出した。1回除草あ たりの焼却灰の運搬距離は、日本国内の標準的な値とし て、往復で21 kmとした。これは、国内の総面積378千 km^{2 24)}を、国内の灰埋め立て処分場数1,742施設²⁰⁾で除した値と同面積の円の半径の往復分に、迂回率(直線距離に対する道路距離の比)を乗じて計算した。迂回率は、既報 ²⁰⁾を参考に1.3を使用した。灰の埋め立て処分場への運搬 は、刈草の発生場所から下水処理場までの運搬と異なり、 温室効果ガスの排出量の全体(刈草の運搬に伴う分は除 く)に対し、1%以下で小さいため、固定して計算した。

灰の埋め立てプロセスは、焼却灰のセメント固化物を 陸上埋め立てすることを想定した。計算には、既往のプ ログラム²⁰²を使用した。このプログラムでは、浸出水の 処理に電気および重油が使用され、埋め立て用の重機に 軽油が使用されることを想定している。

刈草の下水汚泥への追加的な投入による脱水性の改善 ¹³、焼却炉の補助燃料削減の効果(脱水汚泥に刈草のメ タン発酵残渣が含まれることによる保有熱量増加)も期 待されるが、定量的な効果に関する知見が十分でなく、 過剰な評価になることを避けるため、本計算には含めな かった。

3.3 結果

図4に各プロセスのGHG 排出量と発電された電力に よるGHG 排出削減量を示した。破線は、GHG 排出削 減量、すなわち発電された電力量をGHG に換算した値、 を示す。GHG の排出削減量が排出量を上回るのは、年 間走行距離が 163km(1回の除草につきトラックの走行 距離 81km)以下のケースであった。迂回率を1.3 とした 場合、本結果から地球温暖化対策として有効な刈草の収 集範囲は、下水処理場から直線距離で 31km 以下の地域 であった。運搬プロセスを除いた GHG を排出したプロ セスのうち、GHG 排出量は、除草、焼却、消化ガス精 製の順に大きかった。

図4 走行距離に応じた各プロセスの温室効果ガス排出 量と発電された電力による温室効果ガス排出削減量

4. まとめ

本研究では草木バイオマスに関する嫌気性消化実験を 行った。その結果、刈草と下水汚泥の混合嫌気性消化実 験について、単独消化時よりも混合消化時に、メタンガ ス生成量の増加することが示された。コナラチップと下 水汚泥の混合嫌気性消化実験について、従来の爆砕処理 よりも弱い圧力0.9 MPa および温度178℃の条件下でも、 50%程度のメタン転換率が得られた。

また、地球温暖化対策として有効な刈草の収集範囲を 明らかにするため、嫌気性消化槽を有する既存の下水処 理場へ刈草を運んで、下水汚泥と混合して嫌気性消化す る事業を仮定して、実施に伴う追加的な GHG 排出量、 および、刈草を嫌気性消化しメタンガスを得て、発電す ることによる GHG 排出削減量を計算した。その結果、 地球温暖化対策として有効な刈草の収集範囲は、下水処 理場から直線距離で 31km 以下の地域であった。

謝辞

汚泥採取などでお世話になりました下水処理場関係各 位、および爆砕実験でお世話になりました東京ガス株式 会社関係各位に謝意を表します。

参考文献

- 地球温暖化対策の推進に関する法律(平成十年十月九日法 律第百十七号)、第20条の1第1項、最終改正:平成二六 年五月三〇日法律第四二号
- 山本茂浩:新潟市における再生可能エネルギーの取組み、
 第50回下水道研究発表会講演集、pp.916-918、2013.
- 山本茂浩:下水汚泥と刈り草等の混合消化実証実験、第51
 回下水道研究発表会講演集、pp.937-939、2014.
- 独立行政法人土木研究所:平成24年度下水道関係調査研究 年次報告書集、土木研究所資料、第4275号、2013.
- 5) 栗田雄佑、小松俊哉、姫野修司:異なる下水汚泥を用いた 刈草と混合嫌気性消化における分解特性の把握、第51回下 水道研究発表会講演集、pp.940-941、2014.
- 6) 落修一、鈴木穣、南山瑞彦、越智崇:木質に蒸煮・爆砕を施す ことによる木質と下水汚泥との混合・嫌気性消化法に関する研 究、下水道協会誌論文集、Vol.41、No.498、pp.97-107、2004.
- 7) 落修一、南山瑞彦、長沢英和、鈴木穣:蒸煮・爆砕木質と 下水汚泥とを混合・嫌気性消化した消化汚泥の処理性、下 水道協会誌論文集、Vol.42、No.508、pp.111-123、2005.
- 8) 小林拓朗、李玉友、原田秀樹、安井英斉、野池達也:温度 フェーズと中間オゾン処理を組合わせたプロセスによる余 剰汚泥嫌気性消化の促進効果、環境工学研究論文集、Vol.44、

pp.703-712、2007.

- 9) Feng Wang, Taira Hidaka, Jun Tsumori : Enhancement of anaerobic digestion of shredded grass by co-digestion with sewage sludge and hyperthermophilic pretreatment, Bioresource Technology, Vol.169, pp.299-306, 2014.
- 10) Taira Hidaka, Feng Wang, Taketo Togari, Tsutomu Uchida, Yutaka Suzuki : Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge, Bioresource Technology, 149, pp.177-183, 2013.
- 11) Myhre, G., D. Shindell, F.M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang. : Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 659–740, 2013.
- 環境省:温室効果ガス排出量算定・報告マニュアル(Ver3.5)、
 2014.
- 13) 一般財団法人建設物価調査会:国土交通省土木工事標準積 算基準書(河川・道路)、p.III-2-①-2、2013.
- 14) 独立行政法人土木研究所:公共事業由来バイオマスの資源 化・利用技術に関する研究、平成20年度下水道関係調査研 究年次報告書集、土木研究所資料第4157号、pp.38-46、2011.
- 公園緑地維持管理研究会:公園・緑地の維持管理と積算、
 p. 303、2005.
- 16) 一般財団法人経済調査会:月刊積算資料、2010.
- 17)藤原宣夫:植栽樹木の二酸化炭素固定量からみた都市緑化施 策の評価に関する研究、千葉大学博士論文、pp.37-50、2005.
- 18) 津森ジュン、日高平、桜井健介、堀尾重人、王峰:地域バイオマスの資源管理と地域モデル構築に関する研究、土木研究所資料第4249号、pp.7-11、2013.
- 19) 惣田訓、池道彦:処理規模を考慮した様々な下水汚泥処理 システムのエネルギー消費量の比較評価、再生と利用、 Vol.34、No.129、pp.6-15、2010.
- 20) Onoda, Y., Westoby, M., Adler, P. B., Choong, A. M., Clissold, F. J., Cornelissen, J. H., Diaz, S., Dominy, N. J., Elgart, A., Enrico, L., Fine, P. V., Howard, J. J., Jalili, A., Kitajima, K., Kurokawa, H., McArthur, C., Lucas, P. W., Markesteijn, L., Perez-Harguindeguy, N., Poorter, L., Richards, L., Santiago, L. S., Sosinski, E. E., Jr., Van Bael,

S. A., Warton, D. I., Wright, I. J., Wright, S. J., Yamashita, N.:Global patterns of leaf mechanical properties, Ecology letters, Vol.14, Issue 3, pp.301-312, 2011.

- 21) 環境省温室効果ガス排出量算定方法検討会:温室効果ガス 排出量算定方法に関する検討結果(平成22年3月)、2010.
 http://www.env.go.jp/earth/ondanka/santeiho/kento/h220 3/7.pdf
- 22) 社団法人全国都市清掃会議:ごみ処理施設整備の計画・設 計要領、改訂版、p.36、2006.
- 23) 松藤 敏彦:都市ごみ処理システムの分析・計画・評価-マ テリアルフロー・LCA 評価プログラム、2005.
- 24) Jones H.G. : Plants and Microclimate. Cambridge

University Press, Cambridge, UK, 1992.

- 25) 国土交通省国土地理院:平成 25 年全国都道府県市区町村別 面積調、2013. http://www.gsi.go.jp/KOKUJYOHO/MEN CHO/201310/opening.htm
- 26) 環境省大臣官房廃棄物・リサイクル対策部廃棄物対策課: 日本の廃棄物処理 平成 24 年度版、2014. http://www.env. go.jp/recycle/waste_tech/ippan/h24/data/disposal.pdf
- 27) 西沢明:道路距離と直線距離による道路網の利便性評価、
 地域学研究 Vol.18, pp. 145-164, 1987.

下水道を核とした資源回収・生産・利用技術に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平23~平27 担当チーム:材料資源研究グループ 研究担当者:津森ジュン、日髙平、高部祐剛

【要旨】

有機物・栄養塩が集約される下水処理場の資源、施設を活用した資源回収・生産・利用技術に関する調査・研究を行った。効率的なリン回収方法の開発を目的に、白金コーティングチタン電極を用いた下水脱水分離液の電気分解実験を行い、時間経過とともに電気分解によるリン回収量が低下するため、電極での回収量の維持・回復がリン回収率向上において重要であると考えられた。また、下水処理水を直接利用した上で培養される微細藻類を活用したエネルギー生産システムの構築を目的に、自然条件下でのRaceway型藻類培養装置を用いた培養実験を行い、CO2添加により培養藻類中の高位発熱量が向上することを明らかとするとともに、藻類増殖を表現する数理モデルを構築し、実験データを用いて、数理モデルの再現性を確認した。

キーワード:電気分解、リン、微細藻類培養、CO2添加、数理モデル

1. はじめに

我が国は、エネルギー自給率、食料自給率ともに低 く、再生可能エネルギーや資源リサイクル等の活用、 普及拡大が促される現代において、下水道が有する 水・資源・エネルギーのポテンシャルを活用した、農 業、エネルギー産業等への貢献が期待されている¹⁾。

ヒトの社会活動に必要不可欠な資源であるリンに ついて、日本ではリン鉱石を全量海外から輸入し、そ の約80%を肥料として利用している。しかし、諸外国 ではリンを輸出規制する動きがあり、輸入以外での安 定的なリン資源の確保が課題となる。一方、下水道は リン資源を大量に保有している²⁾ことから、下水から のリン回収を積極的に行い、回収したリンを農業用肥 料として使い、環境に返し、循環させることで、日本 での安定したリン資源確保に貢献することが期待され る。当チームでは、電気分解による下水からのリン資 源の回収手法について検討を行ってきたが電気分解に よるリン回収効率の向上が課題となっている³⁾。また、 近年、藻類を用いたエネルギー生産に大きな注目が集 まっている 4。下水中には栄養塩が多く含まれること から下水を利用した藻類培養、エネルギー生産が期待 される。当チームでは、下水処理水を直接利用し培養 される藻類を利用したエネルギー生産システムの構築 を目的に研究を展開しているが 5,6、自然条件の変化 を考慮した藻類培養技術の確立には至っていない。

これらの観点から電気分解による下水からのリン資

源の回収を目的とした「高濃度栄養塩含有物質からの 資源回収・利用技術の開発」では、リン回収率向上の ための課題の抽出を行った。また、「藻類による資源生 産システムの開発」では、自然条件下でのRaceway型 藻類培養装置を用いた培養実験を行い、CO2添加が培 養藻類中の高位発熱量に及ぼす影響の把握、ならびに 藻類増殖を表現する数理モデルを構築し、実験データ を用いて、数理モデルの再現性を評価することとした。

2. 高濃度栄養塩含有物質からの資源回収・利用技術の 開発

下水道には、リン肥料輸入量の最大約30%のリンが 流入しているとの試算がある等⁷⁾、リンが豊富に存在 することが広く知られており、下水道からのリン回収 によるリン資源確保への貢献が期待されている。一方 で、リン回収におけるコスト、安定的な取引先の確立 といった課題が存在し⁸⁾、広く普及に至っていないの が現状である。

当チームにおいて、電気分解を用いたリンの回収手 法の検討を行ってきた。アルカリ剤添加が必要なHAp 法等の従来のリン回収手法に比べ、電気分解により陰 極近傍をアルカリ条件下にしてリンを析出させるため アルカリ剤添加が不要であり、より低コストなリン回 収の達成が期待される。また、電極に鉄を適用した場 合、析出物としてリン酸鉄が得られる一方で、白金コー ティングチタン電極を用いることで、リンがヒドロキ シアパタイトの形で析出することが明らかとなっている³⁾。一方で、リン回収率向上が課題となっている³⁾。

本年度は、脱水分離液を対象とし、電気分解実験を 行い、脱水分離液中のリン濃度の経時変化を把握した 上で、リン回収率向上のための課題の抽出を行った。

2.1 方法

電気分解の容器には5Lビーカーを用い、自金コー ティングチタン電極板4枚を陽極と陰極を交互に配列 し、電源には直流安定化電源(菊水電子工学(株)、PCM 18-5A)を使用した(図 2-1)。対象試料は、実処理場よ り採取後ろ過(GF/B, Whatman)を行った脱水分離液で ある。電流を3.5Aに設定し、電流一定で96時間通電 した。容器内の脱水分離液は、通電開始後6、30、54 および78時間後の計4回、一定量(2L)を入れ替えた。 容器内の脱水分離液について、1、3、6、24、30、48、 54、72、78、96時間後に、水温、pH、DO、窒素およ びリン濃度の測定を行った。実験終了時の陰極の析出 物(40℃で半日乾燥)を対象に、リン、ナトリウム、カ リウム、鉄、カルシウムおよびマグネシウム濃度を測 定した。

窒素およびリン濃度は TRAACS2000 (Bran Luebbe) で測定し、ナトリウム、カリウム、鉄、カルシウムお よびマグネシウム濃度については、高周波誘導結合プ ラズマ発光分光分析装置 (PerkinElmer、Optima 8000) により測定した。

2.2 結果と考察

表 2-1 に本実験で用いた脱水分離液の組成を示す。 DTNに占めるNH₄⁺の割合は75.4%、DTPに占めるPO₄³⁻の割合は62.8%であった。

図 2-2 に電気分解を実施した系 (電気分解系)におけ る水温、pH、DO、窒素およびリン濃度の経時変化を 示す。リンについては、水入れ換え後の脱水分離液に おけるリン濃度の理論値も合わせて示す。

水温について、電子移動における水の抵抗による発 熱が原因となり、実験開始後3時間で、32℃まで上昇 し、その後も35℃付近で維持された。

pHは、サンプリング時間において多少のばらつきがあるが、6付近の値であった。

DOは、陽極での反応(式 2-1)により酸素が発生するため、実験期間中22 mg-O₂/L以上であった。

$$2OH^{-} \rightarrow H_2O + 1/2O_2 + 2e^{-}$$
 (2-1)

図 2-1 電気分解実験系

表 2-1	脱水分離液の組み	ť
1 4-1	カノロノコト ノリ 円圧日ス Yノ 小山小	ヘ

TOC (mg-C/L)	DOC (mg-C/L)	IC (mg–C/L)	SS (mg/L)
484	450	30.5	280
TN (mg-N/L)	DTN (mg-N/L)	NH_4^+ (mg-N/L)	
99	85.8	64.7	
TP (mg-P/L)	DTP (mg-P/L)	PO4 ³⁻ (mg-P/L)	
26.5	16.4	10.3	

窒素濃度については、82.9±3.94 mg-N/L であり、実 験期間を通じて、濃度に顕著な変化は見られなかった。

リン濃度については、実験前は 16.4 mg-P/L であったが、実験開始後 1 時間で 3.92 mg-P/L と、12.5 mg-P/L の濃度減少が確認された。その後、一定時間ごとの系内の水入れ換えにともない系内のリン濃度が上昇したと考えられるが、水入れ換え後の 18 時間の電気分解による濃度減少は、最大でも 5 mg-P/L であった。

次に、脱水分離液における 0-30、30-54、54-78、78-96 時間でのリンの減少量を図 2-3 に示す。0-30 時間で 68 mg-P のリンの減少があったが、その後は、高々26 mg-P (30-54 時間)の減少であった。このことから、本実験で の電気分解による脱水分離液からのリン回収は主とし て、実験開始後 30 時間以内に生じていることが明らか となり、また、時間経過とともに減少量が減少する傾 向が見られた。時間経過とともに減少量が減少する傾 向が見られた。時間経過とともに、脱水分離液中のリ ンの減少量が低減した一因としては、析出物形成の核 となる陰極⁹⁰周りに析出物が付着することで不導体が 形成され、リン析出の効率が低下した可能性があり、 リン回収率向上においては、この不導体の対策が重要 であると考えられる。

電気分解系での陰極への析出物の組成を図 2-4 に示 す。析出物でのリン濃度は12 g-P/kg-DS であった。ま た、他の元素に比べ、マグネシウム濃度が 210 g-Mg/kg-DS と高濃度で検出された。

図 2-2 電気分解系およびブランク系での各水質項目 の経時変化。DO データでの矢印は、プロッ ト点以上の値を示す

図 2-3 電気分解による脱水分離液中リン減少量

3. 藻類による資源生産システムの開発

化石燃料の枯渇への懸念、化石燃料利用にともなう 地球温暖化を背景に、再生可能エネルギーの利用が推 進される現代において、藻類を用いたエネルギー生産 に大きな注目が集まっている。近年では、都市下水や 工場排水に豊富に含まれる窒素、リンといった栄養塩 を用いた藻類培養の試みが実施されてきている^{10,11}。 日本のように下水道システムが広く普及している国々 では、処理プロセスを経た処理水に含まれる栄養塩や、 焼却炉や消化ガス由来CO₂といった下水処理場が有す る資源および下水処理場でのストック(土地、施設)を 活用した藻類培養によるエネルギー生成が期待される。

既往研究において^{12,13)}、ボトリオコッカスやクロレ ラといったオイル含量の高い特定藻類を対象に、下水 処理水を用いた培養がラボレベルで実施されているが、 これら特定の藻類の培養は、実環境下での適用性に課 題が残る。当チームにおいては^{5,6)}、植種を行わず、 二次処理水を直接利用した藻類培養実験を行い、藍藻 類や緑藻類が優占すること、また、CO₂添加および水 理学的滞留時間 (HRT)が藻類培養特性に及ぼす影響 をラボレベルで明らかにしている。一方で、自然条件 下での藻類培養におけるこれら操作因子の効果につい ては実証されていない。また、実施設の設計方法、操 作方法を提示するためには、まず、光、水温、降雨と いった自然環境の変化、処理水質の変動等が藻類培養 に及ぼす影響を明らかにするとともに、設計・操作因 子を明らかにする必要がある。既往研究¹⁴⁾では、下水 処理水を用いた藻類培養のモデルを構築しているが、 自然環境の変化が藻類培養増殖特性に与える影響は考 慮されていない。そこで、本研究では、下水処理水を 用い、CO₂を添加した条件下での藻類培養を、屋外に 設置した培養装置で実施し、自然条件下での藻類増殖 特性および CO₂添加効果を既往研究³⁾との比較を含め 把握するとともに、自然環境の変化も考慮に入れた藻 類増殖を表現する数理モデルを構築し、実測データを 用いてその再現性を確認することを目的とした。

3.1 方法

藻類培養に用いた下水二次処理水は、実流入下水を 標準活性汚泥法処理装置(容積:100 L、HRT:6時間)で 連続的に処理して得た。実下水処理場の屋外に設置し た Raceway 型培養装置(図 3-1)に流速95 L/日で連続的 に二次処理水を流入させ、HRT4 日で藻類培養を行っ た。過去の知見¹⁰に従って、培養槽中 pH が 8 に達し た時にガスボンベより CO₂を添加し、藻類増殖に必要 な炭素源を供給した。装置への CO₂添加を 2014 年 6 月 6 日より開始し、11 月 21 日に装置の運転を停止し た。

流入下水、処理水および培養水中の水温、pH および DO を平日1回、また、栄養塩 (窒素、リン)、クロロ フィル a、SS、有機・無機炭素濃度を原則週に2回測 定した。また、藻類および動物プランクトンの同定を 原則2週間に1度実施した。さらに、培養藻類の高位 発熱量を測定した (n=10)。本原稿では、SS、栄養塩、 溶存有機物濃度ならびに藻類および動物プランクトン 同定結果を中心に報告する。

pH および水温は、HM-31P (TOA DKK, Japan)で、DO は DO-31P (TOA DKK, Japan)でそれぞれ測定した。窒 素およびリン濃度は、TRAACS2000 (Bran Luebbe, Germany)で、また、有機・無機炭素濃度は、TOC-V CPH (Shimadzu, Japan)でそれぞれ測定した。SS、クロロフィ ル a および高位発熱量は Standard method¹⁵⁾、河川水質 試験方法 (案)¹⁶および JIS M 8814¹⁷⁾に従い測定した。 藻類および動物プランクトンの同定は、光学顕微鏡 (BH-2, Olympus, Japan)を用いて行った。

3.2 結果および考察

実験期間での培養を実施した地点における月別平均

気温は 12.2-26.0℃の範囲にあり 8 月で最も高く、また、 全天日射量は 7.9-18.7 MJ/m2/day の範囲であり 7 月で 最も高かった¹⁸⁾。

実験期間を通じた、流入下水での SS、全有機炭素、 全窒素および全リンの中央値は、それぞれ 97.0 mg/L、 26.4 mg-C/L、25.6 mg-N/L および 3.40 mg-P/L であった のに対して、二次処理水では、4.2 mg/L (除去率中央値: 95.0%)、7.20 mg-C/L (75.5%)、15.6 mg-N/L (39.7%)およ び 2.00 mg-P/L (43.3%)であった。

藻類培養槽での DO は、光合成により 10 mg-O₂/L 以 上と飽和・過飽和状態であり、pH は CO₂ 添加にとも ない 7.7-8.0 の間で安定していた。

無機炭素濃度は、二次処理水で 11.8 mg-C/L であったが、CO₂添加により培養槽では 21.4 mg-C/L と増加した。

図 3-2 に二次処理水および培養水での SS、無機態窒素、PO4³および溶存有機物濃度の経時変化を示す。6 月 25 日から6月 27 日にかけて、SS が 137 から 30 mg/L まで大きく減少し、無機態窒素および PO4³が 0.225 か ら 1.55 mg-N/L および 0.161 から 0.527 mg-P/L まで上昇 した。7 月 1 日の動物プランクトン数が他のサンプリ ング日に比べて 1 オーダー高く、この動物プランクト ンの増殖が藻類を含む SS の減少に寄与した可能性が 考えられる。

7月にSSが増加した後、8月、9月で、SSが中央値 で206および166 mg/Lと比較的安定した値を示した。 無機態窒素およびPO4³はそれぞれの月で2.56 mg-N/L および1.39 mg-P/L、ならびに1.72 mg-N/L および0.521 mg-P/L であり、二次処理水に比して81.5 および44.4%、 ならびに87.8 および65.4%の除去率が得られた。

10月5、6日の台風での激しい降雨 (降雨量合計: 199 mm)により10月3日から7日にかけて、SSが136 mg/L から116 mg/L まで減少したが、1週間後の10月14日 には146 mg/L まで回復した。その後、10月28日から11月21日にかけてSSが164から90 mg/L まで減少し、 無機態窒素およびPO4³も6.53から11.0 mg-N/L および 0.062から1.16 mg-P/L まで上昇した。このSS が減少 した期間において、水温が17.4℃から10.2℃に急激に 低下しており、この水温低下がSS 減少の一因である

図 3-2 二次処理水および培養水での SS、無機態窒素、 PO₄³⁻および溶存有機物濃度の実測値および数 理モデルによる計算値

と考えられる。

培養槽で確認された動物プランクトンについて、体積から換算した乾燥重量¹⁹⁾は、培養槽でのSSの高々 3.2%であり、SSは藻類および藻類由来のデトリタスで 構成されていると考えられる。

SS 濃度が比較的安定した8月での培養槽単位面積当 たりの SS 培養量は12.9 g/m²/day であった。ニュージー ランドでの流入下水を用いた HRAP (High Rate Algal Pond)において、夏季 (11 月-1 月)で15.3 g/m²/day の培 養量が得られており¹⁰、本研究での8月の培養量は、 この HRAP での85%の値であった。藻類培養槽での溶

図 3-4 培養藻類の高位発熱量

存有機物濃度については、2 次処理水中の変動に呼応 する形で変化した一方で、培養期間での2次処理水中 濃度 (中央値: 5.30 mg-C/L)に比して、培養槽 (6.40 mg-C/L)での濃度は高かった。藻類の炭素固定にともな い SS が増殖し、藻類由来のデトリタスの一部が分解 することで溶存有機物濃度が上昇したものと考えられ る。

培養槽での藻類同定結果の一例を図 3-3 に示す。培 養期間を通じて、全藻類細胞数に占める緑藻の細胞数 の割合が 85-97%と高く、特にイカダモ科が 51-87%と 優占した。

図 3-4 に本研究および既往研究³⁾での培養藻類中高 位発熱量を示す。本研究での高位発熱量は、SS が減少 した7月1日で13.5 MJ/kg と特異的に低かったが、そ の他の期間では、15.3 から18.0 MJ/kg の範囲で安定し た値を示した。また、既往研究³⁾での値に比して、高 位発熱量が 36.7%増加したことから、自然条件下での 藻類培養における CO₂添加効果が示された。

藻類増殖を表現する数理モデルの概念図を図3-5に 示す。数理モデルは、Tsuno et al.²⁰⁾の湖沼モデルを参考 に構築し、さらに本研究では藻類の増殖における無機 炭素の影響を考慮した。状態変数は、藻類 (*M*: mg-Chl a/L)、動物プランクトン (*Z*: mg/L)、デトリタス (*D*:

図 3-5 数理モデルの概念図

mg/L)、溶存有機物 (*C*: mg-C/L)、無機炭素 (*IC*: mg-C/L)、 無機態窒素 (*N*: mg-N/L)、PO4³ (*P*: mg-P/L)およびDO (*O*: mg-O₂/L)である。なお、以下に示す数式において、 系内への各状態変数の流入は、右下に"in"と表記する。

藻類の増殖での影響項は無機炭素、無機態窒素およ びPO₄³濃度、水温ならびに全天日射量を考慮し、影響 項の式は既往研究を参照とした^{20,21}。藻類の増殖、呼 吸・枯死は一次式で、また動物プランクトンによる捕 食は温度影響および藻類濃度による影響を考慮した²⁰⁾。

各状態変数の物質収支式に関する式(3-1)から(3-11) に示す。なお、培養槽での無機炭素の変化は、実測値 を直線的に変化するものとし、培養槽内は完全混合で あるとした。また、モデルで用いる諸係数については、 本研究から得られた値、または文献値²⁰⁾⁻²⁸⁾を参照した。

藻類

$$\frac{dD}{dt} = \frac{Q}{V} \cdot D_{in} + \gamma_{MD} \cdot Y_{MD} \cdot k_{dM} \cdot M + \gamma_{MD} \cdot (I - Y_{MZ}) \cdot F_{maxZ} \cdot \frac{T}{20} \cdot \frac{K_{MZ}}{K_{MZ} + M} \cdot M \cdot Z + Y_{ZD} \cdot k_{dZ} \cdot Z - k_{dD} \cdot D - \frac{Q}{V} \cdot D \quad (3-6)$$

溶存有機物

$$\frac{dC}{dt} = \frac{Q}{V} \cdot C_{in} + \gamma_{DC} \cdot k_{dD} \cdot D - k_{dC} \cdot C - \frac{Q}{V} \cdot C \quad (3-7)$$

無機態窒素

$$\frac{dN}{dt} = \frac{Q}{V} \cdot N_{in} + \gamma_{CN} \cdot k_{dC} \cdot C + \gamma_{MN} \cdot (1 - Y_{MD}) \cdot k_{dM} \cdot M + \gamma_{ZN} \cdot (1 - Y_{ZD}) \cdot k_{dZ} \cdot Z$$
$$- \gamma_{MN} \mu_{maxM} \cdot f_T \cdot f_T \cdot f_{CNP} \cdot M - \frac{Q}{V} \cdot N \quad (3-8)$$

$$PO_{4}^{3}$$

$$\frac{dP}{dt} = \frac{Q}{V} \cdot P_{in} + \gamma_{CP} \cdot k_{dC} \cdot C + \gamma_{MP} \cdot (1 - Y_{MD}) \cdot k_{dM} \cdot M + \gamma_{ZP} \cdot (1 - Y_{ZD}) \cdot k_{dZ} \cdot Z$$

$$- \gamma_{MP} \cdot \mu_{maxM} f_{T} \cdot f_{1} \cdot f_{CNP} \cdot M - \frac{Q}{V} \cdot P \quad (3-9)$$

DO

$$\frac{dO}{dt} = \frac{Q}{V} \cdot O_{in} + k_L \frac{A(O_{sat} - O)}{V} + \gamma_{MO} \cdot \mu_{maxM} \cdot f_T f_I \cdot f_{CNP} \cdot M - \gamma_{MO} \cdot (1 - Y_{MD}) \cdot k_{dM} \cdot M - \gamma_{ZO} \cdot (1 - Y_{ZD}) \cdot k_{dZ} \cdot Z - \gamma_{CO} \cdot k_{dC} \cdot C - \frac{Q}{V} \cdot O \quad (3-10)$$
$$O_{sat} = 16.5 - \frac{8.0}{22.0} T \qquad (3-11)$$

ここで、Q: 系内への流入・流出水量 (m³/day)、V: 系 内の水量 (m³)、A: 系内の水表面積 (m²)、H: 系内の水 位 (m)、T: 水温 (°C)、I: 全天日射量 (MJ/m²/day)、Osai: 飽和溶存酸素濃度 (mg-O2/L)、fr: 水温による影響項 (-)、f: 日射量による影響項 (-)、fcnp: 無機炭素、無機 態窒素およびPO4-3-濃度による影響項 (-)、µmaxM: 藻類の 最大比増殖速度 (day-1)、Top: 藻類の最適水温 (°C)、Iop: 藻類の最適全天日射量 (MJ/m²/day)、K_{ICM}: 無機炭素の 半飽和定数 (mg-C/L)、K_{MM}: 無機態窒素の半飽和定数 (mg-N/L)、K_{PM}: PO₄³⁻の半飽和定数 (mg-P/L)、k_{dM}: 藻類 の呼吸・枯死速度 (day⁻¹)、 α :水の吸光係数 (m⁻¹)、 ε_0 : SSの吸光係数 (L/mg/m)、FmaxZ: 動物プランクトンの最 大ろ過速度 (L/mg/day)、K_M: 動物プランクトンのろ過 の半飽和定数 (mg-Chl a/L)、kaz: 動物プランクトンの 呼吸・枯死速度 (day-1)、kaD: デトリタスの分解速度 (day⁻¹)、k_{ac}: 溶存有機物の分解速度 (day⁻¹)、k_l: 酸素ガ ス移動係数 (m/day)、Y_{MD}: 藻類の呼吸・枯死における における枯死の割合 (-)、YZD: 動物プランクトンの呼 吸・枯死における枯死の割合 (-)、Y_M:動物プランク トンによる藻類の捕食の割合 (-)、 y_{MD}: 藻類からデト リタスへの換算係数 (mg/mg-Chla)、γ_{MZ}: 藻類から動物 プランクトンへの換算係数 (mg/mg-Chla)、ypc: デトリ タスから溶存有機物への換算係数 (mg-C/mg)、 y_{MO}: 藻 類の光合成・呼吸における酸素発生・消費量 (mg-O₂/mg-Chl a)、γzo: 動物プランクトンの呼吸におけ る酸素消費量 (mg-O2/mg)、yco: 溶存有機物分解時の酸 素消費量 (mg-O₂/mg-C)、y_M:藻類の窒素含有量 (mg-N/mg-Chl a)、_{YZN}:動物プランクトンの窒素含有量 (mg-N/mg)、y_{CN}: 溶存有機物の窒素含有量 (mg-N/ mg-C)、_{YMP}: 藻類のリン含有量 (mg-P/ mg-Chl a)、_{YZN}: 動物プランクトンのリン含有量 (mg-P/mg)、 ycv: 溶存 有機物のリン含有量 (mg-P/mg-C)

構築したモデルによるSS (藻類+動物プランクトン+ デトリタス)、無機態窒素、PO₄³および溶存有機物濃度 の計算値を図3-2に示す。なお、数値計算は、SSの増加 が始まった7月4日から行った。

図3-2より、各項目ともに、培養槽での増減の傾向を 良く再現できていることが理解できる。また、SSが比 較的安定した8、9月での実測値および計算値の中央値 は、SS、無機態窒素、PO4³および溶存有機物濃度でそ れぞれ、178および195 mg/L、2.40および2.37 mg-N/L、 0.900 および 0.463 mg-P/L ならびに 6.35 および 5.78 mg-C/L であり、PO4³⁻の計算値が実測値よりやや小さ かったが、モデルでの計算値は実測値と同様の値とな り、本モデルによる実測データの再現性が示された。

4. まとめ

本研究では、電気分解を用いた脱水分離液からのリ ン回収における回収率向上のための課題の抽出を行っ た。また、自然条件下でのRaceway型藻類培養装置を 用いた培養実験を行い、CO₂添加による培養藻類中の 高位発熱量への影響の把握、ならびに藻類増殖を表現 する数理モデルを構築した。以下に得られた成果を示 す。

 下水脱水分離液の白金コーティングチタン電極を 用いた電気分解実験において、リン回収は主として、
 実験開始後 30 時間以内に生じていることが明らかと なった。また、時間経過とともに脱水分離液中リンの 減少量が減少する傾向が見られ、この原因として、陰 極周辺での不導体の形成が寄与している可能性があり、 このことから、電極での回収量の維持・回復がリン回 収率向上において重要であると考えられる。

2) 自然環境かつ CO₂添加条件下での藻類培養により、 培養藻類中の高位発熱量は、概ね 15.3 から 18.0 MJ/kg の範囲で安定した値を示した。また、既往研究との比 較から、CO₂添加により高位発熱量が 36.7%増加した ことが分かり、自然条件下での藻類培養における CO₂ 添加効果が示された。

3) 自然環境変化を考慮にいれた、藻類増殖を表現する 数理モデルを構築し、実験データを用いて、モデルに よるデータの再現性を示した。

今後は、電極でのリン回収量の維持・回復手法を検 討するとともに、藻類培養においては、地域が異なる 下水処理場での処理水を用いた藻類培養実験を実施、 本モデルの適用性について検討を行う予定である。

参考文献

1) 国土交通省: 新下水道ビジョン、3. 下水道長期ビジ ョン~「循環のみち下水道」の成熟化~ p.3.17、2014. 2) 加藤文隆、大下和徹、高岡昌輝、武田信生、松本忠 生、檜物良一:下水処理システムからの各種リン回収 技術の仮想的適用および評価、土木学会論文集 G、Vol. 62 (1)、pp.27-40、2006.

3) 津森ジュン、井上研一郎、日高平、桜井健介:下水 道を核とした資源回収・生産・利用技術に関する研究、 平成 25 年度下水道関係調査研究年次報告書集、土木研 究所資料 4294 号、pp.12-21、2013.

4) Y. Chisti: Biodiesel from microalgae, Biotechnology Advances, 25, 294–306, 2007.

5) K. Inoue, T. Uchida: Microalgae cultured by sewage and organic constituents, Chemosphere, Vol.93 (7), pp.1442-1445, 2013.

6) K. Inoue, T. Uchida: Microalgae cultured by sewage and organic constituents, Chemical Engineering and Technology, Vol.36 (12), pp.2169-2173, 2013.

7) 加藤文隆、大下和徹、高岡昌輝、武田信生: 下水処 理システムからのリン回収技術の評価に関する一考察、 環境衛生工学研究、Vol. 17 (3)、pp.70-75、2003.

8) 佐藤隼、佐藤俊秀、仲川祐司、林志洋、松本頌、城 山英明、松尾真紀子、鎗目雅: 国内下水道からのリサ イクル・リン普及の課題、社会技術研究論文集、Vol. 11、 pp.108-118、2014.

9) 田中恒夫、小池範幸、佐藤孝志、新井忠男、平靖之: 電解法による畜産排水からのリン酸塩の回収、水環境 学会誌、Vol. 32 (2)、pp.79-85、2009.

10) J.B.K. Park, R.J. Craggs, A.N. Shilton: Recycling algae to improve species control and harvest efficiency from a high rate algal pond, Water Research, Vol.45, pp.6637-6649, 2011.

11) S. Chinnasmy, A. Bhatnagar, R.W. Hunt, K.C. Das: Microalgae cultivation in a wastewater dominated by carpet mill effluents for biodiesel application, Bioresource Technology, Vol.101, pp.3097-3105, 2010.

12) S. Cho, T.T. Luong, D. Lee, Y.K. Oh. T. Lee: Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production, Bioresource Technology. Vol.102, pp.8639-8645, 2011.

13) E.B. Sydney, T.E. da Silva, A. Tokarski, A.C. Novak, J.C. de Carvalho, A.L. Woiciecohwski, C. Larroche, C.R. Soccol: Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy. Vol.88 (10), pp.3291–3294, 2011.

14) I.L.C. Drexler, C. Joustra, A. Prieto, R. Bair, D.H. Yeh: Algae Sim: A model for integrated algal biofuel production and wastewater treatment, Water Environment Research, Vol.86, pp.163-176, 2014.

15) American Public Health Association Publication (APHA): Standard methods for the examination of water and wastewater, nineteenth ed. Washington, DC, USA, 2005.

16) 建設省技術管理業務連絡会水質部会、河川水質試 験方法 (案)、1997.

17) Japanese Standards Association, Japan Coal Energy Centre: Coal and coke determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value, Tokyo, 2003.

18) 気象庁、過去の気象データ検索、 http://www.data.jma.go.jp/obd/stats/etm/

19) M.A. Gates, A. Rogerson, J. Berger, Dry to wet weight biomass conversion constant for Tetrahymena elliotti (Ciliophora, Protozoa), Oecologia. Vol.55, pp.145-1448. 1982.

20) H. Tsuno, T. Hidaka, S.E. Jorgensen: 2-Layer Model Development, Planning and Management of Lakes and Re-servoirs, Models for Eutrophication Management, PAMOLARE Training Package Version 1.0, UNEP Inter-national Environmental Technology Centre (UNEP-DTIE-IETC) and International Lake Environment Committee (ILEC). pp.50-73. 2001.

21) D.M. Di Toro, D.J. O'Connor, R.V. Thomann: A dynamic model for the phytoplankton population in the Sacramento San Joaquin Delta, Advanced Chemistry Ser., Vol.106, pp.131-180, 1971.

22) T. Andersen, D.O. Hessen: Carbon, nitrogen and phosphorus content of freshwater zooplankton, Limnology and Oceanography. Vol.36 (4), pp.807-814, 1991.

23) S. Markager, W.F. Vincent: Spectral light attenuation and absorption of UV and blue light in natural waters. Limnology and Oceanography. Vol.45 (3), pp.642-650, 2000.

24) R.J. Geider, H.L. macIntyre, T.M. Kana: A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnology and Oceanography. Vol.43 (4), 679-694, 1998.

25) 津野洋、浦邊真郎、吉川克彦、草野文嗣:数理モデルによるエアリフト循環の余呉湖水質改善効果の予知に関する研究、水環境学会誌, Vol.19 (3), pp.228-235, 1996.

26) 奥川光治、宗宮功: 数理モデルによる富栄養化の

シミュレーション解析、土木学会論文報告集、Vol.337、 pp.119-128、1983.

27) J.T.O. Kirk: Light and photosynthesis in aquatic ecosystems, Cambridge University Press., U.K., 1983.

28) E. Evervecq, V. Gosselain, L. Viroux, J.P. Descy, Potamon: A dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Research. Vol.35 (4), pp.901-912, 2001.

低炭素型水処理・バイオマス利用技術の開発に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平23~平27 担当チーム:リサイクルチーム

研究担当者:津森ジュン、日高 平

【要旨】

低炭素型・循環型社会の構築に向け、下水処理場に設置している嫌気性消化槽を活用した、低炭素型水処理・ バイオマス利用技術を開発するための調査を行った。脱水汚泥の中温嫌気性消化について、投入基質濃度が消 化特性に及ぼす影響を調査したところ、投入基質 TS が 10%以下の場合、安定した中温嫌気性消化が可能であり、 投入有機物 (VS) あたりのバイオガス発生率は 0.47 NL/gVS 程度、粘度は 5 dPa・s 以下、アンモニア性窒素濃 度はおおむね 3,000 mgN/L 以下であった。実下水処理場の消化汚泥の脱水ろ液で藻類を培養し、メタン転換率 を回分式実験にて測定したところ、培養藻類濃度は 0.7 gCOD/L 程度、生成メタンガス量は 0.13 NL-メタン/L-培養液程度であった。嫌気性消化前段の処理である重力濃縮法の機能改善手法であるみずみち棒について、現 場の維持管理データを整理したところ、標準活性汚泥法では水温が濃縮汚泥濃度に影響を及ぼしており、オキ シデーションディッチ法では汚泥容量指標が濃縮汚泥濃度に影響を及ぼしていることが明らかになった。

キーワード:メタン発酵、下水脱水汚泥、脱水ろ液、藻類培養、みずみち棒による重力濃縮

1. はじめに

本研究では、低炭素型・循環型社会の構築に向け、 下水処理場に設置している嫌気性消化槽を活用した、 低炭素型水処理・バイオマス利用技術を開発してい る。嫌気性消化の導入が進んでいない地方都市では、 小規模類似排水処理施設が点在しており、汚泥を集 約嫌気性消化することで効率化が期待でき、運搬時 には、汚泥の脱水により体積を減らすのが望ましい。 そこで、研究事例の少ない脱水汚泥を対象とした嫌 気性消化について、実験を行った¹⁾。嫌気性消化後 の脱水ろ液には、豊富な栄養塩が含まれており、通 常は返流水として水処理系に戻るために、水処理系 への負荷増加が懸念される。そこで、脱水ろ液など に含まれる栄養塩を活用した藻類の培養および培養 藻類の嫌気性消化特性を調査した²⁾。また、下水汚 泥の嫌気性消化の前段階では濃縮を行うことが一般 的であり、濃縮効率向上技術として土木研究所では みずみち棒を開発してきた。10カ所以上の下水処理 場現場に導入され、導入後のデータが蓄積している ことから、導入効果の解析を試みた3)。

2. 下水脱水汚泥の中温嫌気性消化に関する研究

2.1 はじめに

地球温暖化対策の進展や資源・エネルギー問題の

対応に向けて、下水汚泥の嫌気性消化の工程で発生 するメタンガスの有効利用に期待が高まっている。 我が国で発生する下水汚泥中の有機分総量のうち、 バイオガスや汚泥燃料としてエネルギー利用されて いる割合は2割未満であり、より積極的な活用が求 められている⁴。

小規模施設への展開を促進するためには、拠点と なる処理場に、周辺の排水処理施設で発生する汚泥 を含めて、地域の有機性廃棄物を集約することが考 えられる。再生可能エネルギーの固定価格買取制度 も始まり、下水処理場への消化ガス発電の導入が進 みつつある。バイオガス発生量を増加させることで、 エネルギー利用効率が向上する。汚泥の運搬につい ては、含水率を減らして体積を減らすことで、輸送 を効率的に行うのが望ましい。

下水汚泥の集約処理として、送泥管を用いて、ま た濃縮汚泥を車両により輸送し、拠点となる下水処 理場で嫌気性消化を行っている例が見られる。また、 脱水汚泥を車両により処理場外へ搬送し、焼却処理 を行っている例や、隣接する清掃工場で下水汚泥お よび都市ごみの混焼を行っていた例がある。下水脱 水汚泥を含む有機性廃棄物を集約して、乾式メタン 発酵を行う廃棄物処理施設の例もある。

下水汚泥処理の集約化を意図した脱水汚泥の嫌気

性消化については、1991年度~1996年度に建設省土 木研究所汚泥研究室で実験的検討がなされている。 中温(30℃恒温室)では固形物濃度(TS)10%程度 まで、高濃度化がガス発生に及ぼす影響が少ないこ とが示されている⁵⁾。高温(55℃)ではTS 10%程度 でアンモニア性窒素濃度が 4,000 mgN/L 程度まで増 加し、ガス発生量は通常の数%でしかなかったこと が示されている ⁰。しかしながら、これらの研究は 主として回分式実験や数ヶ月程度の連続式実験に限 られており、長期的な連続実験による評価はなされ ていない。藤島ほか⁷⁾は、流動性を保つ TS 11%まで 希釈した脱水汚泥を対象とした中温嫌気性消化が可 能であることを、清水・平岡⁸⁾はTS 8~12%での中 温および高温嫌気性消化実験結果に基づき汚泥処理 のエネルギー自立が可能であることを報告している ものの、それ以上の TS 条件や、粘度については報 告されていない。また海外での脱水汚泥の嫌気性消 化に関する報告例^{9,10)}があるものの、VS/TS 比、 COD_C/VS 比といった基本的な汚泥性状の指標も我 が国のものとは異なっている場合が多く、そのまま 知見を適用するのは難しい。

機械濃縮機の導入により、混合汚泥を TS 5%程度 に濃縮して嫌気性消化することで、消化ガス発生量 増加および加温用燃料の削減を実現した現場での事 例があり11)、高濃度化は消化槽運転の効率化にもつ ながる。現状として、我が国の現場での下水汚泥の 高濃度消化は TS 5%程度までである¹²⁾。しかしなが ら近年、これまでは想定されていなかった生ごみな どの下水処理場への受入が、石川県珠洲市などで本 格的に実現されており、状況は変わりつつある。国 土交通省の下水道革新的技術実証事業(B-DASHプ ロジェクト)でも、下水汚泥と有機性廃棄物の混合 消化に関する実証データが集積しつつある。小規模 施設では、周辺の排水処理施設からの汚泥も、集約 処理の対象となり得る。より小規模向け水処理方式 であるオキシデーションディッチ法 (OD) からの脱 水汚泥および有機性廃棄物の混合消化の研究も始ま っており^{13,14)}、小規模施設への普及の機運が高まり つつある。

このような背景のもと、筆者らは、混合汚泥を実 験室での遠心分離操作により TS 10%程度まで濃縮 した場合の連続式中温嫌気性消化実験を行っており、 通常の投入基質濃度の場合と同程度の負荷率で、同 程度のメタン転換が可能であることを、アンモニア 性窒素や粘度への影響とあわせて示している^{15,16,17}。 しかし、実験室で遠心分離した汚泥と脱水汚泥の性 状は例えば溶解性成分の構成などについて同一でな く、現場への導入検討を行うためには、脱水汚泥を 用いた長期的な連続実験に基づく知見が必要である。

そこで本研究では、脱水汚泥の中温嫌気性消化に おいて、投入基質濃度が消化特性や消化液性状に及 ぼす影響を調査することを目的として、都市下水処 理場で採取した脱水汚泥を対象とした連続式実験を、 無希釈から TS 5%程度の濃度範囲で行った。

2.2 実験方法

2.2.1 用いた脱水汚泥

実験に用いた脱水汚泥の性状を表1にまとめて示 す。脱水汚泥は、嫌気無酸素好気法、循環式硝化脱 窒法などの高度処理の系列を含む都市下水処理場

(処理場 A)で採取した。生汚泥および余剰汚泥を、 主としてポリ硫酸第二鉄を添加して脱水している。 平均値での VS/TS 比は 0.77、COD_{Cr}/VS 比は 1.8 で あった。

時期は多少異なるものの、処理場Aの混合汚泥を 実験室での遠心分離によりTS4%程度に濃縮して測 定した値¹⁶⁾をあわせて示している。平均値での VS/TS比は0.81、COD_{Cr}/VS比は1.5であった。脱水 汚泥は、混合汚泥に比べてVS/TS比が低め、 COD_{Cr}/VS比が高めであった。

なお一部の考察では、処理場 A および標準活性汚 泥法を採用している別の都市下水処理場(処理場 B) の混合汚泥を濃縮して用いた連続嫌気性消化実験の 結果^{16,17)}も引用して、比較した。

		本研究(脱水汚泥)		混	合汚	泥	
TS	(%)	19.6	±	1.4	3.7	±	0.4
VS	(%)	15.2	±	1.4	3.0	±	0.4
CODcr	(g/kg)	275	±	37	44.4	±	7.9
С	(%TS)	39.5			39.5	±	0.3
Н	(%TS)	6.5			6.2	±	0.3
Ν	(%TS)	4.0			4.8	±	0.7
0	(%TS)	34.7				~	

表1 実験に用いた脱水汚泥の性状

2.2.2 連続式実験

有効容積 2 L の完全混合嫌気性消化反応器 (BioReactor Simulator、BIOPROCESS CONTROL) 6 系列(R1~R6)を用いて、脱水汚泥を基質とした連 続式実験を行った(表 2)。種汚泥には、日高ほか¹⁸⁾ が、処理場 A の混合汚泥を用いて中温条件下で培養 した TS 1%程度の消化汚泥を用いた。週 3 回(月、 水、金;祝日がある場合は適宜変更)基質を投入し、 同量の消化液を引き抜いた。脱水汚泥の希釈には、 沸騰して冷ました水道水を用いた。運転開始後 51 日目までは、脱水汚泥を TS 5%もしくは 10%まで希 釈して、徐々に投入量を増加させながら運転した。 その後 88 日目までは、投入 TS 15%まで希釈して、 基質投入日に脱水汚泥量として 60 g-wet を毎回投入 した。

反応器毎の消化特性がおおむね同様で、連続運転 の安定を確認した89日目以降は、各反応器で投入基 質 TS を変化させた条件を設定し、60 g-wet を毎回投 入した。R1 および R2、ならびに R5 および R6 は再 現性の確認のために同じ条件での運転とした。この 条件下で、投入脱水汚泥の平均 TS および VS に対し て、水理学的滞留時間(HRT)は R1 および R2 で 20 d、R3 で 40 d、R4 で 60 d、R5 および R6 で 78 d となり、有機物負荷率はすべての反応器で 1.9 kgVS/(m³·d)となる。投入基質が通常よりも高濃度で あることから、HRTはTS 5%の場合を除いて一般的 な設計値である 20~30 d¹⁹⁾より長い。有機物負荷率 は維持管理指針²⁰⁾で示されている 1~3 kgVS/(m³·d) の範囲内である。現場では最大値近くで運転するこ とは少なく、今回の設定値は、現場での一般的な実 際の値17)よりはやや高めである。

表2 連続式実験の運転条件

経過日数(d)	0~51	52 ~ 88	89~223	
投入基質TS(%)の	と入基質TS(%)の R1・R2		15	5
設定値 [®]	R3	5~10	15	10
	R4	5~10	15	15
	R5 • R6	5~10	15	無希釈
投入基質量 (g-wet/回) ^b	R1 ~ R6	10~50	60	60

2.2.3 分析方法

pH、TS、VS、COD_{Cr}、アンモニア性窒素、水溶性 揮発性脂肪酸(VFAs)、粘度、発生バイオガス量、 ならびに炭素・水素・窒素および酸素(CHNO)組 成の分析を、基本的に下水試験方法(1997年)に従 って行った。COD_{Cr}の分析は吸光光度計(DR3900、 HACH)およびCOD_{Cr}試薬(HR、HACH)を用いた。 アンモニア性窒素の分析には、自動比色分析装置

(TRAACS2000、BRAN LUEBBE)を用いた。VFAs の分析は、イオンクロマトグラフ(IC 20、DIONEX) を用いた。粘度の分析には、粘度計(VISCOTESTER VT-04、リオン)を用いた。発生バイオガス量の測 定は、10 NmL 程度単位の水上置換方式のガス流量 計(BioReactor Simulator、BIOPROCESS CONTROL) を用いた。CHNO の分析は、元素分析計(FALSH EA1112、アムコ)を用いた。みかけの除去率は、投 入濃度と消化液濃度の差を投入濃度で除して算出し た。

図3 アンモニア性窒素濃度の経時変化

2.3 結果および考察

2.3.1 消化液性状の経時変化

実験期間中の TS、VS、およびアンモニア性窒素 濃度の経時変化をそれぞれ図 1~図 3 に示す。消化 液の濃度は徐々に増加し、88 日目まではすべての反 応器が同様に推移し、89 日目以降、投入基質の TS 濃度に応じて変化した。TS および VS のみかけの除 去率はそれぞれ 3~4 割および 5 割程度で、現場の混 合汚泥の場合²¹⁾のそれぞれ5割および6割程度より やや低かった。脱水汚泥は、混合汚泥と比べて、無 機分が多くまた溶解性有機分が少ない影響が考えら れる。投入基質のTS 15%以上の場合、消化液のTS は10%を超過した。アンモニア性窒素濃度は、無希 釈脱水汚泥を投入した場合に最大で5,000 mgN/L 程 度に達した。その後減少しているのは、反応が阻害 され有機物の分解率が低下したことによる可能性な どが考えられる。pH は、投入基質のTS 濃度が高い ほど高い傾向が見られた。

VFAs は、経過日数 201 日目および 228 日目に測 定した。投入基質の TS 10%以下の場合、ほとんど VFAs の蓄積は見られず、最大でも酢酸が 62.4 mg/L 検出された程度である。また、粘度は 5 dPa・s 以下 であった。対して投入基質の TS 15%以上の場合、 201 日目にも酢酸、プロピオン酸など一部の VFAs 蓄積が観察され、228 日目には大幅に増加していた。 特に安定した運転の指標とされるプロピオン酸は、 R4~6 でそれぞれ 2,215、2,910 および 2,187 mg/L 検 出され、不安定な状況が示された。

図4 投入 VS あたりのバイオガス発生率

2.3.2 バイオガス生成速度および転換率

投入 TS 濃度別に、投入 VS あたりのバイオガス発 生量を図 4 に示す。投入 VS あたりのバイオガス発 生量は、一般的に0.5~0.6 NL/gVS とされている²⁰⁾。 時期は多少異なるものの、処理場 A の混合汚泥を遠 心分離により濃縮して基質として用いた嫌気性消化 の室内連続式実験では、中温および負荷率 2.0~2.6 kgVS/(m³·d)の条件下で、バイオガス中のメタン含有 率60%程度として0.5~0.6 NL/gVS程度であった¹⁶⁾。 これらの値と比べると、TS 5%および 10%の場合 0.47 NL/gVS 程度とやや低めの値であった。脱水工 程を経て希釈していることから、脱水ろ液に含まれ る有機酸などの易分解性有機物分が、遠心分離操作 以上に除かれることが原因と考えられる。

2.3.3 消化液のアンモニア性窒素濃度

消化液の TS とアンモニア性窒素濃度の関係を図 5 に示す。ここでは、処理場 A の混合汚泥を実験室 での遠心分離操作により TS 7.5~10%まで濃縮して、 有効容積 10 L の反応器で行った高温条件下での連 続実験¹⁶、ならびに処理場 B の混合汚泥を実験室で の遠心分離操作により TS 7.5~10%まで濃縮して、 有効容積 3 L の反応器で行った中温および高温条件 下での連続実験¹⁷⁾の結果もあわせて示している。

本研究の結果では、おおむね消化液の TS とアン モニア性窒素濃度が比例していた。処理場 A (混合 汚泥、高温)の結果も傾向は類似していた。脱水時 のろ液中に含まれるアンモニア性窒素濃度の影響は 多少あるものの、消化液中のアンモニア性窒素濃度 は主に汚泥中に含まれる窒素成分に影響を受けると 考えられる。対して、処理場 B では同じ消化液の TS に対して、アンモニア性窒素濃度がやや高めであ った。これは、元の混合汚泥に含まれる窒素成分の 割合が異なるためと考えられる。全国 8 カ所の処理 場の混合汚泥を比較した結果でも、炭素や水素に比 べて、窒素の含有率や消化後のアンモニア増加特性 は処理場によって傾向が異なることが報告されてい る²¹⁾。

異なる処理場の脱水汚泥で、アンモニア性窒素濃 度の増加傾向が異なる可能性はあるものの、本研究 では投入基質 TS10%以下に相当するアンモニア性 窒素濃度 3,000 mgN/L 程度までであれば、特にアン モニアによる阻害影響がないことが示された。

図5 消化液のTSとアンモニア性窒素濃度の関係

3. 下水脱水ろ液で培養した藻類の嫌気性消化 3.1 はじめに

近年下水を用いて藻類を培養し、エネルギー源と して活用する研究も進められている。従来は油分含 有率の高い藻類種を選択的に培養することで効率的 なエネルギー生産が試みられてきたものの、下水を 用いる場合は意図しない藻類種が優占する可能性も ある。その場合でも、嫌気性消化を行えば藻類種に よらずにメタンを回収できる可能性がある²²⁾。嫌気 性消化液には、窒素やリンなどの栄養塩が水処理系 よりも高濃度に含まれており、従来は返流水として 水処理系に負荷を与えていた。こうした栄養塩類を 活用することで、通常の下水よりも高濃度での藻類 培養が期待できるものの、消化液を用いた藻類培養 についての知見は我が国でほとんど報告されていな い。そこで、本研究では、消化液を用いた藻類培養 および培養藻類の嫌気性消化特性を室内実験にて調 査した。

3.2 実験方法

標準活性汚泥法および高温嫌気性消化槽を有する 下水処理場の消化汚泥の脱水ろ液を用いた藻類培養 を、実験室にて行った。脱水ろ液は、脱水機の洗浄 のために二次処理水で希釈されたものである。4 L 容器を用いて、過去の報告と同じ室内培養条件²³⁾で 培養した。二酸化炭素の供給および攪拌は、空気の 曝気(1 L/min)にて行った。同様の脱水ろ液で藻類 の植種は行わずに事前培養を行い、その培養液を 10%植種して培養を開始した。4 系列を同時に培養 し、培養期間1(4日目)、培養期間2(6日目)、培 養期間3(11日目)、および培養期間4(20日目)の 試料を採取した。そして、昨年度の報告と同様の方 法²⁴⁾で嫌気性消化実験を行い、メタン転換特性を測 定した。

果

3.3 結果および考察

培養期間ごとの、脱水ろ液で培養した藻類のメタン発酵実験結果を図6に示す。培養藻類濃度は培養

期間が長くなるに従い徐々に増加し、最終的には0.7 gCOD/L 程度に達した。回分式実験で発生したメタ ンガス量を、培養液量あたりに換算すると、最大で 0.13 NL-メタン/L-培養液程度であった。これは、消 化槽からの全量を藻類培養に用いるとして、もとも と下水汚泥から生成していたメタンガス量の1割程 度に相当する。

この試算では、広大な敷地面積を要するなど効率 の面で課題があるものの、消化ガスに含まれる二酸 化炭素や廃熱の活用、培養水槽の効率化、固液分離 手法の開発などにより、今後検討しうる可能性が期 待できる。

4. みずみち棒による重力濃縮効果の導入後現場デ ータを用いた検証

4.1 はじめに

重力濃縮法は、下水処理場における汚泥処理工程 として一般的な手法であり、機構・構造がシンプル で消費動力が非常に少ないという特長を有している。 重力濃縮効率を向上させる「みずみち棒」が開発さ れており、その技術資料集(案)が公表されている ²⁵⁾。2014 年 6 月現在、北海道・四国・九州地方の全 国10市町、11カ所の下水処理場に導入されており、 現場でのデータも蓄積しつつある²⁰⁾。しかしながら、 導入効果の定量的な評価については難しいのが現状 であり、異なる処理場間での比較はなされていない。 把握しやすい重力濃縮後の固形物濃度(濃縮汚泥濃 度)の向上についてはある程度示されているものの、 濃縮槽への投入汚泥の固形物濃度(投入汚泥濃度) や投入量、また固形物負荷率などの条件は一定でな く、みずみち棒導入前後の単純な比較では効果を示 しにくい。みずみち棒の導入検討を行う際には、こ うした条件毎にどの程度の効果が得られるかを事前 に把握するための知見が必要である。

そこで本研究では、現場での現状調査を行うとと もに、みずみち棒導入前後の現場での維持管理デー タを元に、他の条件を考慮しながらみずみち棒導入 による濃縮効果の検証を試みた。濃縮効率の改善は、 後段の脱水処理の効率化(汚泥量や凝集剤添加量の 削減)、嫌気性消化の効率化(汚泥の減容にともなう 加温の削減)などにより、汚泥処理全体の運転費用 や消費エネルギーの削減につながる。ただし、その 関係は種々の因子に左右され、現場での実績から単 純に評価するのは難しい。そこで本研究では、こう した検討の基礎知見として、みずみち棒導入による
濃縮汚泥濃度や濃縮汚泥性状への影響を中心に考察 した。

4.2 調査方法

現場の維持管理データについては、みずみち棒を 導入していない処理場も比較のために含めて、11 カ 所の下水処理場について収集した。濃縮効率の評価 指標としては、主として濃縮汚泥濃度を濃縮効率の 指標として用いた。濃縮汚泥条件が似ている複数 の処理場のデータを比較するために、標準活性汚 泥法からの混合汚泥およびオキシデーションデ ィッチ (OD) 法からの余剰汚泥を対象とした。 全国の下水処理場における重力濃縮の状況と比較す るために、下水道統計²⁷⁾の汚泥濃縮設備の重力式の データも比較した。

4.3 調査結果

4.3.1 標準活性汚泥法

処理場A、BおよびCについて、水温と濃縮汚泥 濃度の関係を図7に示す。大まかな傾向を把握する ために、近似直線もあわせて示している。処理場B については、18℃未満と18℃以上に分けている。処 理場Cについては、28℃以下のデータに基づく近似 直線である。データのばらつきにより近似直線の傾 きが正の場合があるものの、全体としては水温の増 加に従い濃縮汚泥濃度が低下する傾向が示されてい る。水温の増加に従い、濃縮槽内で汚泥の腐敗が進 みガスが発生するなどにより、濃縮効率が悪化して いると考えられる²⁸。水温増加およびガス発生によ る濃縮効率悪化は、他にも報告されている²⁹。ここ では、濃縮汚泥濃度に影響を及ぼす水温条件が同じ 場合の、みずみち棒導入の効果について比較した。

処理場Aでは、みずみち棒導入後に冷却および希 釈効果を意図して井戸水による投入汚泥の希釈をお こなっており、年間を通して 20℃以下が維持されて いる(処理場A 担当者)。濃縮汚泥濃度は、この水 温の範囲で大きな変動が見られなかった。処理場B では 18℃以上で濃縮汚泥濃度が低下する傾向が見 られ、18℃以下では大きな変動が見られなかった。

処理場 C では、水温 28℃程度以下の水温では、導入前に比べて導入後の濃縮汚泥濃度の高い傾向が示されている。ただし、高水温期でもみずみち棒の導入により濃縮汚泥濃度が導入前より悪化する傾向は見られず、年間を通して考えると、濃縮汚泥濃度が改善しているといえる。処理場 C での SS 負荷と水

温については、明確な相関が見られない状況であり、 水温が SS 負荷よりも濃縮汚泥濃度に及ぼす影響が 大きいと考えられる。

投入汚泥濃度および濃縮汚泥濃度の関係を、異常 値を除いた下水道統計からの標準活性汚泥法でのデ ータ、ならびに処理場A、BおよびCの月間平均値 データについて、図8にまとめて示す。下水道統計 の値と月間平均値とは単純に比較できないものの、 ここでは全国の傾向との大まかな比較を試みた。処 理場Cの投入汚泥濃度は前述の通り正確に把握でき ないので、より測定値が安定している余剰汚泥濃度 で整理した。

図7 標準活性汚泥法での水温と濃縮汚泥濃度の関

0.5

投入汚泥が高濃度の場合重力濃縮効率が悪化する と報告されており³⁰⁾、投入汚泥濃度 0.8%程度以上 では、投入汚泥濃度が増加しても濃縮汚泥濃度の変 化があまり見られなかった。処理場 A については、 全国の濃縮汚泥濃度の値の範囲の中で、高濃度であ った。続いて処理場 B、処理場 C の順番で濃度は低 下しているものの、全国の値の範囲の中ではやや高 めの水準であった。

後段に嫌気性消化槽を有する場合、濃縮汚泥の高 濃度化は有機物総量に変化がなくても、嫌気性消化 槽の消化日数増加によるガス発生量の増加や、投入 汚泥量削減による加温エネルギーの削減といった効 果が期待できる。例えば、汚泥濃度が1.5倍になり、 負荷率は変化させず嫌気性消化槽の消化日数を 20 日から30日に変化させる場合を想定する。嫌気性消 化反応を1次反応と見なし、一般的な中温消化の値 として、VS分解率0.6³¹⁾および1次反応速度定数0.3 (1/d)³²⁾を仮定すると、メタンガス発生量は約3%向 上すると試算される。もしくは、消化日数20日およ び30日を比較して、期待されるVS分解率は5%高 いとされている³³⁾。さらに汚泥量は2/3に減少し、 その分の加温エネルギーが削減されることから、嫌 気性消化の効率化につながる。

4.3.2 OD 法

曝気槽での汚泥容量指標(SVI)と濃縮汚泥濃度 の関係を図9に示す。ここでは比較のために、みず みち棒を導入していない処理場(g~k)の月間平均 データを比較している。OD 法での導入処理場でお おむね水温20℃以下であることから、水温20℃未満 /以上で区別した。全体として、SVIが高いほど濃縮 汚泥濃度の低くなる傾向が見られた。処理場Dのみ ずみち棒導入前後で、濃縮汚泥濃度は有意水準5% で有意な差が見られなかった。処理場EおよびFで SVIが350 mL/g 未満の場合は、SVIが低いほど濃縮 汚泥濃度の高まる傾向が見られ、未導入処理場での 濃度範囲の中で高めの値であった。ただし、処理場 Fで水温20℃以上の場合は、濃縮汚泥濃度がやや低 下する傾向が見られた。

みずみち棒の室内実験では、みずみち棒の導入に より、特に初期段階の沈降速度が改善し、最終的な 濃縮濃度自体はそれほど変化しないことが示されて いる²⁵⁾。処理場Dにおいて、みずみち棒導入前後で、 濃縮濃度に差が見られなかったのは、十分な滞留時 間が確保されており高い SVI のため、これ以上の濃 縮は難しい状況であると考えられる。一般的には SVI 200 mL/g 以下が良好な状態といわれているもの の、OD 法では 300 mL/g 以上になることもあり³⁴⁾、 水処理系の異常ではない。汚泥の沈降性については、 種々の条件により影響を受けるため単純には比較で きないものの、水処理系で SVI が低下するなど、汚 泥性状が異なる場合には、最大濃縮濃度は同じでも みずみち棒導入により濃縮効率の安定化する可能性 が考えられる。OD 法からの余剰汚泥について、み ずみち棒導入直後に濃縮汚泥濃度が平均 1.2%から 1.8%に増加したとの報告もある²⁵⁾。

5. まとめ

本研究では、下水処理場に設置している嫌気性消 化槽を活用した、低炭素型水処理・バイオマス利用 技術を開発するための実験を行った。その結果、以 下のことが明らかになった。

- 脱水汚泥の中温嫌気性消化において、都市下水処 理場で採取した脱水汚泥を対象とした連続式実験 を、無希釈(TS 20%程度)からTS 5%程度の濃度 範囲で行った。投入基質TSが10%以下の場合、安 定した中温嫌気性消化が可能であること、また投 入基質TSを15%以上とした場合は、消化液のTS が10%を超過し、処理効率が悪化することが示さ れた。
- 2) 実下水処理場の消化汚泥の脱水ろ液で藻類を培養 し、メタン転換率を回分式実験にて測定した。培 養藻類濃度は0.7 gCOD/L 程度、回分式実験で発生 したメタンガス量を培養液量あたりに換算すると、 最大で0.13 NL-メタン/L-培養液程度であった。
- 3) 重力濃縮法の機能改善手法であるみずみち棒について、現場の維持管理データを整理した。標準活性汚泥法の混合汚泥を対象とした重力濃縮槽では、水温が濃縮汚泥濃度に影響を及ぼしており、28℃程度以下でみずみち棒導入効果が見られた。OD法の余剰汚泥を対象とした重力濃縮槽では、SVIが濃縮汚泥濃度に影響を及ぼしており、350 mL/g以下でみずみち棒による濃縮効率安定化の可能性が

考えられた。

今後は、異なる地域や水処理方式の下水処理場か らの汚泥を比較しながら嫌気性消化特性に及ぼす汚 泥性状因子などを一般化するとともに、温暖化ガス 排出抑制効果の評価などを行う予定である。

謝辞

本研究の実施にあたり、地方自治体および下水処 理場関係者の協力を得ている。ここに記して、関係 各位に謝意を表する。

参考文献

- 日高平,津森ジュン:都市下水処理場の脱水汚泥の中温嫌気性消化に及ぼす固形物濃度の影響,土木学会論文集 G (環境), Vol.70, No.7, pp.III 433-III 440, 2014.
- Taira Hidaka, Kenichiro Inoue, Yutaka Suzuki, Jun Tsumori : Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage, Bioresource Technology, Vol.170, pp.83-89, 2014.
- 3) 日高 平, 津森 ジュン: みずみち棒による重力 濃縮効果の導入後現場データを用いた検証, 下水 道協会誌論文集, Vol.52, No.627, pp.107-113, 2015.
- 安陪達哉:下水汚泥資源の平成23年度有効利用 調査結果,再生と利用,38,142,pp.86-88,2014.
- 5) 建設省土木研究所:下水汚泥の高効率輸送システ ムの開発に関する調査,平成4年度下水道関係調 査研究年次報告書集,土木研究所資料第3215号, pp.221-232,1993.
- 6) 建設省土木研究所:中小都市における広域的な汚 泥処理システムの開発に関する調査,平成8年度 下水道関係調査研究年次報告書集,土木研究所資 料第3528号,pp.229-234,1997.
- 7)藤島繁樹,宮原高志,水野修,野池達也:脱水汚泥の嫌気性消化に及ぼす固形物濃度の影響,土木学会論文集,No. 622/VII-11, pp.73-80, 1999.
- 清水洽,平岡正勝:下水汚泥からのバイオガス活 用評価:-高濃度と超高濃度汚泥の消化-(後),環境 技術,33,12, pp.915-919,2004.
- Nges I. A., Liu J. :Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions, Renewable Energy, 35, pp.2200-2206, 2010.

- Duan N., Dong B., Wu B., Dai X. :High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study, Bioresource Technology, 104, pp.150-156, 2012.
- 宮崎好弘:大胆な汚泥処理プロセス変更による 汚泥減量化の取り組み,下水道協会誌,51,617, pp.21-24,2014.
- 12) 日本下水道協会:下水道統計(平成 23 年度版) (第 68 号),東京,2013.
- 13) 戸苅丈仁,池本良子,中木原江利,中出貴大,GU Tingting,本多了:オキシデーションディッチ汚泥 と廃油揚げを用いた高濃度混合嫌気性消化,土木 学会論文集G(環境),69,7,pp.III_597-III_603,2013.
- 14) 戸苅丈仁,池本良子,古婷婷,小野紘,日高平, 津森ジュン,柳井敦,木野下裕茂,清水浩之:OD 汚泥と廃油揚げを主体とする7種の廃棄物系バイ オマスの高濃度混合消化,土木学会論文集G(環 境),Vol.70, No.7, pp.III 425-III 432, 2014.
- 15) Hidaka T., Wang F., Togari T., Uchida T., Suzuki Y.: Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge, Bioresource Technology, 149, pp.177-183, 2013.
- 16) Wang F., Hidaka T., Uchida T., Tsumori J.: Thermophilic anaerobic digestion of sewage sludge with high solids content, Water Science and Technology, 69, pp.1949-1955, 2014.
- 17) 日高平, 王峰, 津森ジュン, 戸苅丈仁:高濃度濃 縮下水汚泥の嫌気性消化における中温および高温 条件の比較, 第 51 回下水道研究発表会講演集, pp.925-927, 2014.
- 18) 日高平, 王峰, 内田勉, 鈴木穣:回分式実験による下水汚泥と有機性廃棄物の嫌気性消化特性調査, 土木学会論文集 G (環境), Vol.69, No.7, pp.III_605-III_614, 2013.
- 日本下水道協会:下水道施設計画・設計指針と 解説 2009 年版(後編),東京,2009.
- 20) 日本下水道協会:下水道維持管理指針—2003 年 版—(後編),東京,2003.
- 日高平,内田勉:下水汚泥の性状および消化特 性に関する処理場毎の比較調査,土木学会論文集
 G(環境), Vol.68, No.7, pp.III 325-III 332, 2012.
- 22) 宮本豊尚,岡本誠一郎:藻類を用いたメタン発 酵の可能性検討,第47回下水道研究発表会講演集, pp.453-455,2010.

- 23) (独) 土木研究所:下水道を核とした資源回収・ 生産・利用技術に関する研究,平成23年度下水道 関係調査研究年次報告書集,土木研究所資料第 4241号,pp.24-34,2012.
- 24) (独) 土木研究所:低炭素型水処理・バイオマス 利用技術の開発に関する研究,平成25年度下水道 関係調査研究年次報告書集,土木研究所資料第 4294号, pp.22-27, 2014.
- 25) 土木研究所リサイクルチーム:汚泥重力濃縮槽 におけるみずみち棒導入に関する技術資料集(案) ver.2.0,

http://www.pwri.go.jp/team/recycling/mizumichi_qa_v er.2.0.pdf, 2011.

- 26) 浅井圭介, 宮本豊尚, 日高平, 岡本誠一郎, 内田 勉:みずみち棒導入による重力濃縮の効率向上, 下 水道協会誌論文集, Vol.50, No.603, pp.119-124, 2013.
- 27) 日本下水道協会:下水道統計(平成 23 年度版) (第 68 号), 2013.
- 28) 日本下水道協会:下水道維持管理指針—2003 年 版—(後編),2003.
- 29) 佐藤一宏, 菅原良行, 浜本洋一: 実施設における 回転羽根付汚泥掻寄機の長期濃縮性能調査, 第48 回下水道研究発表会講演集, pp.824-826, 2011.
- 30) 島袋浩明, 湧田啓一, 大城正信:高濃度投入が重 力濃縮に与える影響, 第41回下水道研究発表会講 演集, pp.963-965, 2004.
- 31) 日高平,内田勉:下水汚泥の性状および消化特
 性に関する処理場毎の比較調査,土木学会論文集
 G (環境), Vol.68, No.7, pp.III 325-III 332, 2012.
- 32) Astals S., Esteban-Gutiérrez M., Fernández-Arévalo T., Aymerich E., García-Heras J.L., Mata-Alvarez J. : Anaerobic digestion of seven different sewage sludges: a biodegradability and modelling study, Water Research, Vol.47, 6033-6043., 2013.
- 33) WEF, ASCE, EWRI : Design of Municipal Wastewater Treatment Plants, WEF Manual of Practice No. 8, ASCE Manuals and Reports on Engineering Practice No. 76, Fifth Edition, 25-86, 2010.
- 34) 日本下水道協会:下水試験方法上巻 2012 年版, 2012.

水環境中における病原微生物の対策技術の構築に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平23~平27 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、諏訪守、安井宣仁

【要旨】

検出技術の高度化により、下水や環境水でのウイルス、原虫類などの病原微生物の汚染実態が徐々に明らかになりつつある。しかし現行の水質指標である大腸菌群では、新たな病原微生物の汚染の実態を十分に把握できないこともあり、 公共用水域への各種汚染源の解明、汚染レベルや汚染源の特徴に応じた対策手法の構築が望まれている。

26 年度は、紫外線、塩素消毒による抗生物質耐性大腸菌の不活化評価を行うとともに、逆転写や PCR 条件などがノ ロウイルス(NV)の定量値へ及ぼす影響を明らかにすることで、検出感度向上のための改善方策を評価した。また、合流 式下水道越流水が放流先水域へ及ぼす影響と対策手法として雨天時活性汚泥処理法による NV の削減効果を把握した。

その結果、二次処理水中に添加した0剤、5剤耐性大腸菌の消毒による不活化効果は、紫外線照射線量を10mJ/cm²以上とすることで4~5log程度、塩素の添加濃度を4mgCl/L、接触時間を15分間とした条件においては3~5log程度であった。逆転写RNA量・回数およびPCR反応容量に対する供試水量をコントロールすることで、ノロウイルスの検出感度が向上することを明らかにした。雨天時の越流水は公共用水域に対するノロウイルス汚濁負荷源として考慮する必要があると考えられ、降雨時の雨天時活性汚泥処理時におけるノロウイルスの流入負荷量を1とし、流入負荷量に対する処理水の負荷量比を求めたところ概ね0.1と整理された。

キーワード:抗生物質耐性大腸菌、ウイルス、消毒、検出感度向上、合流式下水道

1. はじめに

分子生物学的手法による微生物の同定・検出技術の進 展により、感染症の原因究明が比較的容易となり病原微 生物に関する知見が集積されてきている。殊に分離・培養 が容易ではない細菌やウイルスなどの存在実態が徐々に 明らかになるにつれ、これまで衛生学的水質指標とされ てきた大腸菌群では、新たな病原微生物の存在実態や消 毒耐性等に関し評価が困難であるという課題が明らかに なっている。また、近年になっての集団感染発生や、分 子生物学的手法による検出技術の進展により、新興感染 症の病原微生物として原虫類や一部のウイルスが位置づ けされてきている。さらに、抗生物質の利用の増加に伴 い耐性能力を有する薬剤耐性菌が後々に蔓延してきてい る状況から、特に多剤耐性菌が近年の再興感染症の一原 因であるとして大きな社会問題となっている。

これら新興・再興感染症の原因となる病原微生物に関 して、水環境に及ぼす衛生学的な観点から河川水を含め 下水処理場等において、実態把握のため調査・研究が行わ れているが、他の汚染源やノンポイント負荷源について 実態把握が遅れており、総合的な対策技術の構築には繋 がっていない。このため、公共用水域の衛生学的な安全 性を担保する上で、汚染源の実態把握と汚染源に対する 対策技術の構築は重要である。 本研究では上記を踏まえ、利用形態に応じた公共用水 域の安全性を確保するため、その基本となるリスク評価 に資するべく、下水や水環境中における新興・再興感染症 の病原微生物である原虫類、ウイルス、薬剤耐性菌の汚 染実態を解明する。汚染実態の解明とともに、対策技術 として今まで明らかとなっていない生物学的高度処理法 等によるこれらの病原微生物の除去要因の解明を行う。 その結果を基に、汚濁負荷削減の観点から適切な水環境 保全システム技術を構築するものである。

本研究で対象としている病原微生物は抗生物質耐性大 腸菌、クリプトスポリジウム、ジアルジア、ノロウイル ス(NV)としている。26 年度は下記の 1) ~3)の項目に ついて実施した。

- 1) 紫外線、塩素消毒による抗生物質耐性大腸菌の不活化 評価
- 2) 逆転写、PCR 条件が NV 定量値に及ぼす影響評価
- 3) 合流式下水道越流水が放流先水域へ及ぼす影響と対 策手法による削減効果の把握

2. 研究目的および方法

2.1 紫外線、塩素消毒による抗生物質耐性大腸菌の不活化 評価

抗生物質の利用増加や開発が繰り返され、複数の抗生

物質に対して耐性を有する多剤耐性菌の存在が社会的 に大きな問題となっている。殊に、複数の抗生物質に耐 性を有する多剤耐性菌の 1 つであるスーパー耐性菌と 称される細菌は、切り札とされる抗生物質に耐性を有す ることから、臨床分野を含め社会的にも重要な課題とし て対策の構築の必要性が提起されている。

一方、微生物混在系としての下水処理場においても耐 性菌の実態調査が行われており、多剤耐性菌の存在1) や耐性遺伝子の検出報告例2)がある。特に、下水処理場 ヘスーパー耐性菌の流入がある場合には、微生物混在系 としての活性汚泥中において、ニューデリー・メタロ-β -ラクタマーゼ 1(NDM-1:カルバペネムを含む広域 B-ラクタム薬を分解する酵素)に代表される耐性遺伝子の 伝播により他の細菌に対し多剤耐性能力が付与される ことが危惧される。海外において NDM-1 の遺伝子を保 持した細菌の実態について、水道を含む環境水での検出 事例3)もあり、抗生物質の消費大国である我が国におい ても、その実態解明を早急に実施する必要性があると考 えられる。本研究課題では、スーパー耐性菌を含めた多 剤耐性菌の実態把握を目的に、下水、環境水試料を対象 に耐性菌の存在状況を明らかにするとともに、対策手法 の構築の一環として消毒耐性を評価するものである。

現在、多くの下水処理場では放流水質基準値の達成の ため、次亜塩素酸ナトリウムなどの薬剤によって大腸菌 群を不活化している。消毒による細菌類の不活化では、 塩素などの薬剤が細胞膜を通じ細胞に作用するが、紫外 線照射では直接的に細胞に作用する違いがある。抗生物 質に対する細菌の耐性機構は多岐にわたるが⁴⁾、細胞内 への薬剤浸透阻止や浸透した薬剤の排出能力を有した抗 生物質耐性菌は、塩素に対しても同様な耐性機能を発現 する可能性が推定される。

26年度は、病原微生物リスク対策技術の構築の一環として、抗生物質耐性大腸菌に対し有効な消毒法の評価を目的に塩素、紫外線消毒による不活化効果を把握した。 評価対象とした大腸菌は、A下水処理場の二次処理水か

ら釣菌したもので、イミペネム(IPM)、アンピシリン (ABPC)、カナマイシン(KM)、ゲンタマイシン(GM)、ス ルファメトキサゾール・トリメトプリム(ST)、セフジニル (CFDN)、テトラサイクリン(TC)、レボフロキサシン (LVFX)の8種類の抗生物質に対して耐性を有しない0剤 耐性大腸菌、8種類の内ABPC、LVFX、TC、GM、ST の5剤に耐性を示した5剤耐性大腸菌とした。これらの 大腸菌をミューラーヒントン培地で増殖させ、培地成分 の影響を回避させるため培養液を遠心分離し上澄液を除 去した後、沈渣を滅菌ミリQ水で洗浄し再度遠心分離を 行い菌体として沈渣を回収した。回収した沈渣を公称孔 径0.2µmのメンブランフィルターでろ過したA下水処理 場の二次処理水に各々添加し消毒実験に供した。塩素消 毒実験では、調整した二次処理水1Lに次亜塩素酸ナトリ ウム濃度が0~4mgCl/Lになるよう添加、接触時間を15 分間とし、チオ硫酸ナトリウムで中和を行った。紫外線 消毒は、シャーレに200mLの二次処理水を分注し低圧紫 外線ランプにより0~20mJ/cm²を照射した。消毒前後の 大腸菌の定量はクロモカルト寒天培地による平板培養法 とした。なお、大腸菌の抗生物質感受性評価では、抗生 物質含有のKBディスク(栄研化学)を利用した。

2.2 逆転写、PCR 条件が NV 定量値に及ぼす影響評価

分子生物学的手法の進展により従来、培養が困難であ った細菌やウイルスなどの検出が可能となってきている。 特に、細胞培養法による評価が困難である腸管系ウイル スの定量には、リアルタイム RT-PCR 法が主に用いられ ている。試料の濃縮、遺伝子抽出・精製、逆転写(Reverse Transcription:RT)、PCR 反応とした定量工程では最終 的にはuL系の試験操作となるため、濃縮精製試料の極一 部量の評価となる。評価対象とするウイルスが試料中に 高濃度に存在すれば、安定した PCR 値が得られるが、環 境水や高度に処理されたウイルス低濃度試料を対象とし た場合、定量値のバラツキが大きくなる可能性がある5)。 また、遺伝子抽出カラムへの濃縮試料の SS 負荷量等の適 正化を図る必要性があり、測定対象試料の水質性状の違 いによって定量値に影響を及ぼす可能性が指摘されてい る6)。下水処理水の再生水利用や放流先水域における衛 生学的安全性のリスク評価にあたっては、極低濃度のウ イルス試料を対象とすることから、安定した定量値を得 るための手法を開発する必要がある。

このため、極低濃度試料に対応した濃縮・定量技術の開発を目指し、26年度には逆転写や PCR 条件などが NV 定量値へ及ぼす影響を明らかにすることで、検出感度向上のための改善方策を評価した。

評価対象試料は A、B 下水処理場の二次処理水(一部 GF/B ろ過水を利用)と C 河川水とした。これらの試料を ポリエチレングリコール沈殿法(PEG 沈殿法)や陰電荷膜 法により濃縮した。PEG 沈殿法は、試料中に PEG # 6000(終濃度 8%)および NaCl(終濃度 0.4M)を添加・撹拌 し完全に溶解させ、4℃で1 夜静置の後、10,000×G で 30 分間遠心分離し沈渣を回収、RNase-free 水(遺伝子分解酵 素を除去した水)に再浮遊させてウイルス濃縮液とした。 陰電荷膜法⁷⁾ による濃縮は、試料 100mL あたり 2.5M の $MgCl_2 \ge 1mL$ 添加攪拌し、HA 膜(公称孔径 0.45µm、 90mm)で試料をろ過した。ろ過後 0.5mM の H_2SO_4 200mL で酸洗浄し、1.0mM の NaOH 10mL をろ過して ウイルスを誘出回収した。誘出液を 50×TE バッファー 200µL と 100mM の $H_2SO_450µL$ を入れた試験管に回 収・中和し、誘出液を CentriprepYM-50(ミリポア社製)に 入れ 2,500rpm・10 分間 4°Cで遠心処理を行いウイルス濃 縮液を作成した。なお、陰電荷膜への SS 負荷量の違いは 検出濃度に影響を及ぼすことから⁶⁾、膜への試料通水量 は全てのケースで 1mg-SS/膜に統一した。

各ウイルス濃縮液からの RNA の抽出は、QIAamp Viral RNA Mini Kit(QIAGEN 社)の抽出カラムを用いた グアニジン法とした。ウイルス遺伝子抽出カラムへの PEG 沈殿法によるウイルス濃縮液の通水量は、検出濃度 にバラツキが生じないよう抽出カラム 1 本あたり 0.05mg SS となるように統一した⁶⁾。また、陰電荷膜法 では公称孔径 0.45µm の膜に試料を通水させ濃縮を行い、 その誘出液が濃縮試料となるため、遺伝子抽出カラムへ の濃縮試料の SS 負荷量はゼロとして考えた。抽出した RNA に微量に含まれている DNA を除去するため DNaseI 処理し、 RNeasy MinElute Clean up Kit(QIAGEN 社)でウイルス RNA を精製した。

抽出・精製したウイルス RNA 試料は、ランダムプライ マー、Omniscript RT Kit(QIAGEN 社)を用い全量 20µL の系で逆転写を行いcDNA を作製した後にリアルタイム PCR により定量した。

本評価における逆転写・PCR 条件を整理したものを表 -1 に示す。逆転写反応条件は、逆転写回数を 1~3 回、 逆転写 RNA 量を 0.1~1.0µg、また、逆転写反応用の試 薬量を通常の 3 倍量で逆転写回数を 1 回とした。また、 リアルタイム PCR の反応条件やプローブ、プライマーは 「ノロウイルスの検出について」⁸⁾を参照したが、本評価 では 100µLの PCR 反応系における cDNA の供試水量を 10µL(従来の割合として 0.1)を基準に段階的に減少させ 最小量を 1µL(割合を 0.01)とした。精製 RNA 量は Spectrophotometer(NanoDrop 社製)により定量、リアル タイム PCR 反応のための試薬は QuantiTect Probe PCR Kit(QIAGEN 社)を用い、リアルタイム PCR 装置 は LightCycler(ロシュ・ダイアグノスティックス社)を利 用した。

	逆転写RNA量	逆転写回数	逆転写 試薬量	PCR反応容量に対 する供試水量割合
評価条件	$0.1{\sim}1.0\mu g$	$1 \sim 3$	1~3倍量	0.01~0.1

2.3 合流式下水道越流水が放流先水域へ及ぼす影響と 対策手法による削減効果の把握

下水道の普及に早くから取り組んできた一部の自治体 においては、下水と雨水の排除を同一の管渠とした合流 式下水道を採用している。合流式下水道では降雨時にお いて、雨水量が増加し下水処理場において処理対応が困 難になる場合には、未処理下水が公共用水域へ放流され ることから、衛生学的な安全性を担保するため合流式下 水道越流水の対策技術の構築が必要となる。

公共用水域に対する病原微生物の負荷源はポイント、 ノンポイント負荷として様々なものが存在するが、本研 究においては合流式下水道越流水をノンポイント負荷と してとらえ、これら負荷源における病原微生物として NV 汚染の実態を明らかにするとともに、対策手法の構築、 評価を行うものである。26 年度は胃腸炎感染症の流行期 において、NV を対象に降雨時における越流水が河川水 へ及ぼす影響把握と、対策技術として雨天時活性汚泥法 による負荷の削減効果を評価した。

3. 研究結果および考察

3.1 紫外線、塩素消毒による抗生物質耐性大腸菌の不活化 評価

抗生物質耐性大腸菌が抗生物質と同様に消毒剤に対し 耐性機構を発現することが懸念されることから、塩素消 毒に対する耐性評価とともに、薬剤を利用しない紫外線 による不活化効果を評価した。紫外線消毒による不活化 評価結果を図1に示す。0剤、5剤耐性大腸菌ともに紫外 線照射線量が10mJ/cm²以上で4~5log程度の不活化効 果が得られているが、明らかに不活化率に違いが生じて おり、5剤耐性大腸菌は0剤耐性大腸菌に比較して紫外 線消毒耐性が高い結果が得られた。

一方、25年度に行なった実下水処理場での中圧紫外線 ランプによる不活化効果の評価では、紫外線照射により 不活化率が高まることで処理水中の0剤耐性大腸菌の存 在割合が上昇し、1剤あるいは2剤以上の抗生物質に耐 性を有する多剤耐性大腸菌の割合が減少する結果が得ら れた。調査年度により紫外線の感受性に違いが生じた要 因としては、紫外線ランプが低圧と中圧の違いにより出 力波長が異なることや、25年度では試料中に存在する複 数の大腸菌が対象であることに対し、本評価では0剤、5 剤耐性大腸菌とも単一株であることが一因とも推定され る。これらの要因解明のため、今後、調査・実験を継続し データを蓄積する予定である。

次いで、塩素消毒による不活化評価結果を図・2 に示す。 8 剤の抗生物質に対し耐性を有しない 0 剤耐性大腸菌は Ct 値が 60mg・min/L (本評価では添加濃度と接触時間の積 とした) で 3.3log、5 剤耐性大腸菌では 4.7log となり、5 剤耐性大腸菌に比較して 0 剤耐性大腸菌は塩素消毒耐性 が高い結果が得られた。25 年度に行った塩素消毒実験で は、消毒後において 1 剤あるいは 2 剤以上の抗生物質に 耐性を有する多剤耐性大腸菌の割合が 0 剤耐性大腸菌に 比較して上昇していたことから、26 年度は塩素に対する 感受性が異なる傾向が見られたこととなる。紫外線消毒 による評価結果と同様に、試料中に存在する複数の大腸 菌あるいは単一株である評価に起因するものなのか、今 後、調査・実験を継続しデータを蓄積する必要があると考 えられた。

3.2 逆転写、PCR条件がNV定量値に及ぼす影響評価

過年度に実施した評価では、測定試料の洗浄(希釈) や逆転写 RNA 量を変動させることによって検出濃度の 向上効果が見られた。この要因としてはウイルス RNA の抽出・逆転写効率の向上によるものと推定されたこと から、26 年度はより詳細に抽出 RNA の逆転写、PCR 条 件を考慮し検出濃度に及ぼす影響を明らかにすることで、 検出感度向上のための改善方策を評価した。逆転写 RNA 量と逆転写回数の違いによる NV 定量値の比較結果につ いて図・3 に示す。評価対象試料は PEG 沈殿法で作成し たウイルス濃縮液とした。なお、処理水と河川水の NV 定量値が逆転しているが、採水時期が異なることや処理 水はろ過試料を測定したことによる影響と考えられた。 逆転写 RNA 量が 0.1~1.0µg の範囲で評価を行ったが、 RNA 量を 0.1µg とすることで最大値が得られた。また、 逆転写回数を 1 回から 3 回と複数回とした場合でも 1 回 と比較して NV の定量値が向上した。逆転写 RNA 量に 応じて定量値が変動することから、RNA とともに持ち込 まれた溶存物質など何らかの阻害物質の影響が推定され たが、逆転写 RNA 量を 0.1µg とし逆転写回数を 3 回と した条件において全体的に定量値が高まることが明らか となった。

次いで、リアルタイム PCR 反応条件が定量値に与える 影響評価として、PCR 反応容量に対する供試水量の割合 と NV 定量値との関係を図・4 に示す。100µL の反応容量 に対し供試水量が 1~10µL (割合が 0.01~0.1)の範囲で 評価を行った。NV 定量値は全てのケースにおいて 0.01 とした割合で最大値が得られ、逆転写回数を 3 回・RNA 量を 1.0µg とした条件においては、PCR 反応容量に対す る供試水量の割合を 0.1 から 0.01 とすることで、定量値 は 3 倍程度向上(1.4×10⁶→4.7×10⁶copies/L)した。また、

逆転写回数を3回、RNA量を0.1µg、供試水量の割合を 0.1とした条件(2.8×10⁶ copies/L)と比較して定量値が高 まっていることから、従来、定量値が得られなかった低 濃度試料に対しては、供試水量の割合を考慮することで 検出感度を高められる可能性があると考えられた。

PCRの反応容量に対する供試水量や逆転写 RNA 量は NVの定量値に影響を及ぼした。その要因としては PCR、 逆転写反応に対する阻害物質などの影響や PCR 反応の ための試薬量が推定された。

一方、逆転写回数を3回とした場合には試験操作が増 えるため、その改善策として逆転写回数を1回としつつ、 逆転写反応に利用する試薬量を3倍として定量値に及ぼ す影響を評価した。試薬量を3倍としても通常の定量値 と比較して大差が無く(図-5)、図-4に示した逆転写回数 を3回とした定量値よりも低いことから、試薬量を3倍 としても改善効果は見込めないものと考えられた。

上記の評価結果から得られた逆転写、PCR条件を基に、 濃縮方法が異なる試料に対する影響評価として、同一試 料を PEG 沈殿法と陰電荷膜法により濃縮し NV の定量 を行った。評価結果を図・6 に示す。濃縮方法が異なって も逆転写回数を 3 回、RNA 量を 0.1µg、PCR 反応にお ける供試水量の割合を 0.01 とした条件とすることで、二 次処理水、河川水とも最大値が得られた。濃縮方法が異

なっても同様な傾向を示したことから、測定試料中の何 らかの阻害物質や試薬量が逆転写、PCR 反応に対し影響 を及ぼすと推定された。

本評価結果により、逆転写 RNA 量や逆転写回数およ び、PCR 反応容量に対する供試水量の割合を各々考慮す ることで、NV の定量値を向上させられることが明らかと なった。濃縮方法が異なる試料でも同様な傾向を示した ことから、試料中の阻害物資や試薬反応量の影響が推定 されたため、その物質の特定や影響回避のための前処理 法を構築する必要がある。現状では、逆転写 RNA 量・回数 および PCR 反応容量に対する供試水量をコントロール することで、NV の定量値が向上することから、これらの 手法が簡易かつ有効な検出感度向上方策の1つであると 考えられた。

3.3 合流式下水道越流水が放流先水域へ及ぼす影響と 対策手法による削減効果の把握

降雨時における合流式下水道越流水が放流先水域へ及 ぼす影響調査結果を図-7、8に示す。平成27年1月に行 った調査日の降雨状況は、時間最大降雨量が8.5mm、累 積雨量が29mm、3月では同様に10.5mm、31.5mm で あった。採水試料は流入下水、越流水、越流水放流先の C河川水(越流水放流口から約400m下流)としたが、 比較対象として1、2月には晴天時の試料を加えた。降雨 直前の採水当初の NV 濃度は流入下水が 10⁸~10⁹ copies/L レベルと高濃度であり、冬季の感染性胃腸炎の 流行状況を反映したものと考えられたが、時間経過とと もに雨水による希釈によって流入下水と越流水の NV 濃 度に低下傾向が見られた。一方、河川水では晴天時試料 を含め越流水の越流開始前から当初にかけ 105~106 copies/L レベルで推移していたが、越流水の影響を受け ることで最大検出濃度は 10⁷copies/L レベルにまで上昇 しており、雨天時の越流水は公共用水域に対する NV 汚 濁負荷源として考慮する必要があると考えられた。しか

し、時間経過とともに雨水による希釈効果がより高まり 流入下水と越流水の NV 濃度が低下することで、河川水 の NV 濃度も降雨前の状況へ近づいていることから、越 流水の放流初期段階における適切な対策が講じられれば 放流先河川水への影響を低減できると考えられた。

次いで、越流水対策技術の1つである雨天時活性汚泥 法による NV 負荷の削減効果を評価した。評価対象とし たD下水処理場では嫌気好気法による処理を実施してい るが、雨天時においては越流水対策として雨天時活性汚 泥法を導入している。処理フローの概略を図-9に示す。 晴天時の受け入れ可能な流入水量である1Q分に対し、 雨天時には最大の受け入れ流入水量を3Qとし、2Q分の 流入水を反応タンクの後段にバイパス流入させ処理を行 っている。

結果を図-10 に示す。 感染性胃腸炎の流行時期である平 成 27 年 1~2 月の雨天時に調査を行った。1 月に行った 調査日の降雨状況は、時間最大降雨量が 5.5mm、累積雨 量は 25mm、2 月では同様に 2mm、12.5mm であった。

降雨時の雨天時活性汚泥処理時における NV の流入負荷 量を1とし、流入負荷量に対する処理水の負荷量比を求 めたところ0.09~0.12であった。雨天時活性汚泥処理を 実施しなければ、晴天時の受け入れ可能な流入水量であ る1Q分を超過した NV の負荷が公共用水域へ放流され ることから、放流先河川水への影響を低減しているもの と考えられた。

4. まとめ

26年度は、紫外線、塩素消毒による抗生物質耐性大腸 菌の不活化評価を行うとともに、逆転写や PCR 条件など が NV 定量値へ及ぼす影響を明らかにすることで、検出 感度向上のための改善方策を評価した。また、合流式下 水道越流水が放流先水域へ及ぼす影響と対策手法として 雨天時活性汚泥処理法による NV の削減効果を把握した。 以下に得られた結果を示す。

「紫外線、塩素消毒による抗生物質耐性大腸菌の不活化 評価」

- 二次処理水中に添加した0剤、5剤耐性大腸菌ともに 紫外線照射線量が10mJ/cm²以上で4~5log 程度の不 活化効果が得られた。
- 2) 塩素の添加濃度を 4mgCl/L、接触時間を 15 分間とし た条件において、二次処理水中に添加した 0 剤、5 剤耐 性大腸菌の不活化効果は 3~5log 程度であった。

「逆転写、PCR 条件が NV 定量値に及ぼす影響評価」

3) 逆転写 RNA 量・回数および PCR 反応容量に対する供 試水量をコントロールすることで、NV の定量値が向上 することを明らかにした。

「合流式下水道越流水が放流先水域へ及ぼす影響と対策 手法による削減効果の把握」

- 4) 雨天時の越流水は公共用水域に対する NV 汚濁負荷源 として考慮する必要があると考えられた。
- 5) 越流水対策技術として雨天時活性汚泥法による負荷の削減効果を評価し、NVの流入負荷量を1とすると処理水の流出割合は概ね0.1と整理された。

謝辞

本研究・調査を実施するにあたり、A、B、D 下水処理 場の各下水道管理者には特段のご配慮・ご協力を頂いた。 ここに記し謝意を表します。

参考文献

1) M.Suwa, M.Ozaki, (2007), Study of the actual condition of antibiotic resistant bacteria in water environments and wastewater, 14th International Symposium on Health-Related Water Microbiology, Proceedings, pp.354-355.

- 岡本誠一郎、諏訪守、桜井健介(2011)、水環境中における 病原微生物の消長に関する研究、平成22年度下水道関係調査 研究年次報告書集.
- 3) T.R.Walsh, J.Weeks, D.M. Livermore and M.A. Toleman (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study, Lancet Infect Dis., 11, 355-362.
- 4)橋本一、井上松久(1993)病原菌の薬剤価性-機構の解明と その対策-、学会出版センター.
- 5) 諏訪守、岡本誠一郎、桜井健介(2009) 各種下水処理法による ノロウイルス除去率の評価と測定技術の課題,第12回日本水 環境学会シンポジウム講演集,239-240.
- 6) 諏訪守、岡本誠一郎、尾崎正明、陶山明子(2009)、下水処理の ノロウイルス除去効果とその検出濃度に及ぼす濃縮法の影響、 下水道協会誌論文集、46(561)、91-101.
- 7) H.Katayama, et al., (2008) One-year monthly quantitative survey of noroviruses, enteroviruses, and adenoviruses in wastewater collected from six plant in Japan, Water Research, 42, 1441-1448.
- 8) 厚生労働省医薬食品局食品安全部監視安全課 (2007)、ノロウ イルスの検出法について.

開発途上国における都市排水マネジメントと技術適用に関する研究

研究予算:運営費交付金 研究期間:平成23~27年 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、桜井健介

【要旨】

開発途上国における下水処理水の安全なかんがい利用に資するため、開発途上国で重症化の懸念があるノロウ イルスを対象に、まず、開発途上国で使われている安定化池やエアレーティッドラグーンの下水処理方法による 除去率を測定した。次に、下水処理水のかんがい利用によって栽培されたレタス、玉ねぎ、穀類・芋類の喫食者 を対象とし、定量的微生物リスク評価の手法を用いて、一定の健康影響目標を達成するのに必要な除去率を計算 し、実際の除去率と比較した。本研究では、健康影響の指標として障害調整生存年数を用い、10⁶人⁻¹年⁻¹を目標 とした。その結果、安定化池の処理水は、加熱調理用の穀類・芋類にはかんがい用水として利用可能であるが、 エアレーティッドラグーンの処理水は、適当でなかった。また、安定化池とエアレーティッドラグーンの処理水 は共に、生食用のレタスや玉ねぎのかんがいに使うのは適当ではなかった。

キーワード:安定化池、エアレーティッドラグーン、かんがい、ノロウイルス、障害調整生存年数

1. はじめに

新興国を中心に、急速な経済成長により工場排水や生 活排水の河川、湖沼等への放流に伴い、著しい水質汚濁 とそれに伴う利水障害、生態系の破壊など深刻な影響が 生じている。また、昨今、人口増加による水資源の逼迫 に伴う高度な水の再利用、地球温暖化対策に配慮した下 水汚泥等を有効利用した省エネルギー対策が求められつ つある。我が国では、こうした状況に対応しうる優れた 公害対策の経験や汚水処理、汚泥有効利用技術等を保有 しており、海外の多くの開発途上国から支援要請がある ものの、開発途上国では気候風土、生活様式、経済状況、 水資源の逼迫状況等が異なっており、我が国における下 水道に関する考え方や技術がそのまま適用できない場合 がある。

本研究は、開発途上国の変化する社会的要請を踏まえ、 処理水の各種用途への再利用、下水汚泥等の副産物の有 効利用や水・汚泥処理の省エネルギー化などの水・汚泥処 理技術やそれらの適用方法の開発を目指すものである。

開発途上国では、やむを得ず下水や下水処理水等をかんがいに利用する場合がある¹⁾。下水や下水処理水がかんがい利用される場合には、農作物の喫食者に対し、病原微生物による健康被害が生じる懸念がある。特に、ノロウイルス(NoV)は、開発途上国で乳幼児 109 万人を入院させ、21.8 万人を死亡させていると推測され、開発途上国で重症化する傾向が報告²⁾されており、注目すべき

病原微生物の一つと考えられる。しかし、開発途上国における下水処理水中の病原微生物やかんがい利用時の健康影響に関する情報は乏しく、開発途上国において導入が見られる安定化池(Waste stabilization ponds, WSP)やエアレーティッドラグーン(Aerated lagoons, AL)での、NoV 濃度の測定事例は少ない。また、「下水の農業利用に関するWHOガイドライン」³においても、ロタウイルス(RV) などの病原微生物による健康影響について検討されたが、 NoV は対象となっていない。

平成26年度は、健康影響の指標として障害調整生存年 数(Disability-adjusted life year, DALY)を用い、NoV による 健康影響軽減の観点から、WSP やALの処理水のかんが いへの適切な利用方法を明らかにするため、まず、実際 のWSP やALのNoV 除去率を求めた。次に、農作物の 喫食者を想定したシナリオについて、定量的微生物リス ク評価(Quantitative microbial risk assessment, QMRA)の手 法を用いて、健康影響目標値以下を達成可能な NoV 除去 率を示した。最後に、それらを比較し、下水処理水のか んがいへの適切な利用方法を示した。

2. WSP、ALにおける NoV の除去率

2.1 調査方法

下水処理におけるNoV濃度の除去に関する調査は、インドネシア共和国の表1で示した下水処理場で1度ずつ行った。流入水、処理水中のNoV genogroup1,2(G1,G2)濃度、浮遊物質を測定し、NoVの除去率(R)と対数除去率(LR)を

処理場	処理名称	処理構成		計画流入量(m³/日)	流入量 (m ³ /日)	平均滞留時間
А	WSP	嫌気性池+好気·嫌気池+	熟成池	約 80,000	約 40,000	約 20 日
В	AL	曝気池+ 沈殿池		約 50,000	約 20,000	約3日
С	AL	曝気池+沈殿池		約 20,000	約 10,000	約2日

表1 対象処理場の処理方法、流入量と平均滞留時間

 $R=(C_{in}-C_{out})/C_{in}\times 100 \ LR=-\log_{10}(C_{out}/C_{in})$ により求めた。 ここで、 $C_{in} \ C_{out}$ は流入水と処理水中のNoV濃度である。 また、処理水をガラス繊維ろ紙(GF/B、Whatman)でろ過し た試料のNoV濃度も測定した。NoV濃度は、既報⁴⁾に従い、 逆転写定量PCR法で測定した。浮遊物質は、下水試験方法 に従い、ガラス繊維ろ紙(GF/B、Whatman)で測定した。

2.2 調査結果

各下水処理場のNoV G1とG2濃度、除去率および浮遊物 質を表2に示す。WSPを採用したA処理場の除去率は、da Silva⁵らによるフランスの事例と同等であり、ALを採用し たB、C処理場の除去率より高かった。熟成池は、滞留時 間の大半を占め、太陽光の働き等で病原微生物を消毒する 役割が期待されており、フランスの事例⁵でも熟成池にお いてNoVの高い除去率が報告されている。本調査において も、WSP中の熟成池が機能し、高い除去率を示したと考 えられる。ただし、逆転写定量PCR法では、不活化された NoVも検出される場合があり、実際に感染価を有するNoV の除去率は、本調査で測定された除去率よりも高い可能性 がある。

各処理水をろ過した試料中のNoV濃度は、各処理水のろ 過していない試料中のNoV濃度の11.6%~32.0%であり、 大半は浮遊物質に付着していると考えられた。また、B処 理場の除去率は、同じくALを採用したC処理場の除去率よ り、高かった。C処理場は、流出した浮遊物質がB処理場 より多く、多くのNoVは、浮遊物質に付着したまま流出し たものと考えられた。

3. ノロウイルスの健康影響評価に基づく WSP および AL 処理水のかんがいへの適切な利用方法の検討

3.1 方法

WHOガイドライン³に従う次の手順で、健康影響目標値 を耐容感染確率に換算した後、農作物(レタス、玉ねぎ、 穀類・芋類)の喫食者を想定したシナリオについて、 QMRA手法を用いて、換算耐容感染確率以下が達成され るかんがい水のウイルス濃度と必要除去率を計算した。必 要除去率と前章で示された下水処理による実際に測定し た除去率を比較して、WSPおよびAL処理水のかんがいへ の適切な利用方法を示した。

第一に、健康影響目標値を耐容感染確率に換算するため、 健康影響目標値を、NoV感染1件あたりのDALYで除して、 耐容感染確率を求めた。健康影響目標値は、WHO³が使用 している10⁶人⁻¹年⁻¹を用いた。

NoV感染1件あたりのDALYは、処理水のかんがい利用 によって生育した農作物によるNoV発症1件あたりの DALY(DB)に、飲料水質ガイドライン⁶と同様に、感染者 あたりの発症確率(0.68⁷)とNoVに対して感受性を持つ人 の割合(0.8⁷)を乗じて算出した。DBは、開発途上国全体の NoV発症によるDALYの合計の5%を年間発症件数で除し て算出した。この5%は、WHOが用いているRV³の値と同 等と仮定して用いた。ここで、開発途上国全体とは、米国、 カナダ、オーストラリア、ニュージーランド、日本、イス ラエル、欧州33国を除く全世界である。開発途上国全体の NoV発症によるDALYは、乳幼児(5歳未満)の入院と死亡に よるDALYとした。乳幼児の入院未満で軽症のDALYと成 人の全症状のDALYは、開発途上国全体のNoV発症による DALYに占める割合は小さいと推測されることから、加味

表2 各下水処理場の NoV G1 と G2 濃度、除去率、対数除去率および浮遊物質

	NoVG1			NoVG2				処理水中	
処理場	流入水	処理水	除去率	対数除	流入水	処理水	除去率	対数除	の浮遊物
	(コピー/L)	(コピー/L)	(%)	去率(-)	(コピー/L)	(コピー/L)	(%)	去率(-)	質(mg/L)
А	$2.7\! imes\!10^7$	$1.6 imes10^5$	99.4	2.2	$8.4 imes10^6$	$6.7 imes10^4$	99.2	2.1	50
В	$1.4 imes 10^7$	$1.5\! imes\!10^{6}$	88.9	1.0	$2.1\! imes\!10^6$	$2.1\! imes\!10^5$	89.8	1.0	10
С	$5.1 imes10^6$	$1.3 imes10^6$	74.5	0.6	$5.0 imes10^6$	$1.2 imes 10^6$	76.0	0.6	55

しなかった。乳幼児の入院および死亡によるDALYは、文 献²⁾より、入院者数と死亡者数を109万人と21.8万人とし、 Havelaarの報告⁸⁾と同様に、入院者数と死亡者数に、重み(入 院;0.23、死亡;1)と影響期間(入院;1週間、死亡;損失 余命80年)をそれぞれ乗じて計算した。開発途上国全体で 発生する年間発症件数は、開発途上国人口50.8億人⁹⁾の 0.048件人⁻¹である2.44億件とした。この開発途上国人口に 占める発症件数の割合は、先進国の値¹⁰⁾と同等と仮定した。

第二に、下水処理水のかんがい利用により生育した3種 類の農作物(レタス、玉ねぎ、穀類・芋類)の喫食者を想 定したシナリオについて、QMRA手法を用いて、換算さ れた耐容感染確率が達成されるかんがい水中のウイルス 濃度と必要な除去率を計算した。レタスと玉ねぎは、生食 を想定し、WHOガイドライン³⁾と同じ計算条件とした。穀 類・芋類は、加熱調理を想定し、処理水付着量10-15mL/100g、 喫食量700g/日、喫食頻度365日/年、農地での収穫時減少率 10²から10³まで、加熱調理による減少率10⁶から10⁷まで³⁾ とした。1日あたり感染確率P_{infd}は、Teunisら¹¹⁾の用量一反 応モデルに基づき、式(1)で計算した。

$$P_{inf,d} = 1 - {}_{2}F_{1}(\alpha, \mu(1-a), \alpha + \beta; (-a)/(1-a))$$
(1)

ここで、 $_2F_1$ は超幾何関数、 μ はNoVの摂取量、 α =0.04、 β =0.055、a=0.0001である。既報¹¹⁾では、NoVの凝集の違いを考慮したモデルを提示しているが、残留したNoVの摂取時の凝集に関する判断材料が無いため、既報⁷と同様に凝集が無い状態を想定している。年間感染確率 P_{infy} は、式(2)によって計算した。

$$P_{inf,y} = 1 - \left(1 - P_{inf,d}\right)^n \tag{2}$$

ここで、nは年間の喫食頻度である。なお、この計算され る確率には、家庭内での2次感染や他の経路(飲料水など) からの感染は含まれていない。

3.2 結果

NoVのDBは 3.6×10^3 年・件¹であり、健康影響目標 値 10^6 人¹年¹は、耐容感染確率 5.1×10^4 人¹年¹に換算 された。RVのDB³と比較して、NoVのDBは低かった。 しかし、感染者あたりの発症確率と NoVに対して感受性 を持つ人の割合は高いため、最終的に、NoVの耐容感染 確率は、RVの耐容感染確率(7.7×10^4 人¹年¹)より、わず かに低かった。

レタス、玉ねぎ、穀類・芋類へのかんがい利用で、耐容 感染確率 5.1×10⁴人¹年¹を達成する NoV 濃度は、それ ぞれ、9.7×10¹、3.7×10¹、2.8×10⁵コピー/L であった。 かんがい水の NoV 濃度を、前章で測定した流入水の NoV G1とG2の濃度の合計の中央値の1.6×10⁷コピー/Lと仮 定すると、レタス、玉ねぎ、穀類・芋類へのかんがい利用 で、必要な除去率は、それぞれ、99.999994%(LR;7.2)、 99.9998%(LR;5.6)、98.4%(LR;1.8)であった。

必要な除去率と下水処理による除去率の比較から、 WSPの処理水は、加熱調理用の穀類・芋類には利用可能 であるが、ALの処理水は、適当でなかった。また、WSP とAL処理水は、生食用のレタスや玉ねぎのかんがいに使 うのは適当でなく、水処理方法の改善や消毒設備の付加が 必要であると考えられた。

4. まとめ

本報で得られた知見を以下にまとめる。

- 1) 下水処理場のNoVの実態を調査したところ、WSPの処 理場のNoV除去率は、ALの処理場の除去率より高かった。
- NoVのDBは3.6×10⁻³年・件⁻¹であり、健康影響目標値 10⁶人⁻¹年⁻¹は、耐容感染確率5.1×10⁴人⁻¹年⁻¹に換算された。
- 3) 農作物の喫食者を想定したシナリオについて、健康影響目標値を10⁶人⁻¹年⁻¹(耐容感染確率5.1×10⁴人⁻¹年⁻¹) とした場合、流入水のNoV濃度を1.6×10⁷コピー/Lと仮 定すると、生食用のレタス、玉ねぎ、加熱調理用の穀 類・芋類へのかんがい利用で、必要な除去率は、それ ぞれ、99.999994%(LR;7.2)、99.9998%(LR;5.6)、 98.4%(LR;1.8)であった。WSPの処理水は、穀類・芋類 にはかんがい用水として利用可能であったが、ALの処 理水は、適当ではなかった。また、WSPとAL処理水は、 レタスや玉ねぎに使うのは適当ではなかった。

参考文献

- Takashi Asano, Franklin Burton, Harold Leverenz, Ryujiro Tsuchihashi, George Tchobanoglous, 2007. Water Reuse: Issues, Technologies, and Applications. 61, Mcgraw-hill New York, USA.
- Patel, M. M., Widdowson, M. A., Glass, R. I., Akazawa, K., Vinjé, J., Parashar, U. D., 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. *Emerging infectious diseases*, 14(8), pp.1224-31.
- World Health Organization, 2006. WHO guidelines for the safe use of wastewater, excreta and greywater. WHO Press, Switzerland.
- 4) 諏訪守、岡本誠一郎、尾崎正明、陶山明子、2009.下 水処理のノロウイルス除去効果とその検出濃度に及ぼ す濃縮法の影響、下水道協会雑誌、46(512), pp.91-101.
- 5) da Silva, A. K., Le Guyader, F. S., Le Saux, J.-C.,

Pommepuy, M., Montgomery, M. A., & Elimelech, M. (2008). Norovirus removal and particle association in a waste stabilization pond. *Environmental Science and Technology*, 42(24), pp.9151-9157.

- World Health Organization, 2011. Guidelines for drinking-water quality – 4th ed., pp.131-133, WHO Press, Switzerland.
- Schoen, M.E., Ashbolt, N.J., 2010. Assessing pathogen risk to swimmers at non-sewage impacted recreational beaches. *Environmental Science and Technology*, 44 (7), pp. 2286-2291.
- 8) Havelaar A. H., Melse J. M., 2003. *Quantifying public health* risk in the WHO Guidelines for Drinking-Water Quality: a

burden of disease approach. RIVM report 734301022.

- 9) The United Nations Children's Fund, 2005. *The state of the world's children 2005*, UNICEF House, New York, USA.
- Kemmeren, J.M., Mangen, M.-J.J., van Duynhoven, Y.T.H.P., Havelaar, A.H., 2006. Priority setting of foodborne pathogens -Disease burden and costs of selected enteric pathogens. RIVM report 330080001/2006.
- 11) Teunis, Peter F. M., Moe, Christine L., Liu, Pengbo, E. Miller, Sara, Lindesmith, Lisa, Baric, Ralph S., Le Pendu, Jacques, Calderon, Rebecca L., 2008. Norwalk virus: How infectious is it?, *Journal of Medical Virology*, 80(8), pp. 1468-1476.

震災時の機能不全を想定した水質リスク低減手法の構築に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平25~平28 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、諏訪守、安井宣仁

【要旨】

東日本大震災では、沿岸部に位置する下水道施設が津波被災により機能不全に陥り、完全な復旧には長時間を要した。 被災地域の他のインフラが復旧するに従い、家庭などから排出される下水が継続して下水道に流入することになるが、 下水道が機能不全となった場合には、放流水質の悪化は水系感染症拡大防止に重大な影響を及ぼす。今回の震災では、 被災下水処理場は沿岸部に集中したが、水道水源の上流に位置する内陸部の処理場が被災した例もあり、下流域におけ る浄水・利水施設に対し病原微生物の感染リスクが格段に高まることになるため、応急的な対応においても可能な限り 水系感染リスクを低下させる手法を明らかにすることが求められている。

26年度は、簡易沈殿処理による病原微生物の除去性や消毒効果向上対策の必要性から、大腸菌群、ノロウイルスなど を指標として攪拌工程を導入した凝集剤の添加効果を評価した。併せて、代替消毒法として紫外線消毒によるウイルス の低減効果を評価した。その結果、攪拌工程を導入したPACの添加条件とし、添加塩素濃度を高めることでノロウイル スの除去効果は、活性汚泥処理の除去レベルと同等の効果が得られる可能性があるものと考えられた。また、塩素消毒 による大腸菌群の不活化効果や添加塩素濃度に対する残留塩素濃度の割合がより高まった。紫外線消毒では、PACの添 加によりノロウイルスの低減効果がより高まった。

キーワード:震災、機能不全、消毒、水系感染リスク

1. はじめに

東日本大震災の発生に際しては、下水道が被災して機 能不全に陥り、既存の水質管理システムの脆弱性が明ら かとなった。被災規模が甚大な場合には、復旧にも長時 間を要する。復旧段階での処理水質悪化は、消毒機能に も影響を及ぼす。

東日本大震災では、被災下水処理場は沿岸部に集中し たが、水道水源上流に位置する内陸部の処理場が被災し た例もあり、病原微生物の感染リスクが格段に高まるこ とになる。水系水質リスクに対する施策として、これま で、下水道施設の耐震化や平常時の河川流況を勘案した 取水・排水系統の再編成などの提言がなされているが¹⁾、 被災による下水道施設の機能不全により、感染リスクは1 万倍以上に上昇すると考えられることから、それに応じ たリスク低下手法の開発が必要である。

本研究は、大規模災害による下水処理システムの機能 不全に対して、他施策等による緊急対策の実施可能性を 整理した上で、下水道において病原微生物の感染リスク を低減させる手法を構築することを目的としている。

このため、機能不全に陥った際の処理水質悪化が消毒 効果に及ぼす影響評価、応急対策手法の構築、段階的復 旧における課題への解決策の提案を行い、衛生学的リス ク管理手法を構築するものである。また、衛生学的な指 標として、これまでの評価対象である大腸菌群に加えて、 塩素消毒に耐性があり集団感染発生要因となるウイルス や原虫類を含める。

26年度は下記の1)2)の項目を実施した。

- 1) 簡易沈殿処理による攪拌工程を導入した凝集剤の添加効果の評価
- 2) 代替消毒法としての紫外線消毒によるウイルス低減 効果の評価

2. 研究目的および方法

2.1 簡易沈殿処理による攪拌工程を導入した凝集剤の添 加効果の評価

東日本大震災による津波被災下水処理場では、段階的 な復旧の初期対応として、導入の容易さから簡易沈殿処 理が多く用いられた。簡易沈殿処理水の水質は、通常の 最初沈殿池を経た一次処理レベルと推定されるとともに、 被災の規模や復旧の進展状況によっては、簡易沈殿処理 の適用が長期間に及ぶ可能性がある。このため、病原微 生物の除去能力の低下や、沈殿池に堆積した汚泥が処理 水に及ぼす影響による水質悪化が懸念される。実際の被 災下水処理場でも、簡易沈殿処理を長期間にわたり行う ことで、沈殿池下層へ堆積した汚泥が塩素消毒効果へ影 響を及ぼす可能性を指摘する報告²⁾がある。

26年度は、簡易沈殿処理での病原微生物の除去性や消 毒効果の向上の必要性から、攪拌工程を導入した凝集剤 (PAC)の添加効果の評価を目的に、プラントを利用し

た連続通水実験を行った。昨年度に行った PAC の添加効

果の評価では、適切な攪拌により凝集反応を促進させる 必要があると考えられた。一方で、被災した下水処理場 で、攪拌を伴う効果的な凝集処理を実現することは困難 であることが想定される。管渠内などでの攪拌力を利用 して凝集を促進させる手法が解決策の一つであると考え られるため、被災現場での導入を容易にするという観点 も踏まえ、図・1 に示すような実験系を考案した。実験装 置は反応容器内に砂利を充填した簡易なもので、流入下 水と PAC を混合させ(5mg-Al/L)、凝集効果を評価す ることとした。凝集効果の評価においては、最初沈殿池

(初沈) 50L、反応タンク 100L、最終沈殿池(終沈) 50L で構成されたプラント3系列を用い、PAC の簡易 攪拌方式を取り入れ、凝集混合水を初沈へ流入させた系、 直接 PAC を初沈へ添加した系、および PAC の無添加 系の計3条件を比較した。簡易攪拌のための反応容器の 容量は500mL で砂利の充填量を考慮した滞留混合時間 は1分間程度であった。また、プラントの反応タンクで は曝気混合は行わず、初沈から終沈までの滞留時間を 16時間として簡易沈殿処理を行った。実験終了時には プラントの各系列に堆積した SS を測定し、その収支を 把握した。

評価対象試料は、流入下水と施設滞留時間を考慮して 採水した終沈越流水とした。併せて、各処理条件で得ら れた上澄液試料を用いて塩素消毒実験を行った。塩素消 毒条件は、次亜塩素酸ナトリウムを 0~15mg-cl/L の範 囲で添加、接触時間を 15 分間とし、チオ硫酸ナトリウ ムの添加により残留塩素を中和した。

水質測定項目は大腸菌群(TC)の他、ノロウイルス (NV)、SS、CODcr、NH4-Nとした。TC はデソキシ コレート培地による平板培養法とした。

NV は、ポリエチレングリコール沈殿法により試料を 濃縮し、回収した沈渣を RNase-free 水(遺伝子分解酵素 を除去した水)に再浮遊させてウイルス濃縮液とし、濃 縮液中のウイルスは、リアルタイム PCR 法により定量³⁾ を行った。ウイルス遺伝子の抽出は、ウイルス濃縮液か ら QIAamp Viral RNA Mini Kit (QIAGEN 社)の抽出 カラムを用いたグアニジン法とした。抽出試料を DNaseI 処理し、RNeasy MinElute Clean up Kit (QIAGEN 社) でウイルス RNA を精製した。RNA 試料 0.5µg をランダ ムプライマー、Omniscript RT Kit (QIAGEN 社)を用 い全量 100µL の系で逆転写反応を行い cDNA を作製し 10µL をリアルタイム PCR に供した。NV の検出に用い たプライマー、プローブおよび反応条件は、「ノロウイル スの検出法について」⁴⁾ に準じた。リアルタイム PCR 反応のための試薬は QuantiTect Probe PCR Kit

(QIAGEN 社)を用い、リアルタイム PCR 装置は LightCycler (ロシュ・ダイアグノスティックス社)を使 用した。逆転写反応に使用する抽出 RNA 量は Spectrophotometer (NanoDrop 社製)により定量した。な お、ウイルス遺伝子抽出カラムへのウイルス濃縮液の通 水量は、検出濃度にバラツキが生じないよう抽出カラム1 本あたり 0.05mg-SS となるように統一した⁴⁾。

SS は下水試験方法に準拠して、また、CODcr は HACHによる比色法、NH4-N は自動比色分析装置(ビ ーエルテック社製 QuAAtro2-HR)により測定した。

2.2 代替消毒法としての紫外線消毒によるウイルス低 減効果の評価

簡易沈殿処理による処理水質は、初沈流出水と同程 度と考えられ、特にTCやNVの高度な除去効果は期 待できないと推定される。また、その処理水に残存す る有機物などによって塩素などの消毒剤が消費される 課題もある。これらの課題に対処するためには、消毒 剤消費物質の影響を受けにくい紫外線消毒法の適用も 考えられる。緊急対応時となることから、電源の確保 等に課題を有するが、復旧の進展状況に応じて適用の 可能性が高まることや、塩素などの消毒剤の不足時に も対応できる利点を有する。

このため、流入下水を対象に紫外線消毒による NV 遺伝子の低減効果を把握した。具体的には、上記 2.1 におけるプラントへの流入下水と流入下水へ PAC を添 加したその上澄液に低圧紫外線ランプにより 0~ 100mJ/cm²の線量を照射し、NVの定量を行った。PAC の添加濃度は4mg-Al/Lとした。

3. 研究結果および考察

3.1 簡易沈殿処理による攪拌工程を導入した凝集剤の添 加効果の評価

簡易沈殿処理による攪拌工程を導入した PAC の添加 効果として、濁度と NV の推移を図-2、3 に示す。図中 標記の I 系は PAC 無添加、II 系は添加攪拌工程有、III系 は添加有の攪拌工程無しである。PAC の添加前では各系 列処理水の濁度に違いが見られなかったが、PAC 添加後 には無添加系と比較して処理水の濁度が低くなり、かつ、 攪拌工程を取り入れた II 系はIII系よりもやや安定してい た。また、系内に堆積した汚泥を引抜くことにより、各 系列処理水の濁度は引抜き前と比較して引抜き直後にお いて低く推移しており、堆積汚泥の引抜き管理は処理水 質の観点から重要であると考えられた。

NV の濃度推移について図-3 に示す。PAC の添加前で は各系列の NV 濃度に差は見られなかったが、添加後は 特にII系での NV 濃度が低下傾向を示した。添加後の各 系列の NV 平均除去率は、I 系が 50%、II系は 85%、 III系は 72%であり、攪拌工程を導入した PAC の添加系 では、他の系列と比較して NV の低減効果がより向上し た。

塩素消毒に及ぼす影響評価結果を図-4 に示す。図-2、3 中に塩素消毒実験と記した試料を対象とした。次亜塩素 酸ナトリウムの添加濃度に応じて NV の低減効果が高ま っており、流入下水の NV 濃度に対する 15mgCl/L 添加 時(接触時間は 15 分間)の低減効果は I 系が 0.8log、II 系は 1.5log、III系は 1.2log となった。攪拌工程を導入し た PAC の添加条件とし、添加塩素濃度を高めることで、 平常時における活性汚泥処理の除去レベルである 2log 程 度と同等の効果が得られる可能性があるものと考えられ た。

同様に、TCを対象とした塩素消毒実験結果を図-5に示 す。PACの添加系列であるII、III系では、添加塩素濃度 が5mgCl/Lで放流水質基準値以下となった。攪拌工程を 導入したII系では、塩素消毒によるTCの不活化効果や 添加塩素濃度に対する残留塩素濃度の割合がより高まっ た(図-6)。

TC、NV 以外の水質項目の結果を図-7~9 に示す。

NH4-N、D-CODer については、流入下水と各系列の処 理水に大きな違いが見られず、PAC の添加による溶解性 物質の除去効果は期待できない。また、T-CODer につい ても、PAC 添加により若干の改善傾向が見られたものの、 D-CODer の影響により改善効果は限定的であると考え られた。より消毒効果を高めるためには消毒剤を消費す る物質の濃度をさらに低減させる必要があるが、その手 法については別途に考慮する必要がある。

次いで、通水日数が63日目における堆積汚泥の引抜き時から実験終了時にかけ各系列のプラント内に堆積した SS 量を測定し、その物質収支の把握を行った。測定結果を図・10に示す。PAC の添加有無に関わらず各系列の初沈での堆積 SS 量はほぼ同じであったが、反応タンク以降に大きな違いが生じていた。I系の無添加系列では流入する SS の多くが初沈に堆積していたが、反応タンクから終沈へ移行するにつれ、堆積 SS 量は減少傾向を示した。しかし、PAC の添加系列では反応タンク内での堆積 SS 量は初沈よりも多くなっていることから、反応タンク内においてフロックが生成し堆積することで、堆積 SS 量が増加したものと推定された。また、流入負荷に対して各系列内で沈殿していた SS の割合は、

I系では約40%、Ⅱ、Ⅲ系では約80%となった。

3.2 代替消毒法としての紫外線消毒によるウイルス低 減効果の評価

上記 3.1 の結果から、簡易沈殿処理時における PAC の 添加によっても D-CODcr や NH4-N などの除去効果は低 く、処理水に残存するこれらの溶解性物質などは消毒剤 を消費すると考えられる。消毒剤を消費する物質の低減 策については、別途に考慮する必要があるとともに、耐 塩素性病原微生物であるウイルスや原虫類に対する課題 がある。これらの課題に対処するために、紫外線消毒 法の適用について検討した。

結果を図-11 に示す。流入下水に対し 100mJ/cm²程度 の紫外線照射量で、NV の低減効果は 0.9log であった。 PAC の添加濃度を 4mg-Al/L とした流入下水の上澄液に 対しては 30mJ/cm²程度の紫外線照射と凝集沈殿による 効果により、流入下水の NV 濃度と比較して 1.3log の低 減効果が得られた。通常の活性汚泥処理水に対しては 40mJ/cm²の照射線量で、NV の低減効果は 1 log 程度で あることから⁵⁾、流入下水へ PAC を添加することで通常 の活性汚泥処理水に対する紫外線照射効果と同レベルの 低減効果が得られていた。また、照射線量を 100mJ/cm² 程度とした条件においては、PAC を添加することで NV の低減効果が 0.9log から 2.5log に向上した。

4. まとめ

26年度は、簡易沈殿処理による病原微生物の除去性や 消毒効果向上対策の必要性から、攪拌工程を導入した PACの添加効果の評価を目的に、プラントを利用した連 続通水実験を行った。また、代替消毒法として溶存物質 の影響を受けにくい紫外線消毒法による病原微生物の不 活化効果を評価した。以下に得られた結果を示す。

「簡易沈殿処理による攪拌工程を導入した凝集剤の添加 効果の評価」

- 攪拌工程を導入した PAC の添加条件とし、添加塩素 濃度を高めることでノロウイルスの除去効果は、平常時 における活性汚泥処理の除去レベルと同等の効果が得 られる可能性があるものと考えられた。
- 2) 攪拌工程を導入した PAC の添加条件とすることで、 塩素消毒による大腸菌群の不活化効果や添加塩素濃度 に対する残留塩素濃度の割合がより高まった。
- 3) PAC の添加による溶解性物質の除去効果は期待でき ないことから、消毒剤の消費物質の低減策については、 別途に考慮する必要があるものと考えられた。

「代替消毒法としての紫外線消毒によるウイルス低減効 果の評価」

4) 流入下水と PAC 添加流入下水を対象とし紫外線照射 を行った。その結果、紫外線照射と凝集沈殿によるノロ ウイルスの低減効果の向上を確認した。

参考文献

- 1)緊急時水循環機能障害リスク検討委員会報告書、平成 19年3月.
- 2) 諏訪守、安井宣仁、鈴木穣、岡本誠一郎、桜井健介 (2013)、津波被災下水処理場の段階的復旧対策技術に よる水質改善効果、下水道協会誌論文集、50(614)、 111-120.
- 3) 諏訪守、岡本誠一郎、尾崎正明、陶山明子(2009)、下水 処理のノロウイルス除去効果とその検出濃度に及ぼす 濃縮法の影響、下水道協会誌論文集、46(561)、91-101.
- 4) 厚生労働省医薬食品局食品安全部監視安全課 (2007)、 ノロウイルスの検出法について.
- 5) 安井宣仁、諏訪守、桜井健介、津森ジュン(2014)、下水 処理水を対象とした紫外線照射におけるノロウイルス の除去特性、第17回日本水環境学会シンポジウム講演 集、141-142.

新規省エネルギー型下水処理技術の開発

研究予算:運営費交付金 研究期間:平26~平29 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、日高 平、桜井健介

【要旨】省エネルギー型下水処理技術の開発を目指し、流入下水を対象として、活性炭により吸着実験を行ったところ、有機物は吸着可能であるのに対して、アンモニア性窒素およびリン酸態リンはほとんど吸着されないことが示された。また、最初沈澱池越流水を連続的に散水ろ床実験装置へ散水したところ、流出水の平均 HCOD_{cr}は 116 mg/L であり、目安として設定した 68.5mg/L を達成しなかった。 キーワード:活性炭、溶解性有機物、散水ろ床

1. はじめに

下水道は我が国の年間消費電力量の約 0.7%を占める 大口需要家である。下水道施設での電力使用量のうち、 水処理工程での使用が約 5 割を占めており、平成 17 年 以降、水処理に係る電力使用量原単位は若干悪化してい る ¹⁾。一方で下水道事業は、人口減少による使用料収入 減少など経営管理への影響が懸念されており ²⁾、水処理 工程の省エネルギー化による下水道事業の維持管理コス ト縮減が期待されている。

また、下水道事業は、地方自治体の事業のなかで、温 室効果ガスの排出量の大きな事業であり、省エネルギー 化によって下水道事業に伴う温室効果ガスの排出量を抑 制することは、地域の実質的な排出抑制に寄与すること ができる³。

本研究は、従来の消費電力の多い浮遊性微生物法(オ キシデーションディッチ法や標準活性汚泥法等)とは異 なる、担体や付着性微生物を活用した省エネルギー型下 水処理技術の開発を行うことを目的とする。

平成26年度は、都市下水処理工程からの有機物回収 効率向上に関して、基礎的な室内実験を行った。また、 散水ろ床実験装置に最初沈澱池越流水を連続的に散水し、 流出水の性状把握を行った。

2. 都市下水処理工程からの有機物回収効率向上に関す る検討

2.1 目的

流入下水中に含まれる溶解性有機物は、曝気槽にて酸化して二酸化炭素として大気中に放出するのが一般的である。下水処理場での電力消費の約50%は水処理が占めており⁴、曝気のために必要な電気エネルギーは無視できない。曝気槽への負荷削減手法として、最初沈殿池で

凝集剤を添加し、通常の最初沈殿池よりも溶解性有機物 の汚泥としての回収率を向上させる前凝集処理に関する 研究例では、回収汚泥の嫌気性消化特性が報告されてい る 5ものの、残存する溶解性有機物の生物処理は後段で 必要である ^{6,7}。

最初沈殿池での浮遊性物質回収効率を向上させ、流入 下水中に含まれる易分解性有機物をなるべく生汚泥から メタンガスとして回収する手法[®]が実証されているもの の、最初沈殿池で分離できない溶解性易分解性有機物か らのメタン回収は対象外である。ここでのケーススタデ ィでは、最初沈殿池流入 TBOD および S-BOD がそれ ぞれ 170 および 50 mg/L と設定されており[®]、S-BOD は生汚泥として回収される BOD の半分程度に相当する。 直投型ディスポーザーが普及すれば、さらなる S-BOD の増加も考えられる[®]。BOD 成分は好気条件下で微生物 により無機化される有機物であり、嫌気性消化によるメ タン転換も可能であると考えられる。

こうした溶解性有機物の新たな回収手法として、本研 究では活性炭による吸着に着目した。粒状活性炭を担体 として活用する嫌気性反応器が、テレフタル酸など特定 の有機物の吸着および嫌気性処理を主目的に開発されて おり¹⁰、活性炭吸着と嫌気性消化を組み合わせられると 考えられる。長期間におよぶ連続式実験もなされており、 活性炭の担体としての耐久性は実証されている¹¹⁰。しか しながら、流入下水中に含まれる溶解性有機物の吸着特 性についての報告例は少ない。そこで本年度は、都市下 水処理工程からの有機物回収効率向上に関して、活性炭 の吸着性能を確認する基礎的な室内実験を行った。

2.2 実験方法

2.2.1 吸着試験

用いた流入下水試料は、合流式を含む下水処理場で採

取した。実験開始前に数時間程度静置し、上澄み液を用いたので、実質的には最初沈殿池越流水と同等である。 活性炭は、Filtrasorb 400 (カルゴン社)の新品を用いた。

対象下水4Lビーカーに投入し、活性炭を投入し、ス ターラーでゆっくり撹拌した(表 1)。蒸留水に活性炭 10g/L投入したブランク系も設定した(Run 2)。吸着実 験は最大 48時間行い、一部は2、6および24時間後に 水質を測定した。Run 3は4℃の冷蔵庫内で、それ以外 は空調を行っている室内(20℃程度)にて、実験を行っ た。Run 4 では、同一条件で3ケース同時に行った。Run 毎に異なる採取日の下水を用いており、吸着前の水質はそ れぞれ異なっている。

表1 吸着試験条件

Run No.	試料	活性炭濃度 (gGAC/L)	SCOD _{Cr} 分析 時間 (h)	温度 (°C)
1	下水	0, 1, 2, 5, 10	2、6、24、48	20
2	蒸留水	10	2、6、24、48	20
3	下水	10	24, 48	4
4	下水	5 (n=3)	48	20

2.2.2 分析方法

試料の分析は、主として下水試験方法に従って行った。 なお、COD&は吸光光度計(DR2400、ハック社)によ り分析し、その際には COD&試薬(LR)を用いた。ア ンモニアおよびリン酸の分析は、自動比色分析装置

(TRAACS2000、ブランルーベ社)を用いた。溶解性 COD_{cr} (SCOD_{cr}) は、GF/B ろ紙にてろ過した試料の 測定値である。

2.3 結果および考察

2.3.1 吸着試験

Run 1~3 における、SCODcの経時変化を図1に示 す。Run 1 で活性炭を投入しなかった場合、SCODc は ほとんど減少しておらず、微生物反応による酸化分解は ほとんど進行していなかった。24 時間後以降の濃度変化 は少なく、活性炭濃度が2 gGAC/L 以上で、4℃の場合

(Run 3) も含めて、SCOD_Gは20 mg/L 程度まで減少した。Run 4 では、初期 SCOD_G111 mg/L に対して、48 時間後には23~28 mg/L まで減少していた。蒸留水によるブランク系(Run 2) での SCOD_Gは、0.6 mg/L 以下であった。

吸着実験前後の栄養塩濃度(アンモニア性窒素およびリ ン酸態リン)を図2に示す。いずれも、実験開始時および 48時間後を比較して、有機物濃度ほど大きく変化してい なかった。無機化された栄養塩類については、特に吸着効 果が期待できないことが示されている。物理化学処理で除 去もしくは回収するために、アンモニア性窒素については ゼオライトなどの吸着剤¹²⁾、リン酸態リンについては凝集 剤添加^{6,7}などが考えられる。

これらより、活性炭を活用することにより、流入下水 中からの溶解性有機物の回収は、可能であることが示さ れた。

((A)アンモニア性窒素、(B)リン酸態リン)

3. 散水ろ床法の流出水の性状把握

3.1 目的

散水ろ床法に要する電力消費量は、一般に標準活性汚 泥法の 1/2~1/4 程度であり¹³、消費エネルギーの観点 からは優れた下水処理方法である。しかし、処理水の透 視度が劣るなどの課題が指摘されている¹⁴⁾。そこで、処 理水質を把握するため、散水ろ床の実験装置を作成し、 連続的に最初沈殿池越流水を散水し、流出水の性状を分 析した。有機物指標(COD_G)の分析にあたっては、全体 の COD_G (TCOD_G)および溶解性 COD_G (SCOD_G)に加 えて、Schubert と Gunthert¹⁵が、散水ろ床流出水中の 直径 100µm 以上の粒子は、最終沈殿池で除去されたこ とを報告していることから、沈澱池で除去が困難な 100µm 以下の粒子に着目し、100µm ろ紙でろ過した試 料の COD_G (HCOD_G)も測定した。

3. 2 実験方法

製作した散水ろ床実験装置の断面図を図3に示す。本 装置は、直径300mmの円筒状である。図3中の網掛け

図3 散水ろ床実験装置 の断面図(単位はmm)

部分は、プラスチック担体 (BIO-15、ゼビオプラスト社) を充てんしたエリアを示し、有 効高さは2.64m とした。プラス チック担体の大きさは、直径 15mm、高さ15mm、厚さ1mm の円筒状であり、比表面積は 450m²/m³である。また図3中 の着色された半円(6箇所)は、内 径20mmの通気口を示す。

本装置を屋内に設置し、一部 合流式を含む下水処理場へ流入 した下水を、最初沈殿池実験装 置で処理し、越流水をポンプで 送水し、散水ろ床実験装置の流 入水として、上部から連続的に 散水した。また、散水ろ床実験 装置の下部から流出水を採取し た。散水ろ床法の一般的な散水 負荷は、10~75 m³/(m²・d)で ある16ことから、散水ろ床実験 装置への散水負荷は、その範囲 の 10m³/(m²・d)とした。11 月 から散水を開始し、翌年 1~2 月に採水し、水質を分析した。 水質分析は、水温、pH、

TCOD_G、HCOD_G、SCOD_Gを測定した。分析方法は、 次のとおり行った。pH および水温の測定にはポータブ ルpH計(東亜DKK株式会社、HM-30P)を使用した。 TCOD_G、HCOD_G、SCOD_GのCOD_G濃度の測定は吸 光光度計DR3900および試薬(ともにハック社)を用い た。HCOD_Gの測定は、孔径 100µm のナイロンネット フィルター(メルクミリポア社)のろ過試料を用いた。 SCOD_Gの測定は、ガラス繊維ろ紙(ワットマン社、 GF/B)のろ過試料を用いた。

3.3 実験結果

散水ろ床実験装置の流入水と流出水の COD_G を図 4 に示した。流出水の TCOD_G、HCOD_G、SCOD_Gの平 均値は、それぞれ、122、116、70 mg/L であった。また、 同じ期間中の TCOD_G、HCOD_G、SCOD_Gの平均除去 率を、表 2 に示す。SCOD_Gの除去率は、TCOD_Gや HCOD_Gの除去率に比べて低く、SCOD_Gは散水ろ床に おいて除去されにくかった。

流入水の水温は 13.3~15.1℃で、流出水は、0.4~2.0℃ 低下していた。

図 4 散水ろ床実験装置の流入水(Inf.)と流出水(Eff.)の COD_{Cr}

表2 散水ろ床実験装置の流入水と流出水の COD cr の平 均除去率

	除去率(%)					
Т	COD _{Cr}	HCOD _{Cr}	SCOD _{Cr}			
4	46.6%	43.7%	19.8%			

仮に COD_{cr} と BOD の関係式 (COD_{cr} = 1.34× BOD+48.4)¹⁷⁾を用いた場合、BOD 15mg/L は、COD_{cr} 68.5mg/L に換算される。流出水の HCOD_{cr}の目標値の 目安を COD_{cr} 68.5mg/L とする時、期間中、一度も達成 することがなかったことから、除去率の向上が必要と考えられた。図4からは、流出水のSCOD&でさえも、HCOD&の目標値を達成できなかったことがあり、SCOD&も除去することが必要であると考えられた。

4. まとめ

本研究の実施内容を、以下にまとめる。

1)活性炭による流入下水中の溶解性有機物の回収可能 性を調査するための吸着実験を行ったところ、アンモニ ア性窒素およびリン酸態リンはほとんど吸着されないも のの、溶解性有機物の回収に適用可能であることが示さ れた。今後は、回収した溶解性有機物からのメタン回収 などを含む活性炭の再生方法や栄養塩除去手法を検討す ることで、省エネルギー型下水処理技術の開発を行う予 定である。

2) 省エネルギー型の下水処理技術の開発を目指す研究 の初年度として散水ろ床実験装置を製作し、下水処理場 へ流入した下水を用いて、散水ろ床実験装置を連続的に 運転することができた。その流出水の平均 HCOD_c は 116 mg/L であり、目安として設定した 68.5mg/L を達 成しなかった。今後、継続して運転し、年間の流出水の 性状の変化を把握するとともに、水質の向上方策を検討 する予定である。

謝辞

下水試料採取などでお世話になりました下水処理場関 係各位に謝意を表します。

参考文献

- 1) 下水道における資源・エネルギー施策の現状分析、第3回 下水道政策研究委員会会議資料、平成26年1月16日、2014.
- 2) 国土交通省水管理・国土保全局下水道部、公益社団法人日本下水道協会:下水道長期ビジョン実現に向けた中期計画、 新下水道ビジョン、p.4.2、平成26年7月、2014.
- 3) 下水道における地球温暖化防止対策検討委員会:下水道における地球温暖化防止推進計画策定の手引き、平成 21 年 3月、pp.4-5、2009.
- 4) 日本下水道協会:下水道統計(平成23年度版)(第68号)、
 2013.
- 5) 高岡昌輝、廣田淳一、武田信生、藤原健史:前凝集沈殿 汚泥の嫌気性消化特性、土木学会論文集、No.685/VII-20、 pp.17-26、 2001.

- 6) 宗宮 功、津野 洋、貫上 佳則、長谷川 明巧、木 下 巌、日髙 平:前凝集沈殿・浮遊微生物処理法による 都市下水の高度処理に関する研究、下水道協会誌論文集、 Vol.36、No.436、pp.87-97、1999.
- 7) 日髙 平、津野 洋、鄭 晋宇、岸本 直之、織田 稔 幸:生物膜ろ過反応器での前凝集汚泥活用に関する研究、 下水道協会誌論文集、 Vol.40、 No.487、 pp.103-116、 2003.
- 8) 国土交通省 国土技術政策総合研究所: B-DASH プロジェ クト No.1 超高効率固液分離技術を用いたエネルギーマ ネジメントシステム導入ガイドライン(案)、国土技術政 策総合研究所資料、 No.736、 2013.
- 津野 洋、日高 平、朴 鏞珍、千 智勲、朴 賛祐: ディスポーザー対応下水道における嫌気性消化のための固 形物回収技術の検討、下水道協会誌論文集、 Vol.42、 No.514、 pp.143-152、 2005.
- 10) Hiroshi Tsuno, Masasumi Kawamura : Development of an expanded bed GAC reactor for anaerobic treatment of terephthalate-containing wastewater, Water Research, Vol.43, pp.417-422, 2009.
- 注野洋、河村正純、日高平、本間康弘、蒲池一将: 生物活性炭嫌気性反応装置による SS 含有低濃度有機性廃 水の処理に関する研究、環境工学研究論文集、Vol.47、 pp.561-569、2010.
- 12) 籾山 孝一: ゼオライトによる下水中のアンモニア除去実験、 土木技術資料、19(12)、 pp.624-629、1977.
- 13) Water Environment Federation : Energy use in wastewater treatment process, Energy Conservation in Water and Wastewater Facilities, Manual of Practice (MOP) No. 32, p.162, McGraw Hill, New York, 2010.
- 14) 社団法人日本下水道協会:下水道施設設計指針と解説
 1984 年版、p.376、1984.
- 15) Schubert, W. and Gunthert, W., Particle size distribution in effluent of trickling filters and in humus tanks, Water Research, 35(16), pp.3993–3997, 2001.
- 16) George Tchobanoglous, Franklin Louis Burton, H. David Stensel: Wastewater Engineering: Treatment and Reuse, fourth edition international edition, McGraw Hill, New York, p.893, 2004.
- 17) 後藤雅子、甘長淮:下水処理における窒素除去と放流先の 窒素挙動を加味した温室効果ガス排出量の一考察、第50回 下水道研究発表会講演集、pp.565-567、2013.

遺伝子解析による嫌気性消化槽の維持管理技術の開発

研究予算:運営費交付金(一般勘定)

研究期間:平26~平28

担当チーム:材料資源研究グループ (リサイクル)

研究担当者:津森ジュン、日髙平、對馬育夫

【要旨】

嫌気性消化における運転状況のモニタリングや制御の高度化など新たな維持管理手法を検討するために、下水 脱水汚泥による連続式嫌気性消化実験を行い、反応に関わる微生物群の遺伝子解析を試みた。その結果、消化汚 泥における微生物の構成割合は処理場毎に傾向が異なっていること、および消化汚泥の固形物(TS)濃度と遺伝子 濃度は相関が低いことを明らかとした。従来の維持管理指標である TS 濃度では区別できない微生物の状況を遺 伝子解析技術により把握することで、新たな維持管理手法につながる可能性が考えられた。 キーワード:次世代シーケンサー、リアルタイム PCR、嫌気性消化、下水汚泥

1. はじめに

再生可能エネルギーの固定価格買取制度にも関連し て、下水汚泥の嫌気性消化で回収するメタンガスが近 年改めて注目されている。下水汚泥のみならず、生ご み、刈草などの他バイオマスを含めた下水処理場での 集約嫌気性消化の導入も、検討されつつある。従来嫌 気性消化に向かないとされていた小規模向け処理法で あるオキシデーションディッチ(OD)法から発生する 脱水汚泥を対象に、集約嫌気性消化について事業化の 可能性がコストや温室効果ガス排出量削減の観点から 石川県で示されている1)。ただし、集約混合嫌気性処理 では、投入基質条件が複雑になり、嫌気性消化槽の維 持・管理について、これまで蓄積した現場の経験やノ ウハウでは対応できない懸念があり、適切な維持管理 手法が求められている。

そこで本研究では、脱水汚泥を対象に連続嫌気性消 化実験を実施し、嫌気性消化状況のモニタリングや制 御の高度化など新たな維持管理手法を検討するために、 反応に関わる微生物群についての遺伝子解析を試みた。

表-1	脱水汚泥を採取した	:下水処理場

	規模 (千m ³ /d)	排除方式	水処理方式	脱水対象
処理場i	1~5	分流	OD法	余剰汚泥
処理場ii	1~5	分流	OD法	余剰汚泥
処理場A	50 ~ 100	一部合流	ステップ流入式 多段硝化脱窒法	混合汚泥

2. 研究方法

小規模処理場で広く採用されている OD 法の脱水汚 泥2種類 (処理場iおよびii)、ならびに標準活性汚泥 法(高度処理)の脱水汚泥1種類(処理場A)の計3カ所 の処理場の脱水汚泥 (表-1参照)を用いた、連続式嫌気 性消化実験を行った2)。

各処理場の汚泥に対し、有効容積1.5Lの反応器2系 列ずつを、中温 (35℃程度)連続式で運転した。投入汚 泥の固形物 (TS) 10%程度の系 (系列 1)を設定すると ともに、より高濃度の系 (系列2)も設定した。ただし、 処理場iおよびiiの汚泥では、消化汚泥の高濃度化で 撹拌機による撹拌が困難となり、その後は投入汚泥濃 度を低く設定した。脱水汚泥 30 g-wet および投入濃度 設定値に応じた希釈水を、平日のみ1日1回の頻度で 投入した。有機物(VS)負荷率は、処理場i、iiおよびA でそれぞれ 2.1、1.7 および 1.9 kgVS/(m³·d)であった。

各実験系について、それぞれ1回ずつ、次世代シー クエンス法により消化汚泥の微生物群集を解析した。 ここでは、Extrap SoilDNAKit Plus ver.2 (日鉄住金環境) を用いて DNA 抽出を行った。抽出した DNA を鋳型と して真正細菌の16S rRNA 遺伝子領域を標的としたプ ライマー (Bac341 および Bac850)³⁾にオーバーハング アダプター配列を付加したものを用い、PCR 増幅を 行った。PCR 反応条件は初期変性を95℃で3分行った 後、95℃で30秒、55℃で30秒、72℃で30秒のサイ クルを 25 サイクル行った。PCR 増幅産物は AMPure XP kit (Beckman Coulter Genomics)を用いて精製した。 DNA シーケンシングには Miseq reagent Kit v3 (600 サ イクル、Illumina)を用いて解析した。解析で得た各リー ドの塩基配列のキメラチェックは USEARCH⁴⁾を用い、 Operational Taxonomic Unit (OUT)-picking およびクラス ター解析は QIIME⁵⁾を用い、97%以上の相同性を持つ

配列を OTU とした。各 OTU の同定には Greengenes データベース ver. 13_8 をリファレンスとした。

リアルタイム PCR 法により、真正細菌 (16SrRNA 遺伝子)を定量した。ここでは、Extrap Soil DNA Kit Plus ver.2 (日鉄住金環境)を用いて DNA を抽出し、精製 DNA 溶液の DNA 濃度を、PicoGreen dsDNA Assay Kit (Invitrogen)を用いて測定した。そして QP 法により、 Rotor-GeneQ (Qiagen)を用いて遺伝子濃度を定量した。 ここで、プライマーは Bac1055YF⁶⁾ および Bac1392R⁶⁾ を、プローブは Bac1115Probe⁶⁾の配列を一部改変し QProbe 化したものを用いた。PCR 反応条件は初期変 性を93℃で2 分行った後、93℃で15 秒、61℃で20 秒、 72℃で 25 秒のサイクルを 50 サイクル行った。

図-1 消化汚泥中微生物群集解析結果例

図-2 消化汚泥中 TS 濃度および真正細菌遺伝子の関係

3. 結果および考察

投入TSを10%程度に設定したそれぞれの系列1は、 pHやバイオガス生成状況が安定しており、消化汚泥の TS濃度は6~8%程度に落ち着いた。pHは、いずれも7.7 ~8.5の範囲であり、有機酸蓄積やpHの急激な低下は見 られなかった。投入VSあたりのバイオガス転換率につ いて、処理場Aは0.4 NL/gVS-投入程度、OD法である処 理場iおよびiiは0.2 NL/gVS-投入程度であった。

次世代シークエンス法による微生物群集解析の結果 を図-1 に示す。Firmicutes に分類される Clostridiaceae などがどの消化汚泥からも多く検出された (42.6~ 59.3%)中で、構成割合は処理場毎に傾向が異なってい ることが明らかとなった。

消化汚泥の TS 濃度と真正細菌の遺伝子濃度の関係

を、図-2 に示す。真正細菌の遺伝子濃度は、それぞれ 1×10⁹~5×10⁹ copies/mL 程度検出された。また、消化汚 泥の TS 濃度と遺伝子濃度は相関が低いことが明らか となった。

4. まとめ

下水汚泥の嫌気性消化反応に関わる微生物群につい て、遺伝子解析を試みた。以下に成果を記す。

- 次世代シーケンサーを用いた微生物群集解析の結果、微生物の構成割合は処理場毎に傾向が異なっていることが明らかとなった。
- 2) 消化汚泥の TS 濃度と遺伝子濃度は相関が低いこと が明らかとなった。

これらより、従来の維持管理指標である TS 濃度で は区別できない微生物の状況を遺伝子解析技術により 把握できることが示された。今後は、処理が不安定な 状況なども含めて更にデータを蓄積することで、モニ タリングや制御の高度化など新たな維持管理手法の提 案を試みる予定である。

謝辞

下水汚泥試料採取では、地方自治体関係各位の協力 を得ております。ここに記して、謝意を表します。

参考文献

- 小規模処理場施設に適したメタンガス有効利用支援に関する共同研究報告書,(独)土木研究所共同研究報告書第460号,2014.
- 2) 日高平ら: オキシデーションディッチ法の脱水汚 泥を対象とした中温嫌気性消化特性調査,第52回下 水道研究発表会講演集, pp.983-985, 2015.
- Klindworth A. b: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, *Nucleic Acids Research*, 41, pp.1-11, 2013.
- Edgar R.: Search and clustering orders of magnitude faster than BLAST, *Bioinformatics*, 26(19), pp.2460-2461, 2010.
- 5) Caporaso J.G. ら: QIIME allows analysis of high-throughput community sequencing data, *Nature Methods*, 7, pp.335-336, 2010.
- 6) Ritalahti K.M. b: Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains, *Applied and Environmental Microbiology*, 72(4), pp.2765-2774, 2006.

21 世紀型都市水循環系の構築のための水再生技術の開発と評価(水の衛生学的評価)

研究予算:戦略的創造研究推進事業 研究期間:平21~平26 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:鈴木穣、津森ジュン、 諏訪守、桜井健介、安井宣仁

【要旨】

下水処理水の再利用においては、特に利用時における健康被害を考慮した衛生学的リスク評価と再生処理プロセスの 管理が必要不可欠であり、利用時における病原微生物リスクを除去、低減するこが重要であり、特に本研究の21世紀 型都市水循環系の構築のための水再生技術の開発と評価における水の衛生学的評価では以下の事項が必要である。病原 微生物が低濃度で含まれる試料水に対する分析手法の確立が必要、変動する病原微生物の流入濃度に応じ、安定的に処 理可能な技術と処理性能評価が必要、様々な処理方法と用途に対応できる再生水の定量的微生物リスク評価手法が必要 である。これらの要件から、本戦略的創造研究推進事業(CREST)の共同研究として、旧リサイクルチームでは、再生水 利用による病原微生物の健康被害を事前に予測し、効率・効果的なリスクコントロールが可能な管理手法の構築を目指 した。本報では平成21年~26年に実施した研究内容ならびに得られた成果を示す。

得られた顕著な成果の一つとして、本 CREST 研究において開発された再生処理技術に対して、様々な再生水の利用 途毎のノロウイルス(NoV) 感染リスク評価を病原微生物モニタリングデータの実測値に基づき評価し、HACCP を応 用し、国内の農業用水利用において水利用の各プロセスで想定されるハザードのプロセスフローダイアグラムの作成し、 農業用水の利用時における危害要因の抽出し検証を実施し、再生水利用時の危害要因と重要管理点を明らかとした。

キーワード:衛生学的評価、ノロウイルス、再生水、定量的微生物リスク評価(QMRA)

1. はじめに

現在の下水処理システムは、処理した水は環境中に放 出するか一部施設内で再利用するなどに留まっている。 我が国における下水処理水の再利用水(以下、再生水と 記す)は、平成22年度で、年間2.01億m³と処理水量全 体の1.4%の利用に過ぎない。国内では現状、利用できる 水が比較的豊富にあるため、飲料水やその他、農業用水 等の水利用に関しては、あまり問題視されていないが、 東南アジア等の国内水源の少ない海外では、水不足は深 刻な問題である。このような背景のもと、今後、国外に おいて再生水の利用可能性は拡大する見込みであると言 える。また日本国内においても、持続的可能な水循環の 創出という考え方からも、今後の再生水の利用促進が期 待されると思われる。再生水の利用価値は高いと考えら れ、再生水の利用促進を図る上では利用者に対する安全 性評価、特に病原微生物の感染リスクに関しての評価が 必要である。

現在、欧米では、再生水の利用においては疫学調査や 定量的病原微生物リスク評価(QMRA:Quantitative Microbiology Risk Assessment)に基づいた感染リスク評 価による基準値の設定や検討が行われてきている。しか しながら、国内においては、どの程度、再生水の感染リ スクを低減させるのが最も効果的なのか、また再生水処 理技術として何が最適なのかといった、知見および検討 がほとんど存在しないため、現状で再生水の利用におい て、特に病原微生物による感染リスクに関する明確な基 準が設定されていない。

2. 研究の目的と実施方法

本研究では、現在の都市水資源や新しい水利用技術に よって生み出された水資源について、衛生学的評価を行 うことを目的に、下記の内容について検討をおこなった。

① 水中の病原微生物濃度モニタリング

a) 試料特性に応じた定量方法の開発

本研究では、モニタリング対象として腸管系ウイル スである NoV とし、定量方法は遺伝子検出法(PCR 法) を用いた。モニタリングにあたり対象とする試験水が 下水再生水、環境水であるため、水中に存在する NoV 濃度が低濃度である可能性が高いため、モニタリング を行う前にウイルス低濃度試料にも対応できる定量方 法を開発する必要がある。そこで、既報の下水試料に おける最適化された定量手法に加え、検出感度の向上 を目的に、リアルタイム PCR 反応における反応量の影 響、ビーズ粉砕処理による前処理の各手法について評 価を行い、試料特性に応じた NoV 定量方法を確立する ことを目的とした。

b) 環境水・実施設での NoV 濃度モニタリング

ウイルス低濃度試料に最適化した定量方法を用い、 河川水、湖沼水、実施設での再生水のNoV濃度モニタ リングを行うと同時に本研究で開発された再生処理技 術を用いた再生水のモニタリングも実施し、衛生学的 評価を行うためのデータ蓄積を行った。また本検討に て蓄積したデータは後述の研究目的である衛生学的評 価における基礎データとなる。

② 水の衛生学的評価と管理手法の提案

c) 再生水利用用途毎の NoV 感染リスク評価

NoV 濃度モニタリングデータを用い、定量的微生物 リスク評価(QMRA)の手法により、再生水利用におけ る衛生学的評価手法の枠組みを構築する。構築したリ スク評価手法を用い、本 CREST 研究にて開発した処 理技術を主な対象として、農業利用時および都市用水 利用時における再生水利用者への NoV 感染リスク評 価を行うことを目的とし、衛生学的安全性の観点から の再生処理プロセスの評価を実施した。

d) HACCP を適用した病原微生物の再生水リスク管理 c)で構築ならびに評価した結果を用い、食品、水道 分野で用いられている HACCP による管理手法を適 用した、沖縄での農業利用を例とした再生水利用時に おける NoV リスク管理手法を提案した。

3. 研究結果および考察

- ① 水中の病原微生物濃度モニタリング
- a) 試料特性に応じた定量方法の開発
- i)リアルタイム PCR 反応量の変化による検出感度の影響

複数の試験水(環境水、流入下水、処理水等)を、リ アルタイム PCR 装置(Light Cycler DX400, Roche 社製) を用い、既報の下水試料に最適化された定量手法、PCR 反応量20µLから、反応量100µLに拡張した際のノロウ イルスの検出感度の影響を把握した。その結果図1に示 す通り、通常の20µL系で不検出または10copy/tube 未

図1 NoVGIの20µL系と100µL系による定量値の比較

図2 ビーズ粉砕処理の有無による NoV 検出濃度の違い

満と判定された低濃度試料に対して、大容量遠心+PCR 反応容量を100 µL系に拡張することで、安定かつ信頼性 の高いデータ値を得ることが可能となった。また不検出 と判定された試料に対しても検出が可能となった。

ii)ビーズ粉砕処理による前処理の検討

ウイルス RNA の抽出効率を向上させるため, RNA 抽出の 前処理方法としてビーズ粉砕処理を検討し、ビーズ粉砕工 程と通常工程の違いによる NoV 定量値を比較した。試験水 は流入下水および環境水を用いた。実験結果を図2に示す。 流入下水はビーズ粉砕の前処理を行うことで、通常工程と比 較してNoVGIは定量値が約3.6倍増加し検出感度が向上したがNoVGIIは顕著な差が確認されなかった。一方、環境水試料はビーズ粉砕処理を行ってもNoVGI、GIIとも定量値に顕著な差が確認されず、ビーズ処理を行った方が若干ではあるが、定量値が小さいことが確認された。これは、NoVGIに関しては流入下水などのSS濃度が高い試料の場合、ビーズ等の粉砕処理を行うことでSSに付着したウイルスを効率よく分離し、RNA 抽出時の効率が増加したためだと考えられた。一方、NoVGIIは、GIと異なりSSへの付着機構が異なるためだと考えられた。環境水の場合、流入下水と比較しSS濃度が低いためSS付着による影響が小さいためだと考えられた。

b) 環境水・実施設でのNoV 濃度モニタリング

本調査は、下水再生水を供給している施設および環境水 中を対象に以下の3点について検討することを目的に調査 を行った。

- ・種々の流域特性が異なる水域でのウイルス存在実態 を把握すること
- ・再生水の処理レベルの間接的な目安を検討すること
- ・ウイルス以外にも他の共同研究者が多様な物質の測定を しており、これらのデータベースの一部としてデータを取 得すること

調査施設は下水処理水を農業利用として再利用してい る施設A、主にトイレ用水や散水用水として再利用水を 用いている施設Bとした。環境水は主に関東圏を中心に 類型指定されている河川ならびに下水処理水が混入する 河川,河川情報が比較的簡便に調べることが可能な河川 とした。図3に多摩川河川でのモニタリング結果を示す。 採水地点5、6、9は直前に下水処理場があり、処理水が 河川に混入している。また調査地点9は5つの下水処理 場の処理水が混入した地点となっている。NoVGIは季節 変動による遺伝子数の変動に傾向は確認できず、2010年 11月、2月は、各地点とも10³copies/L~10⁴copies/L 程度で 推移していた。一方 NoVGII は下水処理水混入後の地点 4以降で大幅の定量値の増加が確認された。さらに6月 よりも冬場の11月、2月の値が大きく、季節変動による 定量値の違いも確認された。以上より、NoVGII は NoVGI と異なり、下水処理水の流入による濃度増加が顕著に表 れていた。

② 水の衛生学的評価と管理手法の提案

c)再生水利用用途毎のNoV 感染リスク評価

①、b)のモニタリングデータから再生水利用における衛 生学的評価手法の枠組みを構築し、東レグループで開発し た処理技術(沖縄:パイロットプラント)を主な対象として、取 得した NoV 濃度モニタリングデータを用い、Case study と して農業利用時および都市用水利用時における再生水利 用者への NoV 感染リスク評価を行った。その結果より、衛生 学的安全性の観点からの再生処理プロセスの評価を実施し た。評価方法は、定量的微生物リスク評価手法(QMRA)によ る障害調整生存年数(DALY)を指標とし、各利用用途にお けるリスクシナリオを設定した。表1に DALY による再生水 の定量的微生物リスク評価手順を示し、表2 にリスク評価結 果のまとめを示した。表2 において、再生水の原水として二 次処理水を用い、本研究で新規に開発された各処理技術に

図3多摩川のNoV 定量データ(採水日: 2010年11月, 2011年1月, 6月)

おける各利用用途に対して、その利用可能性を「適」、「不十分」、「不適」と評価した。

評価結果より、開発した水再生プロセスにより産出された 再生水は、UF膜処理の後段にUV, NF, ROを追加すること で想定したケースのほぼ全ての用途に利用可能であること が明らかとなった。

d) HACCP を適用した病原微生物の再生水リスク管理 HACCP のリスク管理手法を適用した際の病原微生 物リスク管理手順を以下に従い検討を行った。

「プロセスフローダイアグラムの作成・検証|

・再生処理・利用フローを作成し、利用時の各 プロセスで想定されるハザードを特定する。

「ハザードと予防装置の特定」

・プロセスフローダイグラムにより作成された 再生処理・利用フローの各工程において、想 定されるハザード(=重要な危害要因: Hazard(HA))を抽出し、その予防措置を提案 する。

「重要管理点の特定」

- ・HA のうち管理すべき 「重要管理点(CCP)」
 を 定量的微生物リスク評価 (QMRA) による
 評価から CCP を特定する。
- 「管理基準値(CL)の設定」/「モニタリング手法の 決定」
 - ・管理基準値(CL)を設定し、CLに対応した項目の モニタリング手法を決定する。

「改善措置手順の設定」

・CL を超過、逸脱した際の改善措置手順を設定 する。

上記手順に基づき、Case study として沖縄県での農業利 用時における NoV 感染リスクにおける再生水利用フローに おけるハザードと予防装置の特定ならびに重要管理点の特 定を試みた。

農業利用における再生処理・利用フローにおける各プロ セスでの危害要因(ハザート:HA)となりうる工程を抽出した。 抽出方法はリスク評価対象での健康被害の影響、発生頻度 から重要とした判断した工程を抽出した。抽出した工程にお いて発生が予想される危害要因とその根拠および、その危 害を予防するための措置を取りまとめた。表3に結果を示す。 重要な危害と考えられる工程は、排水設備、下水処理、再生 処理、耕作地に給水、作物を収穫における工程と判断した。

重要管理点(Critical control point :CCP)は、重要な危害を排除、予防または抑制するために、そのシステムとして

表1 再生水の定量的微生物リスク評価手順

于限	(ki)/ ~~
 利用用途に応じた シナリオの設定 用途 曝露量、曝露頻度 リスク対象者 - 曝露形態 	単数用法:< (第月前日) の名志2017年1, 上記目在 (第月前日) の名志2017年1, (日本) 都市市木:ホネトバレ (日本) 都市市木: 二次ネパトレレ (日本) 第市市木: 二次ネパトレレ (日本) 第市市木: 二次ネパトレレ (日本) 第市市木: 二次ネパトレレ (日本) 第市市木: 三次ネパトレレ (日本) 第市市木: 三次ネパトレレ (日本) 第市市木: 三次ネパトレレ (日本) 第市市木: 三次ネパトレ (日本) 第市市木: 三次ネパトレ (日本) 第市市木: 二次ネパトレ (日本) 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次 第市市木: 二次
・評価対象 水再生プロセスの抽出	
・再生水供給方法	 那覇南部(農業用水:送水距離、、) 那覇市内(都市用水:送水距離5、、)
 の計算 	モンテカルロシュミレーション回)により算出
 評価・判定 	
	「本通」・利田に住本通 (値の分布の が 以上)

表2 各再生処理技術による再生水の NoV 感染リスク評価に基づく利用可能性

						_		
							評価	定基準
							道 DALY値の分布の95%	が10 ⁻⁶ 以下
						2	F十分 DALY値の分布の68%	DF 10 ⁻⁶ 以下
							不適 DALY値の分布の68%	が10-5 以上
	処理	性能		利用		80F	明	
処理プロセス	平均	43.8%	農業従事者 (水稲栽培)	消費者 (生野菜)	水洗トイレ	芝生散水	親水 (手足)	親水 (水浴)
	Log除去率	7J BX	0.3mL/回 27.2回/年	0.1~1mL/100g 242g/日	0.02mL/回 3回/年	0.1mL/回 20回/年	0.3mL/回 20回/年	30mL/回 8回/年
二次処理水	-	-	不達	不進	不遭	不道	不進	不進
凝集+UF		±0.9Log	不十分	-		不十分	不適	不道
UF+UV	MS2ph	age换算 ±0.3Log	淮	-	淮	-	淮	不十分
	MS2phage換算	ur単独でのNoVの分散 土0.5Log	朣	HE .	3B	違	浦	運
	MS2phage換算	ur単独でのNoVの分散 ±0.5Log	朣	-	H	ii	1	攔
+凝集沈殿 +セラミック膜処理	M52ph	ago換算 ±0.5Log	浦	淮	iii	淮	浦	不十分

表3農業利用における発生が予想される危害要因と予防措置

工程	発生が予想される 危害要因	重要な 危害要因になるか? 根拠	予防措置
排水 設備	感染症患者の増加	感染者増加に伴い下水濃度 増加	保健所等からの感染者情報の入手
下水	水処理プロセスの不調 〈機能不全〉	処理効率低下によるリスク 増大	定期的な点検の実施
処理	病原微生物等の流入の 増加(Out break等)	除去率一定だと、放流濃度 増加のため感染リスク増大	消毒等の追加処理による緊急対策
再生 処理	水処理プロセスの不調 (機能不全)	処理効率低下による感染リ スク増大	定期的な点検の実施 処理の安定性をモニタリング
耕作地 に給水	農業従事者の 誤飲・誤摂取	再生水利用の周知が不十分 だと感染リスク増大	利用方法の見直し 作業者への注意喚起等の対策
作物を 収穫	作物に付着、 消費者摂取	コメへの病原微生物付着	飛沫を発生させないような灌水形態 水洗い等の強化による対応

表4 沖縄での農業利用時における NoV リスクの重要管理点 (CCP)

工程	発生が予想され る危害要因	重要 管理点か?	重要管理点の特定根拠
排水 設備	感染症患者の 増加	NO	Uncontrollableであるため、重要管理点ではなく、 感染症患者の動向に注視
⊤ж	水処理プロセス の不調 (機能不全)		 ・原水濃度(下水処理)変動 ・液入水質の水質状況に応じて、
「小 処理 滴原微 流入の (Out b	病原微生物等の 流入の増加 (Out break等)	YES	<u>処理変動が生じる。</u> ⇒ 重要管理点となる 正常に運転されているかをモニタ
再生 処理	水処理プロセス の不調 (機能不全)	YES	ce 10 10 10 10 10 10 UD/Cにより監視する必要がある が回答: ()()()()()()()()()()()()()()()()()()()
耕作地 (こ給水	農業従事者の誤 飲・誤摂取	NÖ	検討ケースでは、送水、給水及び曝露シナリオにおいて変動 が無い(一定)としているため、重要管理点とはならない
作物を 収穫	作物に付着、 消費者摂取	NO	消費者に対しては、再生水付着量のcontrolは実質不可能であ る。対策として、水洗いの強化等で対応は可能であると考え られるため ⇒ 重要管理点とはならない

不可欠の工程であり、とくに厳重に管理する必要があり、モ ニタリングを通じて、プロセスのコントロールが可能な工程で ある。そのため、uncontrollableの工程は重要管理点とは ならない。重要管理点の特定は、抽出した発生が予想され る危害要因から、DALY値を指標とした定量的微生物リスク 評価(QMRA)の結果よりCCPを特定した。表4に結果の 一覧を示す。表4では、表3における危害要因の内、重要 管理点になるかの特定根拠を示した。これより、危害要因と して挙げられた、下水処理、再生処理の工程が重要管理点 であると特定された。

4. 今後の展開

国内外を始め、下水再生水の衛生学的リスクを処理変 動、原水水質変動等の不確実要素を綿密に検討した事例 は確認できておらず、また、病原微生物リスクを低減可 能な下水処理水中や再生水中のウイルスの消毒に関する 基礎的な知見は少ない。本研究項目における成果は、国 内外を始め、今後利用拡大が期待される下水の再生水利 用時の管理使用を利用する際の指針になりうるための基 礎的なデータの蓄積および新たな再生水リスク評価の考 え方を提案できる可能性を有するものである。

今後はより信頼性のあるリスク評価を構築するために、 各種消毒手法(塩素、紫外線、オゾン等、あるいはそれ らの組み合わせ技術等)による下水処理水または再生水 の病原微生物の消毒効果と、その管理技術について検討 を進めていく予定である。

参考文献

- 安井宣仁、諏訪テ、桜井健介、小林憲太郎、高畠寛生、農業利用を想定した UF 腹処理による下水再生水の定量的微生物リスク評価:ノロウイルスを対象とした 事例的研究、土木学会論文集 G、Vol. 69, No. 7, Ⅲ 647-Ⅲ656, 2013 年 11 月
- 2) Yasui N., Suwa M., Sakurai K., Tsumori J. and Suzuki Y., Scheme of Microbial Risk Assessment for using Reclaimed Water in Farmland, 21 世紀型都市木循 環系の構築のための水再生技術の開発と評価に関する国際シンポジウム、ベトナ ム、ダナン、2014年3月
- 3)安井宣仁、岡本誠一郎、諏訪守、桜井健介、鈴木穣、中国と日本における環境水 中のノロウイルス濃度の実態把握、第16回日本水環境学会シンポジウム、沖縄、 2013年11月
- 4)安井宣仁、諏訪庁、桜井健介、鈴木穣、膜処理による下水再生水利用時の病原微 生物感染リスク評価、京都大学環境衛生工学研究会、第35回シンポジウム、京 都、2013年7月

下水再生水の紫外線消毒による病原微生物の感染リスク評価と適用管理手法に関する研究

研究予算:科学研究費助成事業(若手B) 研究期間:平25~平26 担当チーム:材料資源研究グループ(リサイクル) 研究担当者:津森ジュン、諏訪守、安井宣仁

【要旨】

現在、アジア地域のみならず世界的な水問題に向け、下水再生水を安全に利用するための国際規格作りが検討されて おり、今後、再生水の利用促進が期待されている。下水再生水利用時においては、安全に利用できるよう再生水中に残 存しうる可能性のある病原微生物の挙動を把握する必要がある。そこで本研究では、再生水処理技術として紫外線消毒 に着目し、対象病原微生物をノロウイルス(NoV)として、その消毒効果を把握した。得られた結果より、再生水の様々 な利用用途、農業利用、親水利用、修景利用等の用途毎において、紫外線消毒によるノロウイルスの感染リスク評価を 試みた。

平成25年度は、対象とする試験水のNoVに対する紫外線消毒効果を評価するために、既存の定量手法である Real-time PCR 法に加え、増幅域を拡張した遺伝子定量法(Long-target-RT-PCR 法:LT-RT-PCR)による定量方法を確立し、予備 実験を踏まえ LT-RT-PCR 法による測定手法を構築した。

平成26年度は、過年度に構築した定量方法に基づき、水質性状の異なる試験水、主に懸濁物質濃度、紫外線透過度 が異なる試料を用い消毒実験を行った。その結果、NoVは試験水の水質性状が異なると、同一の平均透過紫外線量 (mW/cm²·s)でも、遺伝子の減少割合が異なることが分かった。二次処理水を原水とし平均透過紫外線量、40 mW/cm²·s で処理した再生水を対象にリスク評価を行った結果、二次処理水を直接利用する場合と比較してNoV感染リスクが1/10 程度、削除できることが分かった。

キーワード:紫外線消毒、ノロウイルス、LT-RT-PCR法、NoV 感染リスク

1. はじめに

平成24年度の下水道白書¹⁾によれば、日本国内の下水 再生水の利用量は、年間の下水処理水量、約144億m³に 対して約1.4%の2.0億m³に留まっている。一方、国外で は下水処理水の再利用が盛んに行われており、アメリカ、 イスラエル、チュニジア、その他のアフリカ北部諸国に では再生水を利用した農業灌漑システムが確立されてい る²⁾。また、現在、アジア地域のみならず世界的な水問題 に向け、下水再生水を安全に利用するための国際規格作 りが検討されており、今後、再生水の利用促進が期待さ れている。我が国においても、今後、下水処理水の再利 用の促進と、その利用拡大が望まれる。

下水再生水の処理技術としては、凝集沈殿、砂ろ過、膜 ろ過などが挙げられ、消毒技術としては塩素、オゾン、 紫外線などがある。紫外線消毒は、塩素消毒と比較して、 ウイルス、原虫に対して消毒効果が比較的高い手法であ るため、下水処理水または再生水の処理における、病原 微生物対策の一つとして有用な技術であるといえる。し かしながら、紫外線は、消毒対象の水質、特にSS、 濁 度(紫外線吸光度)の変化に伴い消毒効果に影響を及ぼ すことに加え、下水処理水を対象とした際のウイルスに 対する消毒効果に関する情報が豊富とは言い難い状況で ある。

再生水を利用する際には、利用者ならびに作業従事者 が安全に再生水を利用または管理できるように、再生水

図-1 下水処理水の再利用状況

中に残存する可能性のある病原微生物の挙動を把握する 必要がある。特に再生水は下水処理水を原水として用い るため、下水・下水処理水から通年を通して検出率の高 いノロウイルス(以下、NoV と記す)が注視すべき病原 微生物の一つとして挙げられる^{3,4}。

本研究では、再生水の処理技術としての紫外線消毒に 着目し、対象病原微生物を NoV として、水質状況の異な る下水および下水処理水を試験水として用い、その消毒 効果を把握した。

また、指標微生物として、一般的な消毒効果を把握す る際に用いられる大腸菌ファージMS2(以下、MS2と記 す)を試験水に投入し、紫外線照射前後のNoVとMS2濃 度を定量し、その除去特性を把握することで消毒効果を 検討した。得られた結果より、再生水の農業利用、親水 利用、修景利用等の用途毎に、NoV感染リスク評価を試 みた。

2. 研究の方法

2.1 NoV、MS2 の定量方法

NoV は、細胞培養、動物感染等によるウイルスの感染 性を評価する手法が確立していないため、直接感染性を 評価することが出来ない。一般的に、NoV の検出のため、 遺伝子定量による検討が行われているが、主流となって いる検出方法では、NoV の増幅対象領域が数百 bp である。 そこで、本研究では増幅域の異なるプライマーを用いた Long-target-RT-PCR(LT-RT-PCR 法)により PCR 反応を実施 し、PCR 産物を 2%のアガロース電気泳動にて検出を行っ た。濃度の定量は逆転写反応(RT 反応)より得られた鋳型 DNA(cDNA)を RNase-DNase free の水で3 段階に希釈した

(1sample:n=3×3段階希釈=9)cDNAをPCR反応に供し、 泳動後の陽性数から MPN 法により濃度を算出した。 MS2 も同様に実施した。紫外線照射前後の試験水を図-2 に示すフロー図に従い前処理を行い、LT-RT-PCR 法によ り定量を行った。

また MS2 は感染性が評価可能であるため、遺伝子定量 に加え、重層寒天培地法により定量を行った。なお、試 験水に投入した MS2 は、NBRC102619の純株を用い、宿 主菌には *E.coli*(NBRC 106373)を用い高濃度に増殖させた 培養液を作成、培地成分を除いた溶液を試験水に添加し た。

図-2 NoV、MS2の遺伝子定量方法のフロー図

2.2 実下水・下水処理水を用いた紫外線消毒実験

回分式の紫外線照射装置(図-3)を用い、照射前後の NoV 濃度、MS2 濃度を LT-RT-PCR 法および重層寒天培 地法にて定量した。

①試験水

実験に用いた試験水は、2014年2月に採水した標準活 性汚泥法を採用しているA下水処理場の処理水、および 2014年5月に採水したB下水処理場の流入下水を試験水 として用いた。また、この流入下水を用い、水質性状(浮 遊物質濃度(SS)、濁度、紫外線透過率(吸光度))の異なる 試験水を調製し、実験に用いた。試験水の水質性状を表-1 に示す。試験水No.1、No.2は凝集剤としてポリ塩化アル ミニウムを添加し、凝集沈殿を行い、沈殿後の上澄み水 を試験水として用いた。

表-1 実験に用いた試験水の水質

試験水 No.	試験水	SS (mg/L)	濁度 (度)	Abs ₂₅₄ (cm ⁻¹) (紫外線透過率:%)
1	PAC(10mg-Al/L) 添加 流入下水	2.0	5.8	0.273 (53.3%)
2	PAC(4mg-Al/L) 添加 流入下水	34.5	47.2	0.608 (24.7%)
3	ろ過(20µm) 流入下水	34.6	87.8	0.856 (13.9%)
4	流入下水	173	196	1.024 (9.5%)
5	二次処理水	5.8	3.3	0.153 (70.3%)

② 添加用のMS2 の作成

本試験では MS2 を試験水に添加し、紫外線照射による NoV の除去特性と比較検討を行った。試験水の添加用の MS2 は高濃度溶液を作成し、培地成分を除くために分画 分子量=30kDa の限外ろ過膜(アミコンウルトラ-15、ヤマ ト科学)を用い、3000rpm、15 分間の遠心を行った。その 後、滅菌済みリン酸緩衝液で洗浄し、再度同条件で遠心 し、洗浄後に濃縮液を回収し、添加用の高濃度液(4×10⁹ PFU/mL)を得た。

③ 紫外線照射装置

紫外線照射実験は回分式にて行い、上部より照射した。 紫外線ランプは6Wの低圧紫外線ランプ(UL0-6DQ、ウシ オ電機社製)を用いた。紫外線ランプから照射される光が 線光源となるようにコリメート管(φ10cm)をランプか ら 1.5cm 下に設置した。乾熱滅菌済みのガラスシャーレ (φ9cm,水深(d)=4.2cm)に試験水 270mL を添加した。

2mmの石英ガラスで蓋をし、マグネッチクスターラーに て攪拌し、所定の時間、紫外線を照射した。図-3 に実験 装置の概略図を示す。

平均透過紫外線線量の算出方法

試験水中の透過紫外線量は、紫外線ランプから照射されるエネルギー(紫外線線量率)と照射時間の積より決定される⁵。実際には、透過紫外線量は、試験水中の紫外線透過率(波長 254nm での吸光度)に反比例して減衰していく。また紫外線線量率も、ランプから試験水までの距離に反比例して減衰していく。

図-3 における石英ガラス表面からシャーレ底面までの 紫外線線量率を紫外線積算光量計(UIT-250、ウシオ電機社 製)および化学光量計を用い測定した結果、試験水中の水 深方向に対する任意距離での紫外線線量率は式(1)で表せた。

$$I_x = \alpha (L_d + x)^{-\beta}$$
(1)

ここで、α,βは定数 (α = 1.36,β = -0.09)

L_dはランプから石英ガラス表面までの距離(= 8.1cm)

式(1)は、試験水中の紫外線透過率が 100% (吸光度=0) の時の紫外線線量率を表しているため、透過率を加味し た際は式(2)で表せられる。

 $I_x \cdot exp(-2.3Abs_{254} \cdot x)$ (2)

ここで、*Abs*₂₅₄は試験水の波長 254nm における吸光 度(cm⁻¹)である。

試験水中の平均透過紫外線量は、式(3)の平均紫外線線 量率に照射時間を掛け合わせた値、式(4)で表せられる。

$$I_{avg} = \frac{1}{d} \int_0^d I_x \cdot exp(-2.3Abs_{254} \cdot x) dx \quad (3)$$
$$UV_{dose} = I_{avg} \cdot s \quad (4)$$

ここで、 I_{avg} は平均紫外線線量率(mW/cm²)、d は水深 (=4.2cm)、s は照射時間(s)、 UV_{dose} は平均透過紫外線量 (mW/cm²・s)である。

2.3 紫外線消毒によるノロウイルスの感染リスク評価と 適用管理の提案

2.2 で示した実験項目において得られた結果を用い、紫 外線消毒後の試験水を再生水として利用した場合のノ ロウイルスの感染リスク評価を試みた。評価方法は以下 の通りである。

利用用途の決定

紫外線消毒により得られた試験水を下記の用途に利用 することを想定した。

- ・農業用水
- ·親水用水(水浴)
- ·修景用水
- ・トイレ水洗用水

② 曝露シナリオの設定

利用用途毎の曝露量、曝露頻度はウイルスの安全性からみた下水処理の再生処理方法検討マニュアル(案)(高度処理会議、平成13年7月)⁶を基に表-2に示すように設定した。

③ 評価方法

設定した曝露シナリオに基づき、障害調整生存年数 (DALYs)を指標とした定量的微生物リスク評価(QMRA) により DALYs を算出し、紫外線消毒後の再生水が利用可 能か判定した。DALYs の算出は既報⁷と同様である。

④ 適用管理の提案

③の評価結果に基づき、紫外線消毒を再生水の処理技 術として利用する場合の適用管理に関して提案した。

表-2 利用用途毎の曝露量・曝露頻度

再生水の 利用用途	リスク 対象者	鸔露形態	1回あたりの 曝露量 (mL/回)	年間曝露量 (回/年)
農業用水	従事者	農業作業時の誤飲	0.3	27.2
親水用水(水浴)	利用者	手についた水の 経口間接摂取	30	8
修景用水	利用者	ミストを吸い込む	1	10
トイレ水洗用水	利用者	しぶきが口に入る	0.02	3

3. 研究結果および考察

3.1 実下水・下水処理水を用いた紫外線消毒実験

図4、5 に一例として試験水毎の各増幅域での標的 RNA の減少割合(Log(Nt/No):No は紫外線照射前の標的 RNA 遺伝子量、Nt は照射時間 t 秒後の標的 RNA 遺伝量) を示す。なお図-5 においては、MS2 の重層寒天培地法に よる不活化率(Log(Ct/Co):Co は初期濃度、Ct は照射時間 t 秒後の濃度)を併せて示す。

実験結果より、NoV は各増幅域において、試験水の水 質が異なることで、同一の平均透過紫外線量でも標的 RNA 減少割合が異なる傾向が確認され(有意水準 α =0.01 で有意な差があると判定)、濁度が大きい試験水ほど、各 増幅域での標的 RNA 減少割合が小さくなる傾向が確認 された。一方、MS2 は試験水の違いによる標的 RNA 減 少割合、不活化率に有意な差は確認されなかった。(有意 水準 α =0.01)

上記の結果から、試験水の水質の違いによる影響を把 握するために、紫外線による標的 RNA 減少割合が、実験 を行った範囲において、平均透過紫外線量に比例すると 仮定し、吸光度(UV254)と RNA 減少速度(cm²/mW·s⁻¹)の関 係を検討した結果、NoV は吸光度(UV254)が大きくなる につれ(=紫外線透過率が低下するにつれ)、標的 RNA 減 少速度が低下する傾向が確認された。一方、MS2 は吸光 度の変化(=水質の変化)に依らず、全ての増幅域で減少 速度が一定であった。

式(3)、(4)からも分かるように本実験結果は、平均透過 紫外線量で結果を整理していることから、同一の平均透 過紫外線量であれば、吸光度が異なる試料においても試 験水に照射された紫外線エネルギー量は同等である。消 毒効果は同一の平均透過紫外線量であれば同等と考えら れる。一方、NoV は試験水の性状(吸光度)が異なると 標的遺伝子減少割合が異なる結果であったことから、 NoV は試験水中に浮遊した状態で存在しているのではな く、濁質に吸着または埋もれた状態で存在している可能 性が考えられ、濁質により紫外線が遮蔽されたことで、 濁度が高くなると消毒効果が低下する現象が生じたと考 えられた(図-6参照)。

模式図

図-6 NoV と MS2 (spiked) の試験水中の存在実態の違い (模式図)

3.2 紫外線消毒によるノロウイルスの感染リスク評価と 管理手法の提案

3.1 で示した結果に基づき、紫外線消毒により得られた 試験水を表-2 に示した各用途で用いると想定し、NoV 感 染リスク評価を行った。評価にあたり、NoV は増幅域を拡 張することで遺伝子減少割合が増加する傾向があった。 また図-5 において MS2 は、同一の紫外線量において増幅 域を拡張することで遺伝子減少割合が大きくなる傾向が 確認された。NoV は感染性の評価が困難であるが、MS2 と

図-5 試験水毎の各増幅域での RNA 減少割合と不活化率 (MS2)

同様に、増幅域を長くすることで、より感染性の評価に 近づくと仮定し、実験で定量可能であった増幅域 308bp での結果を用い、感染リスク評価を試みた。

図-7 に再生水としての利用時の障害調整生存年数の平 均値の相対値を示す。二次処理水を未処理のまま使用し た際(二次処理水直接利用)と比較した相対値を示して いる。従って、二次処理水の相対値=1と比較して、値が 1未満の場合は、紫外線照射によってNoV 感染リスクが低 減していることを示す。

照射される紫外線のエネルギー(平均透過紫外線量) の変動を考慮して、平均透過紫外線量を 40mW/cm²·s、標 準偏差=10mW/cm²·sの正規分布に従うと仮定した。親水用 水に用いる場合では、紫外線消毒を行っても、二次処理 水直接利用時と比較して、NoV 感染リスクの低減は 1/5 未満であった。。以上より、親水用水(水浴)として利用 する場合、NoV 感染リスクの観点から、後段の追加処理ま たは平均透過紫外線量を 40mW/cm²·s 以上に設定すること が望ましいと考えられた。

農業用水、修景用水、トイレ水洗用水の利用時は、二

次処理水を直接利用するよりも、二次処理水に紫外線消 毒を行うことで、1/10 程度まで NoV の感染リスクが低減 することが分かった。また、本検討では、流入下水への PAC 添加+凝集処理(試験水 No. 1-2)、または20µmのろ 過処理(試験水 No. 3)を行い、その後、紫外線を照射する という条件での実験を行っているが、このような簡易的 な処理であっても、二次処理水を直接利用するよりも、 NoV 感染リスクを、1/1.4~1/10 程度に低減させること ができることが明らかとなった。

以上より、二次処理水および流入下水に PAC=10mg/L 添加した上澄み水に、、平均透過紫外線量=40mW/cm²·s で紫外線消毒を行うことで NoV 感染リスクを低減可能であった。また、災害時等を想定した際に、通常の二次処理水の濃度レベルが得られない場合においても凝集剤添加等の前処理と組み合わせ紫外線消毒を行うことで NoV 感染リスクを低減できる可能性があると考えられた。

4. まとめ

本研究では、再生処理技術としての紫外線消毒に着目 し、対象病原微生物を NoV として、水質状況の異なる処 理水を試験水として用い、紫外線消毒効果を把握し、再 生水の利用用途毎の NoV 感染リスク評価を行った結果、 以下の結論を得た。

- ・NoVは、試験水の水質が異なることで、同一の平均透 過紫外線量でも標的RNA減少割合が異なる傾向が確認 された。
- ・平均透過紫外線量を 40mW/cm²・s に設定した際、農業 用水、修景用水、トイレ水洗用水の利用時における NoV 感染リスクは、二次処理水を直接利用するよりも、 1/10 程度にリスクが低減することが分かった。
- ・災害時等を想定した際に、復旧途上で通常の二次処理水の水質が得られない場合においても、凝集剤添加等の前処理と組み合わせた紫外線消毒を行うことでNoV感染リスクを低減できる可能性があると考えられた。

参考文献

- 1) 日本下水道協会:平成24年度下水道白書 日本の下水道 循 環のみち下水道の成熟化へ, pp. 87-92, 公益社団法人日本下 水道協会, 2012.
- 2) Asano T., Burton L. F., Leverenz L. H., Tsuchihashi R. and

図 試験水を原水として用いた際の紫外線 消毒後の再生水の利用時のノロウイル ス感染リスク低減割合

Tchobanoglous G..:水再生利用学 ―持続可能社会を支える水 マネジメント, 浅野孝 他 訳, pp. 39-56, 技報堂出版, 2010.

- 3) 諏訪守,岡本誠一郎,尾崎正明,陶山明子:下水処理のノロ ウイルス除去効果とその検出濃度に及ぼす濃縮法の影響,下 水道協会雑誌,46(512), pp.91-101,2009.
- 岡本誠一郎,諏訪守,桜井健介:下水道におけるウイルス対 策手法に関する検討調査,平成22年度下水道関係調査研究 年次報告書集, No.4191, ISSN 0386-5878, 土木研究所資料, 2010.
- 5) 平田勉, 岩崎達行, 大瀧雅寛, 片山浩之, 神子直之, 木村憲司, 土佐光司, 松本直秀, 本山信行, 森田重光 :紫外線照射 –水の消毒への適用性–, 技報堂出版, p9.-10, 2008.
- 6) 国土交通省都市・地域整備局下水道部,国土交通省国土技 術政策総合研究所:下水処理水の再利用水質基準等マニュア ル, p. 12,国土交通省,2005.
- 7) 安井宣仁、諏訪守、桜井健介、鈴木穣、小林憲太郎高 畠寛生、農業利用を想定した UF 膜処理による下水再 生水の定量的微生物リスク評価:ノロウイルスを対象 とした事例的研究、土木学会論文集G(環境) Vol. 69 (2013) No. 7 p. III_647-III_656
Ⅱ. 水質チームによる研究

下水道における化学物質等の除去特性等に係る検討業務

水質チーム 上 席 研 究 員 岡本誠一郎

総括主任研究員 小森行也

- 主任研究員 北村友一 研 究 員 真野浩行
- 研 究 員 真野浩行

研 究 員 武田文彦

「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」で第一種指定化学物質として 定められている物質等のうち、ノニルフェノールとトリクロロエチレンについて(1)下水処理過程での化学物 質等の除去特性・挙動の調査を行なうとともに、(2)下水処理水による生物応答手法の適応可能性にかかる調 査を行った。

(1) 下水道処理過程での化学物質等の除去特性・挙動に係る調査

① 活性汚泥処理プロセスにおけるノニルフェノール (NP) の挙動把握

「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」上で第一種指定化学物質として 定められている化学物質のうち、ノニルフェノール(NP)とその関連物質について活性汚泥処理実験装置を用 いて活性汚泥処理プロセスにおける挙動把握実験を行った。

NP は、界面活性剤のノニルフェノールポリエトキシレート(NPnEO)が好気条件下で生物分解し、エトキシ鎖の短いノニルフェノールエトキシレート

(NP1EO、NP2EO) 又は、エトキシ鎖 の短いノニルフェノールエトキシ酢酸 (NP1EC、NP2EC)になり、その後、嫌気 条件下の汚泥処理により NP となること が知られていることから本調査では前駆 物質である NPEO、NPEC もあわせて調 査した。

図-1、に示す活性汚泥処理実験装置を用い、流入下水に NPEO を高濃度

図-1 活性汚泥処理実験装置

表-1 運転条件

流入水量	6.8m ³ /日
最初沈殿池滞留時間 (沈殿時間)	約1.8時間
嫌気槽滞留時間	約1.8時間
好気槽滞留時間	約5.3時間
最終沈殿池滞留時間 (沈殿時間)	約2.5時間
汚泥返送率	38%
生汚泥引抜量	100L/日

(2mg/L) に連続添加した処理実験を行い、処理過程におけ る NP 生成に関する検討を行った。実験装置は、有効水深が 約 2m の最初沈殿池(0.5 m³)、エアレーションタンク (0.5m³ × 4 槽)、最終沈殿池(0.7m³)と塩素混和槽 (0.1m³)、生汚泥貯留槽(0.15m³)、余剰汚泥貯留槽 (0.15m³)で構成されている。AT(1)はエアレーションを停 止し、機械攪拌を行う嫌気槽とし、AT(2)~AT(4)はエアレー ションを行なう好気槽とした。実験装置の運転条件を表-1 に 示す。 調査結果を図-2 に示す。NPEO 添加後 1 日経過の二 次処理水の NP 濃度は 0.32µg/L (環境基準の 1/2) であ ったが、NOEO 添加後 8 日経過では 1.5µg/L (環境基準 の 2.5 倍)、15 日経過では 2.7µg/L (環境基準の 4.5 倍)、 22 日経過では 3.6µg/L (環境基準の 6 倍) であり、 NPEO を高濃度で連続添加することにより二次処理水 に NP が残存することが確認された。NPEO から NP へ の 変 化 率 を 、「 NP 流 出 濃 度 (µg/L) ÷ (NP+NPEO+NPEC)流入濃度(µg/L) × 100」として計算 したところ、NPEO 添加後 1 日経過では 0.02%であっ

たが NPEO 添加後 8 日経過では 0.05%、15 日経過では 0.05%、22 日経過では 0.08%になり NPEO の添加期間 が長くなるに従い変化率が大きくなった。

実下水を流入水とする嫌気好気活性汚泥法の実験装置を用いて流入水に NPEO を連続添加する実験を行い、 NPEO 添加初期に比べ、添加後 22 日経過では二次処理水の NP 濃度が増加することがわかった。

② 活性汚泥処理プロセスにおけるトリクロロエチレンの挙動把握

図-1 に示す NPEO 添加実験と同じ活性汚泥処理実験装置を用い、NPEO に替えてトリクロロエチレンを流入 下水に連続添加した実験を行い嫌気好気活性汚泥法の処理プロセスにおけるトリクロロエチレンの挙動把握を行 なった。本実験での流入下水のトリクロロエチレン濃度は、環境基準の約 50 倍濃度(500µg/L)に設定した。

調査結果を図・3 に示す。流入下水のトリクロロエチレン濃度は設定値の 500µg/L に対し 180µg/L であり約 1/3 であった。また、トリクロロエチレン添加前の流入下水(流入 BL)からはトリクロロエチレンは検出されなかった。初沈流出水のトリクロロエチレン濃度は 97µg/L で流入下水の約 1/2 であった。嫌気槽とした AT-1 の濃度は、初沈流出水と同程度の 92µg/L であり、大きな減少はみられなかった。好気槽の AT-2、AT-3、AT-4 の濃度はそれぞれ、38µg/L、14µg/L、5.8µg/L と処理が進むにつれ減少した。二次処理水の濃度は 5.1µg/L (環境基準の 1/2)であり、活性汚泥処理におけるトリクロサンの除去率は 97.2%であった。

流入(流入下水)に対する排出(二次処理水+生汚泥+余剰汚泥)は 3.5%であり残りの 96.5%は、揮散、生 分解によると考えられる。

簡易測定による嫌気槽(AT-1)の液面上部の大気及び好 気槽(AT-2、AT-3、AT-4) の液面上部の大気のトリク ロロエチレン濃度は、 0.5ppm以下であったこと から活性汚泥処理により減 少したトリクロロエチレン の多くは分解除去されたと 考えられる。

(2) 下水処理水による生物応答手法の適応可能性にかかる調査

① 毒性同定評価を組み合わせた生物応答試験による下水処理水の生物影響評価と影響物質の推定

本調査では下水試料等の試験水中の生物影響化学物質を明らかにするための毒性同定評価 TIE (Toxicity Identification Evaluation) について、試験方法を決定するための生物応答試験を実施した。そして流入下水、活性汚泥処理実験装置の放流水を対象に、藻類、ミジンコ、胚・仔魚期のゼブラフィッシュを用いた生物応答試験を行い、水生生物への影響を調査するとともに、藻類、ゼブラフィッシュについては生物影響が見られた下水 試料に対して TIE を実施した。

流入下水および活性汚泥処理実験装置で得た放流水に対し、種々の割合に希釈して生物応答試験を実施した。 図・4 に藻類生長阻害試験結果の一例を示す。流入下水では割合が 20%以上の場合に生長速度が対照区よりも有意 に低下し、生物影響が確認された。放流水では 80%の場合のみ影響が確認された。影響が確認され始める割合が 流入下水よりも放流水の方が大きいことから、標準活性汚泥処理によってムレミカヅキモに対する下水の生物影 響の低減が確認された。同様の結果はオオミジンコ、ゼブラフィッシュに対しても確認できた。一方、ニセネコ ゼミジンコに対しては放流水で生物影響が確認され、今後も詳細な調査が求められると考えられた。TIE より、 流入下水中の生物影響化学物質は、藻類に対してはアンモニア、疎水性化学物質、無極性有機物、および酸化物 あるいは界面活性剤、ゼブラフィッシュに対してはアンモニア、酸化物あるいは界面活性剤であると推定された。 放流水中の生物影響物質は、藻類に対してはアンモニア、酸化物あるいは界面活性剤、ゼブラフィッシュに対し ては無いと推定された。下水処理で生物影響が低減できたことから、これらの物質による生物影響は標準活性汚 泥処理で低減できると示唆された。

図-4 流入下水、放流水に対する藻類生長阻害試験。*:対照区よりも有意に低下 (p<0.05)

② メダカ遺伝子発現解析による下水処理水の安全性評価に関する調査

下水処理水の魚類胚への遺伝子レベルでの影響を明らかにするため、メダカ胚を用いて二次処理水の曝露実験 を行い、次世代シーケンサーによりメダカ胚で発現変動を示す遺伝子の塩基配列を網羅的に取得した。

実験は、継代飼育しているメダカ(d・rR 系統)の受精卵を採取し、24℃の脱塩素水道水中に一晩置き、正常な 胚を用いて、翌日から曝露実験を開始した。二次処理水は、100%、50%、25%、12.5%、6.25%となるように脱 塩素水道水で段階希釈した。対照区は脱塩素水道水とした。曝露濃度ごとに 1 個ずつ 60ml のスナップカップを 用意し、50mL の試験水をとり、受精卵を 20 個入れ、キャップを閉め、恒温器内に設置された回転振とう機で 培養した。曝露条件は、温度 24℃、回転数 80rpm、明暗 16h/8h とした。48 時間後に胚を取り出し、死亡胚を 除去して、直ちに RNA を抽出した。抽出した RNA は、SureSelect Strand-Specific RNA ライブラリ調製キッ ト (Agilent 社製)を用いて mRNA を精製、断片化し、シーケンスが可能な cDNA ライブラリを調製した。そ して、次世代シーケンサーMiseq (Illumina 社製) による塩基配列決定を、v3 試薬キットを用いて、75bp×2 のペアエンドリードで実施した。

Miseq によりサンプルごとに出力された、塩基配列が記載された FASTQ ファイルは、セルイノベーションプ ログラム(国立遺伝学研究所データ解析拠点)にアップロードし、Tophat2、Cufflinks2、Cuffdiffのパイプライ ンで遺伝子発現量(FPKM、Fragments Per Kilobase of exon per Million reads mapped)の算出を行った。得 られた mRNA 配列に対して、NCBI Refseq を用いて相同性検索(Blastn)を行い、アノテーション情報を付与 した。

図-5 に対照区と二次処理水 100%曝露区の各遺伝子の発現強度の関係、図-6 に二次処理水の割合と fold change 2 (対照区に対して 2 倍以上,1/2 以下)の条件で発現変動を示した遺伝子数の関係を示した。図-5 より、 二次処理水 100%曝露区で薬物代謝酵素遺伝子である CYP1A 遺伝子の発現が上昇することがわかった。 CYP1A 遺伝子の発現倍率は、二次処理水の割合 6.25、12.5、25、50、100%と濃度依存性を示し、それぞれ、 3.2、3.7、5.0、7.2、8.8 倍となった。図-6 の発現変動遺伝子数結果より、二次処理水の割合 12.5%以上で、二 次処理水の割合が高いほど、変動遺伝子数が増大することがわかった。

図-5 対照区と二次処理水 100%曝露区の遺伝子発現 強度の関係

図-6 各曝露条件で2倍以上、1/2以下に変動した 遺伝子数

「なお、本調査研究は、国土交通省水管理・国土保全局からの受託業務費により実施されたものである。」

流域スケールで見た物質動態特性の把握に関する研究(2)

研究予算:運営交付金(一般勘定) 研究期間:平23~平27 担当チーム:水環境研究グループ(水質) 研究担当者:岡本誠一郎、平山孝浩、北村友一、 對馬育夫

【要旨】

河川集水域からの栄養塩類の雨天時の流出機構を解明するため、印旛沼流入河川である高崎川で雨天時の平均 流出濃度(Event Mean Concentration; EMC)と水と硝酸イオンの安定同位体比に着目した負荷量調査を行った。流 域の土地利用が主に市街地の地点と主に畑地の地点における負荷量と流量の関係を季節毎に求めた結果、季節変 動がみられなかった。流域の土地利用が主に市街地の地点における雨天時のEMCの傾向について検討した結果、 DOC、全窒素、全りんの EMC は総雨量・時間最大雨量との相関がみられた。また、安定同位体比モデルにより、 雨天時の窒素負荷源の寄与率を推定した結果、流域の土地利用が主に市街地の地点では、窒素負荷源が時間経過 とともに大きく変動し、流域の土地利用が主に畑地の地点では、窒素負荷源は時間経過に関わらずほぼ畑地由来 であることが示唆された。

キーワード:印旛沼、栄養塩、雨天時調査、流出負荷量解析、安定同位体比

1. はじめに

わが国の湖沼などの閉鎖性水域では、種々の流入 負荷削減対策が行われているにも関わらず富栄養化 による水質障害が依然として解消していない湖沼が 多くみられ、環境基準の達成率も河川や海域と比較 して低い状態が長年にわたり継続している 1)。流域 においては下水道整備や事業場排水の規制などの対 策も進められ、閉鎖性水域への全体的な流入負荷量 は漸減している水域も多いとみられるが、一方で総 負荷に占める点源汚濁負荷の割合が減少し、山林、 農地、市街地等からの非点源(=面源)汚濁負荷の 割合が増加する状況となっている²⁾。しかしながら 面源負荷の算定に用いられる負荷量原単位は一般に 点源負荷のそれと比べて精度が低く、かつ雨天時負 荷の評価が不十分なことなどから、実態より過小評 価となっていると考えられる³⁾。また現在、流域別 下水道整備総合計画(流総計画)や湖沼水質保全計 画等の策定にも用いられる汚濁負荷量原単位の各種 資料における数値には極めて大きなばらつきがある

度調査結果などからも、降雨時の流出を的確に把握 することの重要さを指摘⁹してきたところである。

ことが明らかになっており⁴、さらに本研究の過年

こうしたことから、日本水環境学会ノンポイント 汚染研究委員会などの場において議論を重ねた結果 として、平成27年1月に改定された流域別下水道整 備総合計画調査指針と解説(流総指針)では、市街 地からの排出負荷量を単位面積当たりの年間平均汚 濁負荷量原単位だけではなく、1 降雨(event)当り で汚濁負荷量を算定する方法についても参考情報を 提示することとされた⁹。

今後の閉鎖性水域の水質保全対策の着実かつ効率 的な進捗のためには、流域スケールでの栄養塩類等 の流出などの物質動態の特性を十分に把握、予測し たうえで的確な対策を講ずることが必要であり、本 研究では、栄養塩類の発生源別と雨天時流出機構の 解明を行うことを目的としている。

平成26年度は、過年度調査に引き続き、雨天時に おけるSS、有機物、栄養塩類等の流出特性を把握す るため、特に夏期の台風等による豪雨を含む雨天時 流出実態調査を行い、過年度調査を含めてデータ解 析を行うとともに、流出した栄養塩類の起源を推定 するため、前年度に引き続き出水時の河川水の窒 素・酸素安定同位体比分析を行い、さらに同位体混 合モデル^のを用いて流出した窒素の負荷源の推定を 試みた。

2. 調査方法

2.1 調査河川と水質調査地点

印旛沼流入河川の鹿島川の支流である高崎川を対 象に、集水域の土地利用情報を整理し、栄養塩類の

図1 調査地点

負荷量調査を実施した。図1は、高崎川の集水域と 採水調査地点である。高崎川の集水域の面積は、 79km²である。

雨天時調査は、平成 26 年 7 月 18~19 日、9 月 7 日、9 月 24~26 日、10 月 5~6 日および 10 月 13~ 14 日に実施した。佐倉観測所での連続降雨(6 時間 0 mm が続いたら不連続)としての累積降雨量は、 順に 0.5 mm、10.5 mm、9 mm、176.5 mm、19 mm で あった。佐倉観測所での時間最大雨量は、順に 0.5 mm、2 mm、4 mm、19.5 mm、4.5 mm であった。な お、10 月 5~6 日は台風 18 号の豪雨であった。数時 間おきに 5 回~9 回、G~K の 5 地点で流量観測と水 質調査を行うとともに、A、C、E の 3 地点は、9 月 24~26 日および 10 月 13~14 日に他地点と同様の頻 度で流量観測と水質調査を行った。

2.2 雨天時調査のデータの解析方法

雨天時調査の結果を解析するにあたり、佐倉観測 所の1時間ごとの雨量データを使用した。雨天時デ ータは、平成26年度に実施した調査データとともに、

	佐倉観測所の	佐倉観測所の
調査実施日	累積降雨量	時間最大雨量
	(mm)	(mm)
H25/12/19 ~ 20	45	4.5
H26/1/8~9	23.5	5
H26/1/26	1	1
H26/2/7~8(降雪)	35	4.5
H26/3/13~14	12.5	5.5

表1 平成25年度雨天時調査日及び降雨概要

平成25年12月~平成26年3月に実施した5回の降 雨の調査データも併せて解析している(表1)。

調査データはSS、DOC、TN、TP について、流域 からの単位面積当たり負荷量である比負荷量 L と、 流域の単位面積当たりの流量である比流量Qとの関 係である L-Q 式で整理した。

一方、特に市街地からの非点源汚濁負荷について は、晴天時に堆積して雨天時に降水によって運ばれ 公共用水域に排出されると考えられる。前述の通り 市街地からの排出負荷量は ha あたりの年間平均汚 濁負荷量原単位ではなく、1 降雨(event)当りで汚 濁負荷量を算定する方が実態の流出現象を把握しや すいとの知見も得られている^{6,8)}ことから、得られた 雨天時データについて、1 降雨あたりの平均流出濃 度(Event Mean Concentration; EMC)により整理し、 当該1 降雨の時間帯における総降雨量や時間最大降 雨量などとの関係について考察した。なお、総降雨 量や時間最大降雨量を決定する降雨の時間帯は、こ こでは EMC を算出する時間帯、すなわち、EMC を 算出するための実濃度測定用水試料をサンプリング している時間帯とした。

2.3 雨天時流出水の安定同位体比分析

安定同位体比分析に供した試料のサンプリングは、 平成 26 年 10 月 13 日 12 時から 10 月 14 日 6 時まで の 18 時間に 7 回、地点 C および K で行った。硝酸 イオン濃度はイオンクロマトグラフィーにより測定 し、硝酸イオンの δ^{15} N および δ^{18} O の測定は、亜硝 酸除去後、Sigman et al.⁹の脱窒菌法に従って分析し た。脱窒菌によって還元された N₂O はコンフロー式 安定同位体比質量分析計(Thermo Fisher Scientific 社 製、DELTA plus Advantage)により分析した。また、 水の安定同位体比は近赤外線半導体レーザーを用い、 キャビティリングダウン吸収分光法(CRDS)法に より行った。なお、 δ^{15} N および δ^{18} O の測定精度は、 それぞれ±0.1‰および±0.3‰であった。負荷源別負 荷割合の推定は、高津ら⁷⁾の同位体混合モデルを用 いた。

印旛沼流入河川の鹿島川の支流である高崎川を対象に、集水域の土地利用情報を整理し、栄養塩類の 負荷量調査を実施した。

3. 結果と考察

3.1 降雨特性と栄養塩等の流出負荷量との関係

雨天時調査データのうち、土地利用の70%以上が市 街地になる地点Kと60%以上が市街地になる地点J の栄養塩等の流出比負荷量と比流量の関係を図 2~ 3に示す。同様に、土地利用の 80%以上が畑地になる地点Aの流出比負荷量と比流量の関係を図4に示す。地点KとJでは、12月~3月と7~10月の期間毎に、地点Aでは、9月~10月と11~1月の期間毎に区分して、それぞれにおいて比流量と各栄養塩等の流出比負荷量の関係を、以下のL-Q式で表した。

 $L=aQ^b$

ただし、L:比負荷量

Q:比流量

a, b:定数

定数a、bは、比流量と比負荷量をそれぞれ常用対数に変換して最小二乗法により回帰直線を求めて算出した。

定数 b は増水時の濃度変化を反映し、b<1 は濃度 が低下する希釈型、b>1 は濃度が増加する洗い出し 型、b=1 は濃度が変化しない一定型に分類される¹⁰。 定数 b に着目すると、SS は地点 J の 7~10 月を除き 洗い出し型であった。SS 以外では、地点 K と J では 全て希釈型であった。地点 A では、DOC が一定型、 TN が希釈型、TP が洗い出し型であった。また、期 間の違いによる大きな相違は見られなかった。

地点Kにおける栄養塩等の1降雨あたり平均流出 濃度(EMC)と当該降雨時間内の総雨量・時間最大 雨量及び先行無降雨日数(調査日前の無降雨日数) との関係を図5~7に示す。

DOC、TN、TPでは、EMCと総雨量・時間最大雨 量との間には一定の相関が認められた。市街地から の非点源汚濁負荷は、晴天時に堆積して雨天時に降 水によって運ばれると推定されることから、先行無 降雨日数との関係も考えられたが、いずれの EMC も先行無降雨日数とは、相関関係が認められなかっ た。なお、これらの傾向は地点Jにおいても同様で あった。また、ここで得られたTN、TPの EMC は、 既往調査から算出され、流総指針^のに掲載されてい る「1 降当りの平均水質」の範囲内であった。

これらの結果から、市街地の DOC、TN、TP の排 出負荷量は、EMC とその対象降雨の総雨量・時間最 大雨量との関係を把握し、年間の降雨イベント毎の 排出負荷量を算出・合計することにより、より精度 よく類推できると考えられた。

3.2 安定同位体比分析による負荷排出源の推定

図8はサンプリング時の時間雨量と河川流量およ び安定同位体比分析の結果から推定した直接流出量

(地点K)

 $= 9328.9x^{2.5724}$

 $= 2.7813 x^{0.9099}$

2.8352x^{0.7267}

 $R^2 = 0.8948$

 $= 3.4022 x^{1.5344}$ $R^2 = 0.8369$

0.1

 $R^2 = 0.9127$

0.1

0.1

1

1

1

1

 $R^2 = 0.9456$

0.1

である。直接流出量の推定には、降雨前の d (deuterium excess parameter)を基底流出水、雨水の d を直接流出水の値として、この2 成分の混合と仮定し、以下の式を適用した。

 $d_t = f \times d_{new} + (1-f) \times d_{old}$

- $f \!=\! Q_{new} / Q_t$
- Q:河川の流量
- f:混合率

d: deuterium excess parameter

添え字t、new、old:各時間の値、直接流出の値(雨 水の値)、基底流出の値(降雨前の値)

地点 C および地点 K において、ピーク時の全流 量は 0.6-0.7 m³/s とほぼ同等であるが、全流量に占め る直接流出量の割合は、地点 C がおおよそ 50-60% に対して、地点 K は 60-80%である。したがって、 地点 K では地点 C に比べ地下水から流出の影響が少 ないことが伺われる。

図9に地点Cおよび地点Kの各サンプリングの $\delta^{15}N_{NO3}$ - $\delta^{18}O_{NO3}$ ダイヤグラムを示す。地点Cでは、 $\delta^{15}N_{NO3}$ が 6.7-7.5%、 $\delta^{18}O_{NO3}$ が-1.0-2.2%であるの に対し、地点Kでは、 $\delta^{15}N_{NO3}$ が2.4-5.8%、 $\delta^{18}O_{NO3}$ が0.6-12.0%であった。 $\delta^{15}N_{NO3}$ が地点Cでは比較的 高いことから、土壌由来の硝酸や畜産廃棄物の影響

図8 時間雨量および河川流量

を受けている可能性が考えられる¹¹⁾。また、地点K では $\delta^{15}N_{NO3}$ 、 $\delta^{18}O_{NO3}$ ともに変動が大きいことから、 時間経過とともに排出起源が大きく異なっている可 能性が考えられた。そこで、高津らの同位体混合モ デルを用い、負荷源別負荷割合をシミュレートした ところ(図10~12)、地点Cでは、降雨前のサンプ リングでは、ほぼ畑地由来であるのに対し、時間の 経過とともに森林由来、水田由来からのNO3-Nが増 加した。一方、地点Kでは、降雨前のサンプリング では、水田:森林:畑地が1:5:4程度であったの に対し、降雨初期には、森林由来のNO3-Nの割合が 増加し、その後、水田由来の割合が増加した。河川 流量が平常時に近づくにつれ、畑地由来の割合が増 加していることが推察された。これらのことから、 地点Kにおける雨天時の窒素負荷源は時間経過とと もに大きく変動していたことが示唆された。

4 おわりに

印旛沼流入河川である高崎川で雨天時の平均流出 濃度(EMC)と水と硝酸イオンの安定同位体比に着 目した負荷量調査を行った。その結果得られた結果 を以下に示す。

(1) 流域の土地利用が主に市街地の地点と主に畑 地の地点における L-Q 式を季節毎に求めた結果、季 節変動が見られなかった。

(2) 流域の土地利用が主に市街地の地点における 雨天時の EMC の傾向について検討した結果、DOC、 全窒素、全りんの EMC は総雨量・時間最大雨量と の相関がみられた。

(3) 安定同位体比モデルにより、雨天時の窒素負荷源の寄与率を推定した結果、流域の土地利用が主に市街地の地点では、窒素負荷源が時間経過とともに大きく変動し、流域の土地利用が主に畑地の地点では、窒素負荷源は時間経過に関わらずほぼ畑地由来であることが示唆された。

参考文献

1) 環境省、平成 26 年版 環境・循環型社会・生物多様性白 書、275-276、

https://www.env.go.jp/policy/hakusyo/h26/pdf/2_4.pdf

 2) 総務省(2004) 湖沼の水環境の保全に関する政策評価 書,

http://www.soumu.go.jp/menu_news/s-news/daijinkanbou/04080 3_3_h.pdf

3) 井上隆信(2003) 非特定汚染源の原単位の現状と課題, 水環境学会誌 Vol.26, No.3, pp.131-134

4) 日本水環境学会(2012)、非特定汚染源からの流出負荷量の推計手法に関する研究、平成23年度環境省環境研究総合推進費成果報告書(RFb-11T1)、3-24

5) 岡本誠一郎, 平山孝浩, 對馬育夫(2014), 汚濁の現状把 握と削減のためにできること:原単位からその先へ, 第17 回水環境学会シンポジウム講演集, 101-102

 国土交通省水管理・国土保全局下水道部(2015)、流域 別下水道整備総合計画調査 指針と解説、74-76、

http://www.mlit.go.jp/common/001065300.pdf

7) 高津文人、三浦真吾、今井章雄、小松一弘、川崎伸之、 佐藤貴之、篠原隆一郎、渡邉未来、林誠二、中島泰弘、尾 坂兼一 (2015) 硝酸イオンの酸素と窒素の安定同位体比に よる負荷源別負荷割合算定結果の検証 第49回日本水環境 学会年会講演集、303.

8) 上原浩、尾崎則篤(2014)市街地汚濁負荷の現状と課題第17回日本水環学会シンポジウム、103-104

 D. M. Sigman,, K. L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J. K. Bo1hlke (2001) A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem., 73, 4145-4153.

10) 岩田杉夫、遠藤忠嗣、井上隆信、横田久里子、大久保 陽子(2013) 中小河川からの栄養塩負荷の流出特性 水環境 学会誌、36(2)、39-47.

11) 永田俊、宮島利宏(2008)、大気降下物としての窒素が 水源域に与える負荷、「流域環境評価と安定同位体—水循 環から生態系まで—」第3章1節、京都大学学術出版会、 59-69.

土地利用や環境の変化が閉鎖性水域の水質・底質におよぼす影響に関する研究

水質チーム	上席研	究 員	岡本誠	成一郎
	総括主任研	开究員	小森	行也
	主任研	究 員	平山	孝浩
	主任研	究 員	對馬	育夫
	研 究	員	武田	文彦

【要旨】

本研究は、流域からの汚濁負荷が閉鎖性水域の水質におよぼす影響の解明と対策手法の提案を目的とし、 環境の変化が水質・底質に与える影響およびそれらが発生する藻類種に与える影響の解明を試みている。こ れまでの研究では、気象・水象データから近年のアオコ増殖要因を検討し、降雨量、風向などが、藻類の異 常増殖を助長しうる要因であることを見出してきた。今年度は、霞ヶ浦において、台風による出水前後の底 質を採取し、嫌気・好気条件下で 20 日間の溶出試験を行った。その結果、流入河川に近い地点で、NH4-N 溶出速度が台風通過後に大幅に上昇していることを確認した。また、次世代シークエンサーを用いた菌叢解 析の結果、霞ヶ浦では、流入河川に近い地点において、表層と底層に菌叢の差が見られず、底質が攪乱され ている可能性が考えられ、台風通過後は、硝化ポテンシャルが他の地点よりも低かった可能性が考えられた。 キーワード:閉鎖性水域、富栄養化、底質からの栄養塩溶出、微生物菌叢解析

1. はじめに

わが国の平野部に多く存在する浅い湖沼は、そのほとんどが1970年代以降、急速に富栄養化が進行し、水質が 悪化した。一方、水需要の増大に伴い、富栄養化した湖 沼に対しても水源としての機能が期待されるようになり、 水質改善・管理が求められている¹⁾。湖沼の富栄養化の 要因として、降雨や湖沼に流入する河川からの栄養塩類 等といった外部負荷^{2,3)}と、湖沼底質から溶出する窒素 やリン、および微量金属類等の内部負荷⁴⁶⁾に大別され、 それに対応した様々な対策が施されているものの、湖沼 の水質環境基準の達成率は50%前後⁷⁾で、河川・海域に 比べ水質改善が遅れている。

本研究は、流域からの汚濁負荷が閉鎖性水域の水質に およぼす影響の解明と対策手法の提案を目的とし、環境 の変化が水質・底質に与える影響およびそれらが発生す る藻類種に与える影響の解明を試みる。我々はこれまで に、霞ヶ浦を対象に底質の溶出試験を行い、浚渫が栄養 塩溶出に与えた効果を把握し、近年のアオコ発生前後の 気象・水象データから藻類増殖要因を検討した^{8,9}。また、

雨天時負荷の増加や東向風による藍藻の集積がアオコ増 殖の要因の一つであることを見出した^{9,10)}。さらに、昨 年度、台風通過後の底質を用いた調査では、底泥中の含 有栄養塩類・有機物量と、溶出速度の関係が逆転し、雨 天時流入汚濁物による影響が示唆された¹⁰⁾。したがって、 今年度は、昨年度同様、台風等の大規模出水時に焦点を 当て、出水前後の底質を用いた溶出試験を行い、その影 響の把握を試みた。また、底質はこれまでブラックボッ クスとして扱われてきており、底質からの栄養塩溶出メ カニズムに関する知見は極めて乏しい。そこで、本研究 では、次世代シークエンサーを用いて、底質中の細菌群 を網羅的に解析し、原位置(in situ)での物質の挙動や環 境状態を推察した。なお、本研究で対象とした湖沼は、 水深が浅く温度成層ができにくい富栄養化湖の代表であ る霞ヶ浦(平均水深 3.9 m、最大水深 7.3 m、湖面積 171 km²) である。 霞ヶ浦は平成 21 年度には水質が全国ワー スト1となったが、その後、改善傾向にあり、平成25 年度では、COD が 6.8 mg/L (平成 21 年度は 9.5 mg/L) で湖沼水質保全計画の目標値である 7.4 mg/L を 22 年ぶ

りに下回った¹¹⁾。また、全窒素は1.3 mg/L(平成21 年度 は1.1 mg/L)、全リンは0.089 mg/L(平成21 年度は0.10 mg/L)で、ほぼ横ばい状態が続いている¹¹⁾。

2. 実験方法

2.1 サンプリング

本実験に供した底質は図1に示す3地点で採取した。 St.1 は湖心 (36°02'06"N、140°24'27"E)、St.2 は掛馬沖 (36°03'03"N、140°15'00"E)で、いずれも国交省の観 測所の付近である。St.3 は桜川河口からおよそ900 m 沖 の地点で土浦港沖 (36°04'35"N、140°13'42"E)とした。 なお、平成24年度および25年度にも同様の地点で採水 している^{9,10)}。今年度のサンプリングは2014(平成26) 年9月と10月の計2回行い、1回目のサンプリングは降 雨の影響を避けるため、晴天が連続した日に行い、2回 目のサンプリングは出水が底質からの栄養塩の溶出に与 える影響を調査するため、2度の台風(台風18号および 19号)が通過した5日後に行った(図2)。なお、サンプ リング実施前の2週間に観測した降雨は累計200mm以 上に達し、多くの濁質成分が河川から霞ヶ浦に流入した ものと考えられる。また、台風18号は7月以降初めて本 土に上陸した台風であった。

底質のサンプリングは、溶出試験用と底質分析用に2 通りの方法で実施し、いずれも「底質の調査・試験マニ ュアル」¹²⁾に記載の方法に従い、深さ約30 cmのコアサ ンプルを潜水士により採取した。溶出試験用の底質は内 径20 cmのアクリル製カラムを用い、1 地点につき4 サ ンプル採取した。底質分析用の底質は内径5 cmのアクリ ルカラムを用い、陸揚げした後、速やかに保冷し、実験 室に持ち帰り分析した。

湖水のサンプリングは船上からステンレスポンプを使用し、水面から 0.5 m および泥面上 0.5 m の 2 層から約80L 採水した。採水した試料の一部は水質分析に供し、残りは GFB フィルターでろ過し、後述する溶出試験に供した。

2.2 現地観測

各採水地点で、鉛直方向 50-100 cm スパンで pH、DO、 EC、濁度、水温を多項目水質計(HORIBA、マルチ水質 チェッカ U-50)を用い、計測した。また、採取した底質 の泥色、泥臭、泥温、ORPを観測・計測した。

2.3 溶出試験

内径20cmのアクリル製カラムで採取した底質は、底層

図2土浦アメダスの雨量観測結果

を乱さぬよう慎重に実験室まで運搬し、カラム内部の水を引き抜いた後、現地で採水し GFB フィルターでろ過した水を静かに注入し、各実験条件下で溶出試験を行った。溶出試験は 30℃ 暗所で 20 日間行い、好気条件では DO が 8.0 mg/L 程度となるよう空気曝気を行い、嫌気条件では DO が 1.0 mg/L 以下となるよう窒素曝気を行った(N=2)。なお、溶出試験期間中、水質分析用のサンプリングを計 8 回行った(350 mL/回)。引き抜いた分の水は補充せず、そのまま試験を継続し、水質分析で得た各種濃度は、引き抜いた量を考慮し、再計算を行った。

2.4 分析

溶出試験時の溶液中の NH₄-N、NO₂-N、NO₃-N、T-N、 PO₄-P、T-P はオートアナライザー(Bran Luebbe、 TRAACS2000)により測定した。Na⁺、K⁺、Mg²⁺、Ca²⁺、 CI、SO₄²はイオンクロマトグラフ(日本ダイオネクス、 DX-120 および ICS-1100)により測定した。Al、Mn、Fe、 Cu、Zn、As、Mo、Cd、Pb等の金属は ICP - MS(Thermo Fisher SCIENTIFIC、X7CCT)により分析した。また、 底質中の COD_{Mn}、TOC、T-P、T-N、金属類は底質調査方 法(平成 24 年 8 月環境省水・大気環境局)」¹³⁾に記載の 方法に従って前処理を行い、定量分析を行った。

2.5 微生物叢解析

現地採泥サンプルの表層 (0-5 cm) および溶出試験後 の試料表層 (0-5 cm) および底層 (20-30 cm) から、RNA を抽出し、cDNA に逆転写した後、16S rRNA 遺伝子の V3-V4 領域を対象に MiSeq (Illumina) を用いてシークエ ンス解析を行った。RNA 抽出には、ISOIL for RNA(ニ ッポンジーン)を用い、逆転写には PrimeScript One Step RT-PCR Kit Ver.2 (TaKaRa) を用いた。逆転写された cDNA を鋳型として真正細菌の16S rRNA 遺伝子領域を標的と したプライマー (S-D-Bact-0341-b-S-17 および S-D-Bact-0785-a-A-21)¹⁴⁾にオーバーハングアダプター配 列(F: 5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-、R: 5'-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G) を付加したものを用い、PCR 増 幅を行った。PCR 反応条件は初期変性を95℃で3分行っ た後、95℃で30秒、55℃で30秒、72℃で30秒のサイク ルを25 サイクル行った。PCR 増幅産物は AMPure XP kit

(Beckman Coulter Genomics)を用いて精製した。DNA シーケンシングにはMiseq reagent Kit v3 (600 サイクル、 Illumina)を用いて解析した。解析で得た各リードの塩基 配列のキメラチェックはUSEARCH¹⁵⁾を用い、Operational Taxonomic Unit (OTU)-picking およびクラスター解析は QIIME¹⁶⁾を用いた。各 OTU の同定には Greengenes デー タベース ver. 13_8 をリファレンスとした。

3. 結果と考察

3.1 現地観測および底質分析

サンプリングを実施した9月と10月の湖水および底質 の現地観測結果を表1-3に示す。台風通過前の9月に行 ったときは、St.1(湖心)の DO が他の地点と比べ、や や低いものの下層においても DO が 5.5-7.3 mg/L であっ た。一方、台風通過後の St.3(土浦港沖)では、pH が他 の地点よりも低く、下層では DO が 0.6 mg/L まで低下し ており、貧酸素状態になっていることが伺える。また、 底質中の有機物量、栄養塩濃度を表4に示す。この結果、 底質中に含まれる有機物量は、台風通過前、通過後とも

表1 9月15日の現地観測結果(台風通過前)

地点	水深	pН	EC	DO	濁度	水温
	(m)	[-]	(ms/cm)	(mg/L)	[-]	(°C)
St.1	0.0	7.7	0.278	9.7	11.4	23.9
(湖心)	0.5	7.1	0.278	7.4	11.4	24.0
	1.0	7.1	0.278	7.0	11.6	24.0
	1.5	7.1	0.279	6.8	11.0	24.0
	2.0	7.0	0.280	6.7	11.0	24.0
	2.5	7.0	0.279	6.3	11.7	24.0
	3.0	7.0	0.280	6.3	11.7	24.0
	3.5	7.0	0.280	6.1	11.4	24.0
	4.0	7.0	0.280	6.2	12.1	24.0
	4.5	7.0	0.281	6.2	11.9	24.0
	5.0	6.9	0.281	6.6	12.7	24.0
	5.5	6.9	0.280	6.0	13.5	24.0
	6.0	7.0	0.280	6.3	12.0	24.0
St.2	0.0	8.3	0.255	9.6	12.0	24.6
(掛馬沖)	0.5	8.0	0.256	9.1	12.1	24.6
	1.0	7.8	0.256	8.4	11.9	24.5
	1.5	7.6	0.260	8.1	12.4	24.3
	2.0	7.5	0.260	8.2	12.7	24.3
	2.5	7.5	0.260	6.5	12.0	24.1
	3.0	7.4	0.261	6.9	14.5	24.1
	3.5	7.3	0.261	7.1	18.0	24.0
	4.0	7.4		7.3		24.0
St.3	0.0	8.0	0.261	9.6	9.9	25.0
(土浦港沖)	1.0	7.8	0.262	9.5	9.5	24.9
	2.0	7.4	0.262	8.6	10.2	24.8
	3.0	7.5	0.262	8.2	9.8	24.7
	4.0	7.2	0.263	8.6	9.9	24.6
	5.0	7.1	0.263	8.3	11.5	24.5
	6.0	7.0	0.263	7.3	10.0	24.5
	7.0	6.9	0.264	7.0	10.8	24.5
	8.0	6.9	0.264	7.0	11.0	24.4
	8.5	6.7	0.265	5.5	18.4	24.4

表2 10月18日の現地観測結果(台風通過後)

地点	水深	pН	EC	DO	濁度	水温
	(m)	[-]	(ms/cm)	(mg/L)	[-]	(°C)
St.1	0.0	7.4	0.239	10.2	15.0	18.9
(湖心)	0.5	7.4	0.239	10.3	15.0	18.9
	1.0	7.3	0.238	8.3	15.6	18.9
	1.5	7.3	0.238	8.3	15.2	18.9
	2.0	7.2	0.238	7.7	15.2	18.9
	2.5	7.2	0.234	8.1	15.2	18.9
	3.0	7.1	0.238	7.8	15.0	18.9
	3.5	7.1	0.238	7.8	15.1	19.0
	4.0	7.1	0.238	7.6	15.8	19.0
	4.5	7.1	0.238	7.5	16.2	19.0
	5.0	7.0	0.239	7.5	15.6	19.0
	5.5	7.0	0.239	7.5	16.1	19.0
	6.0	7.0	0.239	7.4	16.9	18.9
St.2	0.0	7.5	0.218	9.4	12.2	19.5
(掛馬沖)	0.5	7.5	0.218	9.4	12.2	19.5
	1.0	7.5	0.219	9.3	13.2	19.3
	1.5	7.4	0.218	9.0	12.9	19.1
	2.0	7.2	0.217	8.7	12.9	18.9
	2.5	7.1	0.216	8.6	12.9	18.9
	3.0	7.0	0.217	8.5	12.4	18.9
	3.5	7.0	0.218	8.4	14.4	18.8
	4.0	7.0	0.218	8.1	20.4	18.8
St.3	0.0	6.5	0.203	10.0	9.7	19.3
(土浦港沖)	1.0	6.6	0.203	9.2	9.0	19.8
	2.0	6.4	0.203	8.0	9.9	19.0
	3.0	6.3	0.203	7.2	9.8	18.9
	4.0	6.2	0.202	7.2	9.4	18.9
	5.0	6.2	0.202	7.1	10.2	18.8
	6.0	6.2	0.201	7.1	11.8	18.8
	7.0	7.0	0.201	7.0	14.2	18.8
	8.0	6.2	0.200	0.6	29.5	18.7
	9.0	6.1	0.200	0.7	35.9	18.7

-					
9/15	(台風前)	泥色	泥臭	泥温 (℃)	ORP (mV)
St.1	(湖心)	灰茶	無臭	22.6	-128
St.2	(掛馬沖)	淡灰茶	無臭	23.4	-160
St.3	(土浦港沖)	淡緑茶	無臭	22.3	-165
10/18	3(台風後)	泥色	泥臭	泥温 (℃)	ORP (mV)
St.1	(湖心)	灰茶	無臭	19.6	-119
St.2	(掛馬沖)	淡灰茶	無臭	19.8	-154
St.3	(土浦港沖)	淡緑茶	無臭	20.0	-165

表3 採取した底質の状態

表4 底質中の有機物・栄養塩濃度

	St.1 (湖心)	St.2 (扌	いちょう いちょう いちょう いちょう しんしょう しんしょ しんしょ	St.3 (土	浦港沖)
	台風前	台風後	台風前	台風後	台風前	台風後
COD _{Mn}	40.1	52.6	28.4	26.3	27.3	19.0
тос	44.8	53.2	24.2	27.7	31.5	23.1
全窒素	5.6	6.9	2.7	3.1	3.8	2.6
全りん	0.8	1.2	0.5	0.8	1.1	0.9
					,	· · · ·

図3 溶出試験時のバルク内の各物質濃度(サンプル引き抜きを考慮して算出)

に、St.1(湖心)で最も高く、台風通過後には増加して いた。St.2(掛馬沖)では、台風通過前後で大きな変化 はなくほぼ一定であった。St.3(土浦港沖)は、台風通 過後に減少していた。恐らく、土浦港沖は他の採取地点 と比べ、流入河川からの影響を受けやすく、台風の影響 に伴い河川から流入した有機物量自体は他の地点と比べ 多かったと推察される。その台風により流入してきた有機物が底泥の巻き上げに伴う急激な微生物反応により分解され、pH と DO の低下を引き起こしたと考えられる。

3.2 溶出試験

台風通過前後に採取した霞ヶ浦の底質を用いた溶出試

表5 底質中の金属濃度

		Mn	Al	Fe		Zn	Cu	As	Мо	(Cd	Pb
台風通過前	St.1(湖心)	760	76,000	48,0	000	93.6	55.5	15.3		0.3	0.3	21.6
	St.2(掛馬沖)	860	54,000	51,0	000	71.2	39.5	16.9		1.3	0.2	13.8
	St.3(土浦港沖)	1,210	68,000	47,0	000	140.5	56.1	14.4		1.2	0.3	23.1
台風通過後	St.1(湖心)	920	47,000	42,0	000	95.7	58.1	15.3		0.7	0.4	28.7
	St.2(掛馬沖)	950	95,000	56,0	000	89.1	55.2	13.9		0.4	0.2	16.7
	St.3(土浦港沖)	780	45,000	36,0	000	114.6	41.8	10.8		1.0	0.3	16.6
		表6	溶出試	験時に	おける	金属類溶	彩出率(%)				
			-	Mn	AI	Fe	Zn	Cu _	As	Мо	Cd	Pb
		St.1(湖心)	0.49	0.0	0.0	-0.2	-0.1	1.5	-7.8	-0.1	0.0
	台風通過前	St.2(掛馬	沖)	0.20	0.0	0.0	-0.8	-0.2	2.9	-1.0	-0.4	0.0
「 描写 冬		St.3(土浦	<u></u> 港沖)	0.36	0.0	0.0	-0.3	-0.2	4.3	-1.6	-0.3	-0.1
MXXX IT I		St.1(湖心)	0.50	0.0	0.0	-0.9	-0.1	3.3	-3.3	0.3	-0.1
	台風通過後	St.2(掛馬	沖)	0.21	0.0	0.0	0.0	-0.2	6.3	1.2	-0.1	0.2
		St.3(土浦	港沖)	0.45	0.0	0.0	-0.2	-0.4	7.9	-11.1	-4.2	-0.8
		St.1(湖心)	0.0	0.0	0.0	0.0	-0.1	0.2	-13.1	-0.4	0.0
	台風通過前	St.2(掛馬	沖)	0.0	0.0	0.0	0.2	-0.1	0.2	0.0	0.0	0.0
拉 与冬 件 下		St.3(土浦	港沖)	0.0	0.0	0.0	-0.8	-0.1	0.2	-0.7	-0.1	0.0
×1 ×1×1×1		St.1(湖心)	0.0	0.0	0.0	-1.6	0.2	0.3	-2.5	0.0	0.4
	台風通過後	St.2(掛馬	沖)	0.0	0.0	0.0	0.0	-0.1	-0.7	2.7	-0.5	0.0
		St.3(土浦	港 沖)	0.0	0.0	0.0	-0.8	0.0	0.2	-0.6	0.1	-0.2

験を行った(30°C暗所、嫌気および好気条件)。図3に水 中の溶存態窒素(NH4-N、NO2-N、NO3-N)および総リ ン(T-P)濃度の経日変化を示す。台風通過前の嫌気条件 下では、どの系列でもNH4-NおよびT-Pが時間とともに 増加した。台風通過後の嫌気条件下では、台風の影響に より湖水の NO3-N 濃度が台風通過前の濃度よりも高く、 St.3(土浦港沖)では、溶出試験開始直後から NO3-N は 減少した(恐らく脱窒反応)が、St.1(湖心)やSt.2(掛 馬沖)では一旦上昇した後、低下した。好気条件下では、 台風通過前では、どの系列でも NO3-N の増加が確認され た。また、St.1(湖心)でT-Pの増加が10日目まで確認 され、その後は一定であった。台風通過後の好気条件下 では、増減はあるものの NH4-N、NO3-N は減少傾向にあ り、T-P も溶出が抑制されていた。

表5および表6に底質に含まれる微量金属(Al、Mn、 Fe、Cu、Zn、As、Mo、Cd、Pb)の測定結果と溶出試験 後の溶出率を示す。なお、ここで示す溶出率は、底泥表 層2 cm までに存在する微量金属を基準とし、溶出試験 20日間で水層に移行した量を基に算出した。底質の金属 組成はAlとFeがほとんどで、1%弱の割合でMnが含ま れており、それ以外は0.0002%-0.1%と非常に微量に含ま れる程度である。溶出試験の結果、台風通過前後では各 金属の溶出率に大きな差は見られなかった。また、地点 間の溶出率にも大きな差は見られなかった。実験条件の 違いを比較した場合、嫌気条件下では、MnとAsの溶出 率が高く、AlとFeを除く大部分は溶出試験期間中に濃 度が低下していた。一方、好気条件下では、Mn と As は 溶出するものの、溶出率は嫌気条件下と比較すると、大 幅に抑えられていた。台風通過により、濁質成分の流入 や強風による底質の巻き上げ等の影響は、底質からの金 属の溶出には直接影響しないものの、底層が嫌気状態に なれば、Mn、Al、Fe、As 等の金属の溶出が促進される ことが示唆された。

溶出試験期間中に底質から溶出する NH4-N、NO3-N お よびT-Pの溶出速度を算出した結果を図4に示す。なお、 図には我々が過去に実施した溶出試験の結果を台風通過 前後に区分し記載した9,10)。ただし、2012年の溶出試験 は20℃で溶出試験を行っているため、溶出速度を比較す る際には注意が必要である。それらの結果、NH4-Nの溶 出速度は、嫌気条件下で台風通過後に著しく増加してお り、St.3(土浦港沖)が最も大きかった。また、PO4-Pの 溶出速度は2013年の台風通過後に採取した底質では、非 常に高いが、2014年の調査では、台風通過後にむしろ低 下していた。恐らく、2013年の台風では、流入汚濁物中 に含まれるリンは、それまでに溶出の履歴のない、比較 的溶出し易い形態で、流入してきたと思われるが、2014 年の台風では、流入汚濁物の影響は少なく、強風による 底質の巻き上げがあったことが推測される。中薗らの研 究によると¹⁷⁾、嫌気条件下で底質の巻き上げが起こった 場合、巻き上げそのものによる影響はPO4-Pでは少ない が、NH4-Nは影響を受けやすく溶出量が増加するとある。 すなわち、St.3(土浦港沖)は、雨天時に流入河川から

運ばれる汚濁物の影響も受けやすく、さらに、強風による底質の巻き上げも起こりやすい地点であると言える。 好気条件下での NH₄-N の溶出速度を比較した場合においても、本来、好気条件であれば、溶出してこない NH₄-N が台風通過後の St.3 のみで溶出し、さらに NO₃-N が生成されていない。このことは、何らかの影響により硝化反応が抑制されていることの証左となり得るだろう。

3.3 微生物菌叢解析

各サンプルから約 10 万リードの塩基配列を取得(全 30 サンプル)し、QIIME による種の同定およびクラスタ 一解析を行った結果を図 5 に示す。なお、図には Class 別に分類した結果を示す。その結果、サンプル間の菌叢 構造に大きな違いはなく、全てのサンプルで Proteobacteria が最も多く(平均51.8%、S.D. 4.0)、次いで、 Nitrospirae (13.1%、2.5)、Firmicutes (7.5%、1.1)、 Actinobacteria (5.5%、0.7) Verrucomicrobia (3.6%、1.5)、 Chloroflexi (2.9%、1.0)、Bacteroidetes (2.0%、1.0) となっていた。また、Proteobacteria の中では、St.1 (湖心)で はGammaproteobacteria が最も多く検出され、St.2 (掛馬 沖)、では、表層のサンプルではDeltaproteobacteria が、 底層のサンプルではBetaproteobacteria が最も多く検出さ れる傾向があった。St.3 (土浦港沖)では、表層、底層 に関わらず、Betaproteobacteria とDeltaproteobacteria がほ ぼ同程度含まれていた。

代表的なアンモニア酸化細菌 5 属に注目すると、 Nitrosomonas sp. および Nitrosolobus sp.は検出されず、ま た、その他の Nitrosococcus sp.、 Nitrosovibrio sp.、 Nitrosospira sp.も全体のわずか 0.0025-0.0054%に相当す るに過ぎなかったが、St.1(湖心)では、Nitrosococcus sp. が優占し、St.2 (掛馬沖)の底層では、Nitrosospira sp.が 優占、表層ではNitrosococcus sp.が優占しており、表層・ 底層間で明確な差が表れていた。St.3(土浦港沖)では Nitrosovibrio sp.が比較的多く存在していた。一方、亜硝 酸酸化細菌が属する Nitrospira 門に着目すると、St.3(土 浦港沖)は、亜硝酸酸化細菌が属する Nitrospira の検出割 合が5.0±0.3%とSt.1 (10.4±1.2%)やSt.2 (11.4±1.4%) と比べ、低かった。また、NitobacterやNitrospina につい てはどのサンプルからもわずかに検出されたのみであっ た。これらのことから、St.3(土浦港沖)における硝化 ポテンシャルが他の地点よりも低かった可能性が考えら れる。

各サンプルの属レベルの菌叢構造を主座標分析した結 果を図6に示す。各プロット間の距離が菌叢の類似度を 示す。各地点のサンプルが近傍にプロットされることか ら、各地点に特有の菌叢を構成していることが示唆され た。また、台風通過前後で、各地点での現地サンプルの 菌叢は大きく変化しているものの、溶出試験後のサンプ ルでは菌叢の変化は大きくなかった。これは溶出試験期 間中の試験条件が支配的要因となっていたこと考えられ る。さらに、St1(湖心)やSt2(掛馬沖)では底質の表 層と底層で異なる微生物構造を示したが、St3(土浦港 沖)では表層と底層に差が見られず、底質が攪乱されて いる可能性が考えられた。

図6 サンプル間の属レベルの主座標分析

4. 結論

本研究では、霞ヶ浦において、台風による出水前後の 底質を採取し、嫌気・好気条件下で20日間の溶出試験お よび次世代シークエンサーによる微生物叢解析を行った。 現地調査の結果から、台風通過後のSt.3(土浦港沖)で は、他の地点に比べ、pHおよびDOは低い傾向を示した。 台風に伴い流入してきた有機成分は、採泥時には既に分 解し、溶出し易い成分は既に湖水へ溶出していた可能性 が考えられる。溶出試験の結果、NH₄-Nの溶出速度は、 嫌気条件下で台風通過後に著しく増加しており、St.3(土 浦港沖)が最も大きかった。また、PO₄-Pの溶出速度は、 台風通過後では、むしろ低下していた。また、微生物叢 解析の結果、St.3(土浦港沖)では、表層と底層に菌叢 の差が見られず、底質が攪乱されている可能性が考えら れた。以上のことから、St.3の溶出試験(嫌気条件下) で観察された現象(NH₄-Nの増加、PO₄-Pの減少)は強 風による底質の巻き上げの影響を強く受けていると考え られる。

参考文献

- 梅田信、長峯知徳、長広遙、石川忠晴、宇多高明 (2001) 霞ヶ浦湖深部における底泥巻き上げ過程に関する研 究、水工学論文集、45、1171-1176
- 2) 松原誠(2004)湖沼水質保全と下水道事業、水環境学 会誌、27、514-517
- 加藤亮、石島智恵、黒田久雄、中曽根英雄、桐博英 (2006) 畜産排泄物規制前後の栄養塩の流出特性、 水環境学会誌、29、687-692
- 4) 細見正明(1993) 底質からの窒素およびリンの溶出と その制御、水環境学会誌、16、91-95

- Jordan, P. and Rippey, B. (2003) Lake sedimentary evidence of phosphorus, iron and manganese mobilization from intensively fertilized soils, Water Research, 37(6), 1426-1432
- 6)福島武彦、川村修平、恩田裕一、今井章雄、松重一夫 (2005)霞ヶ浦、諏訪湖における底質長期変化と栄 養塩類収支、水環境学会誌、28、313-319
- 環境省水・大気環境局(2014)平成25年度公共用水 域水質測定結果、http://www.env.go.jp/water/suiiki/h25/ 01.pdf(2015年3月時点)
- 8) 柴山慶行、平山孝浩、南山瑞彦(2012) 土地利用や環 境の変化が閉鎖性水域の水質・底質におよぼす影響 に関する研究、土木研究所資料、4241、87-94
- 9) 柴山慶行、平山孝浩、池田茂(2013) 土地利用や環境の変化が閉鎖性水域の水質・底質におよぼす影響に関する研究、土木研究所資料、4275、65-68
- 10) 柴山慶行、對馬育夫、平山孝浩、岡本誠一郎(2014) 土地利用や環境の変化が閉鎖性水域の水質・底質に およぼす影響に関する研究、土木研究所資料、4294、 70-76
- 茨城県霞ケ浦環境科学センター(2014) 霞ヶ浦の水 質 状 況 、
 http://www.kasumigaura.pref.ibaraki.jp/04_kenkyu/ kasumigaura/kasumigaura.html (2015年3月時点)
- 12) 底質浄化協会(2003) 底質の調査・試験マニュアル (改訂第三版)、技術資料2003-3、土地利用や環境の 変化が閉鎖性水域の水質・底質におよぼす影響に関

する研究、土木研究所資料、4275、65-68

- 13) 環境省水・大気環境局 (2012) 底質調査方法、417
- 14) Klindworth A., Pruesse E., Schweer T., Peplles J., Quast C., Horn M., Glöckner F.O. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Research, 41, 1-11
- 15) Edgar R. (2010) Search and clustering orders of magnitude faster than BLAST, Bioinformatics, 26(19), 2460-2461
- 16) Caporaso J. G, Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., Fierer N., Peña A. G, Goodrich J. K., Gordon J. I., Huttley G A., Kelley S. T., Knights D., Koenig J. E., Ley R. E., Lozupone C. A., McDonald D., Muegge B. D., Pirrung M., Reeder J., Sevinsky J. R., Turnbaugh P. J., Walters W. A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. (2010) QIIME allows analysis of high-throughput community sequencing data, Nature Methods, 7, 335-336
- 17) 中薗孝裕、阿部千雅、鈴木譲(2009) 霞ヶ浦の底泥 表層の巻き上げ時における栄養塩類と鉄・マンガン の溶出特性、環境システム計測制御学会、14、45-52

水環境中における未規制化学物質の挙動と生態影響の解明

水質チーム 上席研究員 岡本 誠一郎

総括主任研究員 小森 行也

- 主任研究員 北村 友一
 - 研 究 員 真野 浩行

【要旨】

近年、医薬品などの生活に関連した未規制化学物質による水環境の微量汚染や、その生理活性に由来する水生 生物への影響が懸念されており、新たな環境問題として注目されている。効果的なリスク削減対策を講じるため には、多様な化学物質について水環境中における挙動、生態系に与える影響などの解明を進めることが必要であ る。本研究課題では、環境リスクが比較的高いと考えられる未規制化学物質を対象として、河川流域における実 態把握と環境中動態の解明を行うとともに、これらの物質が水生生態系に与える影響を評価することを目的とす る。本年度では、多摩川中流域における医薬品類の生態影響を把握するため、河川水の藻類生長阻害試験および 河川水中の医薬品類濃度に基づいて、藻類生長への河川水の総毒性に対する医薬品類の寄与率を推定した。また、 PRTR データ等を用いて、下水処理水中の PRTR 第一種指定化学物質の生態リスク初期評価を実施し、本研究に おいて河川での実態と挙動を調査すべき化学物質を選定した。

キーワード:未規制化学物質、慢性毒性単位、PPCPs、PRTR 制度

1. はじめに

化管法対象物質や医薬品類などの水質規制の対象 となっていない化学物質(未規制物質)の中には、 水溶性が高い物質や、下水道などを通じて処理場へ 運ばれるものの処理しきれずに下水処理水を通して 水環境中に排出される物質が含まれている。近年、 水環境中に流出する未規制物質による水生生物への 影響が懸念されており、水環境における未規制物質 の効率的なリスク管理や削減対策が求められている ¹⁾。

リスク管理や低減対策を講じる上で、未規制化学 物質の水環境中での存在実態の把握や挙動の解明を 行うとともに、水生生物への影響の評価を行うこと が必要とされる。本研究課題では、水質汚濁防止法 などの規制対象外となっている化学物質、特に、生 体の特定の生理的調節機能に対して作用する生理活 性物質等について、水環境における環境リスクが懸 念されるものを検討した上で、それらの物質を対象 として水環境中での実態把握と挙動解明を行うとと もに、これらの物質が水生生態系に対して与える影 響を評価することを目的としている。平成 26 年度 は過年度より河川水中の実態挙動を調査している医 薬品類の生態影響を把握するため、多摩川流域にお いて、河川水の藻類生長阻害試験および河川水中の 医薬品類濃度に基づいて、藻類生長への河川水の総 毒性に対する医薬品類の寄与率を推定した。また、 PRTR データ等をもとに、水生生態系への影響を行 う必要がある化学物質を選定した。

2. 研究方法

2.1 河川水の総毒性に対する医薬品類の寄与

2.1.1 調査地点および調査時期

多摩川は、山梨県、東京都、神奈川県を流れる多 摩川水系の本川である(延長 138km、流域面積: 1240km²、流域人口:約 380 万人(H17 年)²)。 代表的な都市河川であり、高度成長期の急激な流域 の都市化の影響を受けて水質が悪化したが、下水道 整備や河川浄化施設の設置などに伴い改善が進み、 近年では中流域(多摩川原橋)の水質は、BOD 2mg/L 程度で推移している(2001 年以降の環境基 準は B 類型、BOD 3mg/L)。一方で、人口増加およ び下水道普及率の上昇に伴い、中流域においては河 川流量の5割以上を下水処理水が占めることもある。 調査地点の概要を図-1 に示す。調査区間では、4 つ の下水処理場から放流水が流入し、5 つの支川(谷 地川、残堀川、根川、浅川、程久保川)が多摩川に 合流している。浅川と根川の上流には下水処理場が あり、下水処理場からの放流水が流入している。程 久保川は流量が少ないことから、本研究では調査対 象から除いた。多摩川本川3地点(St.1-3)、支川 4地点(St.a-d)の計7地点を調査地点とした(図 -1)。各調査地点でスポット採水により1Lの水試 料を採取した。本稿では、2012年1、2月の冬季の 調査結果を示す。

2. 1. 2 藻類生長阻害試験

本試験は藻類を河川水試料に一定期間曝露し、指 数増殖期における生長速度を調べ、対照区と比較す ることにより、藻類の増殖に対する下水試料の毒性 を調査した.本調査では、Harada らの方法³⁾を参 考に、96 穴マイクロプレートを用いて実施した.こ の方法は、試料量が少量で済み、一度に多くの試料 を試験できるなどの利点を有する.被験生物には、 単細胞緑藻ムレミカヅキモ(*Pseudokirchneriella subcapitata*)(NIES-35 株)を、試験培地には AAP 培地を用いた.

本研究では、河川水試料ごとに、固相抽出により 分画濃縮した試料(以降、濃縮試料)を試験した. 藻類生長阻害試験においては、河川水中に存在する 窒素やリンなどの栄養塩類の濃度が試験結果に影響 することが知られており、毒性がマスキングされて しまう可能性があるため、固相抽出による分画濃縮 を行った.これにより、評価対象が固相に吸着、脱 離される物質群に限定されるものの、原水よりも濃 縮された状態での曝露が可能になり、通常では明確 にならない毒性を検出することが可能になる. 固相 カードリッジには OASIS® HLB Plus Ectraction Cartridge (Waters) を使用し、1µm ポアサイズの フィルター(Whatman) でろ過した 1000mL の下 水試料を通水した後にメタノールで溶出し、溶出液 を乾固後に100µLのDMSOに再溶解させることで、 原水の10000 倍濃度の濃縮試料を作成した. 下水試 料ごとに 96 穴ウェルマイクロプレート1 枚を用い て、濃度区に応じて希釈された濃縮試料 200µL、藻

類細胞液 20µL、AAP 培地 20µL を投入し、 2 倍希 釈 10 段階(50 倍、25 倍、12.5 倍、6.3 倍、3.1 倍、 1.6 倍、0.8 倍、0.4 倍、0.2 倍、0.1 倍)5 連の試験 系列を作成した.最大濃度区の曝露溶液中の DMSO 濃度は0.5%となる.曝露溶液中の DMSO 濃度の違 いによる藻類生長への影響を排除するため、全ての 濃度区で曝露溶液中の DMSO 濃度が0.5%となるよ うに調整した.また、比較対照のため、ろ過滅菌し た超純水を用いた 0.5% DMSO 溶液の対照区5 連を 作成した.

その他の試験条件は、初期生物量 1×10⁴ cells/mL、 温度 24°C、照度 3000 Lux、振とう速度 120 rpm と した. 24 時間毎にマイクロプレートリーダーを用い て、各ウェルの吸光度(波長:450 nm)を測定し、 吸光度の増加量と細胞数濃度の検量線を用いて細胞 濃度(cells/mL)に換算した.

0-72 時間の生長速度とばく露濃度の関係から、対 照区と比較して統計学的に有意な低下が認められな い最も高い濃縮倍率を、無影響濃度(NOEC、No Observed Effect Concentration)として求めた. す べての試験濃度区で対照区と生長速度に有意な違い が認められない場合、もっとも高い濃縮倍率である 50 倍を NOEC とした。NOEC の算出には EcoTox-Statics version 2.6d(日本環境毒性学会) を用いた.

NOECの逆数から慢性毒性単位(chronic Toxicity Unit、TUc)を推定した⁴。濃縮試料のTUcが1.25 よりも高い値を示した場合、つまり、濃縮試料の NOECが0.8倍(河川水試料の80%希釈水と同等) よりも低倍率であった場合、その河川水は藻類生長 に対して毒性を示すと判定した。

2.1.3 寄与率の推定

河川水の藻類生長への毒性に対する医薬品類の寄 与率を推定した。過年度の研究から生態リスク初期 評価により多摩川中流域において詳細な検討が必要 とされた医薬品類 5 物質(azithromycin、 clarithromycin、ketoprofen、levofloxaxin、 triclosan)を対象とした。Azithromycin、 clarithromycinは抗生物質、ketoprofenは抗炎症剤、 levofloxacin、triclosanは抗菌剤として使用されて いる。

河川水の毒性に対する医薬品類の寄与率は以下の 式から算出した。

寄与率 (%) =100×TU 医莱品類 / TU 河川水

TU 医素品類は医薬品類の慢性毒性値、TU 河川水は河川 水の慢性毒性値である。医薬品類の慢性毒性値は河 川水中の医薬品類濃度を文献から収集した藻類生長 に対する医薬品類の NOEC で割ることにより算出 した。各調査地点の医薬品類濃度は、2011 年度の調 査結果を使用した⁵)。藻類生長に対する医薬品類の NOEC について複数の値が公表されている場合、幾 何平均値を算出し、医薬品類の慢性毒性値の算出に 使用した。

2.2 新規の調査対象化学物質の選定

PRTR 制度において第一種指定化学物質とされて いる化学物質を対象に生態リスク初期評価を実施す ることで、詳細な評価が必要な化学物質のスクリー ニングを行った。PRTR 制度では、事業者は化学物 質の排出量と移動量を年1回、国に届け出る義務を 負い、国はこれを集計するとともに、届出外も含め た排出量・移動量の推計を行っている。この情報を 活用して、下水道への化学物質流入量の情報を得る ことが可能であり、水生生物への曝露を評価するた めのデータとして利用することができる。

評価対象とする PRTR 第一種指定化学物質の下 水処理水中濃度は、「PRTR 届出外排出量の推計方 法等の概要」(以下、「届出外推計」という)におけ る『全国の下水処理施設から公共用水域への年間排 出量の推計値』を『全国の年間処理水量』で除する ことで推計した。その際に、『全国の年間処理水量』 として、「下水道統計」の"水処理施設・年間処理水 量[m³/year]"の全国合計を適用した。求められた値 を全国における年間の平均的な下水処理水中濃度の 推計値として初期リスク評価に使用した。本研究で は、平成 22、23、24 年度の届出データを基に推計 された年間排出量^{6,7,8}と全国の年間処理水量^{9,10,10} ¹⁰から、各年度における化学物質の下水処理水中濃 度を推計した。

評価対象とした化学物質について、公表されてい る資料¹²⁻¹⁶から、生態リスクの初期評価に用いる毒 性値の情報(以下、毒性情報等という)を収集した。 収集した水生生物に対する毒性情報等を予測無影響 濃度としてリスク評価に使用した。複数の資料から 化学物質の毒性情報等が得られた場合、原則として 最も強い毒性値をリスク評価に採用した。

対象とした化学物質に対する初期リスク評価として、「環境リスク初期評価」などで用いられているハ ザード比(Hazard Quotient : HQ)を用いた評価 を実施した¹⁷⁾。この手法では、HQが一定の基準値 (例えば 1)を上回っているかどうかで、各物質の リスクの有無を明確化できるという利点がある。水 生生物が無希釈の下水処理水に曝露される高リスク のシナリオを想定し、安全側の生態リスクの初期評 価を行った。以下の式に従い、推定下水処理水中濃 度を予測無影響濃度で除することによりHQを算出 した。

HQ= 推定下水処理水中濃度 [µg/L] / 予測無影響濃度 [µg/L]

本研究では、HQが1を超えた物質を詳細な評価が 必要とされる物質として評価した。

3. 研究結果

3.1 河川水の総毒性に対する医薬品類の寄与

3. 1. 1 藻類生長阻害試験

図-2 に試験結果から求めた慢性毒性単位を示す。 全ての調査地点で慢性毒性単位は 1.25 よりも小さ い値を示したことから、調査地点の河川巣は藻類生 長への毒性を示さないことが示唆された。

3. 1. 2 寄与率

表-1 に本研究で使用した藻類生長に対する医薬 品類 5 物質の NOEC 値を示す。NOEC の値は triclosan 、 azithromycin 、 clarithromycin 、 ketoprofen、levofloxacinの順であった。

図-3 に河川水の藻類生長への毒性に対する各医 薬品類の寄与率を示す。 azithromycin、 clarithromycinとtriclosanは ketoprofenと levofloxacinよりも寄与率が高かった。 Azithromycin、clarithromycinとtriclosanの3物 質では、triclosan、clarithromycin、azithromycin

化学物质友	幾何平均値	毒性値	参考
化子初貝石	(µg/L)	(µg/L)	文献
Azithromycin	7.0	4.2	18
		5.2	19
		16	20
Clarithromycin	10.1	3.1	21
		5.2	19
		10	18
		16	20
		<40	22
Ketoprofen	126	16	20
		1000	19
Levofloxacin	370	260	19
		310	21
		630	20
Triclosan	1.3	0.2	22
		0.5	23
		1	16
		1	18
		6.3	20
		8.3	19

表-1 ムレミカヅキモの成長阻害に対する医薬品 類 5 物質の NOEC

の順に高い寄与率を示した。

比較的高い河川水の毒性単位を示した本川調査地 点 St. 2 と支川調査地点 St. c において、河川水の毒 性単位に対する医薬品類の寄与率が大きく異なって いた。調査地点 St. 2 では、azithromycin、 clarithromycin と triclosan の寄与率はそれぞれ 10%程度であった。一方で、調査地点 St. c において、 各医薬品類は 20 から 40%と高い寄与率を示した。 調査地点 St. 2 では医薬品類の分解や底質への吸着 が進み、他の物質による毒性への寄与が大きかった ことが考えられる。一方で、調査地点 St.c は下水処 理場放流口の直下流に位置するため、医薬品類の分 解や底質への吸着が進んでいなかったため、医薬品 類の寄与が大きかったことが考えられる。

3.2 新規の調査対象化学物質の選定

平成 22 年度のデータから 146 物質、平成 23 年度 のデータから 145 物質、平成 24 年度のデータから 145 物質の生態リスク初期評価を実施した。図-4 に平成 22 年度から 24 年度の評価において HQ が 1 よりも大きい値を示した PRTR 第一種指定化学物質 15 物質の HQ 値を示す。平成 22 年度から平成 24 年 度にわたってハザード比が1を上回った物質は11 物質であった。 ピリジン、N、 N-ジシクロヘキシ ルアミンは平成24年度においてHQが1を下回った。 グルタルアルデヒドは平成23年度にハザード比が1 を上回ったものの、平成24年度でハザード比が1 を下回った。ヘキサデシルトリメチルアンモニウム =クロリド (HDTMAC) は平成 23 年度において 1 を下回るHQを示したが、その値は0.94と1に近く、 平成 22 年度と 24 年度では 1 よりも高い HQ 値を示 した。これらの物質は河川における実態と挙動の調 査を実施する必要のある候補物質として考えられる。

図-3 河川水の毒性に対する医薬品類5物質の寄与率

図ー4 下水処理水中の PRTR 第一種指定化学物質のハザード比(Hazard Quotient、HQ)。平成 22 年度から 24 年度において HQ が 1 よりも大きい値を示した化学物質の HQ 値を示す。NPE はポリ(オ キシエチレン)=ノニルフェニルエーテル、AE はポリ(オキシエチレン)=アルキルエーテル、AO は N、N-ジメチルドデシルアミン=N-オキシド、AS はドデシル硫酸ナトリウム、AES はポリ(オキ シエチレン)=ドデシルエーテル硫酸エステルナトリウム、HDTMAC はヘキサデシルトリメチルアン モニウム=クロリドを示す。

4. まとめ

本研究では、多摩川流域を対象として、藻類を用 いた生物試験により、藻類生長に対する河川水の毒 性を調査するとともに、河川水の毒性に対する河川 水中の医薬品類の寄与率を推定した。また、下水処 理水中に含まれる PRTR 第一種指定化学物質を対 象に生態リスク初期評価を実施し、新規に調査対象 とする化学物質を選定した。その結果、以下のこと が明らかになった。

1) 多摩川中流域において、河川水による藻類生長 への毒性は検出されなかった。

2) Azithromycin、clarithromycin、ketoprofen、 levofloxacin、triclosan について、河川水の藻類生 長に対する寄与率を調査したところ、azithromycin、 clarithromycin、triclosan が比較的高い寄与率を示

した。

3) 生態リスク初期評価により、河川における実態 と挙動の調査を実施する必要のある候補物質として 15物質を抽出した。

今後、医薬品類の生態影響について詳細に調査す るともに、抽出した候補物質について、実河川での 実態や挙動の調査を行っていく予定である。

なお、本研究は、運営費交付金(一般勘定)によ り実施されたものである。

参考文献

 国土交通省地域整備局下水道部:「下水道における化学物質排出量の把握と化学物質管理計画の 策定等に関するガイドライン(案)」、2005

- 国土交通省:「一級水系における流域等の面積、総人 口、一般資産額等について」、 http://www.mlit.go.jp/river/toukei_chousa/kasen/r yuiki.pdf(2014年4月確認)
- Harada A、 Komori K、 Nakada N、 Kitamura K and Suzuki Y: Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. *Water Sci. Technol.*, 58, 8, 1541-1546, 2008
- USEPA: Technical support document for water quality-based toxics control, EPA/440/4-85/032.
 National Technical Information Service , Springfield, VA, 1985
- 5) 南山瑞彦、小森行也、北村友一、村山康樹:水環境 中における未規制化学物質の挙動と生態影響の解明、 平成23年度下水道関係調査研究年次報告集、土木研 究所資料4241、95-100、2012
- 経済産業省製造産業局化学物質管理課、環境省環境 保健部環境安全課:平成 23 年度 PRTR 届出外排出 量の推計方法等の概要、2013
- 7) 経済産業省製造産業局化学物質管理課、環境省環境 保健部環境安全課:平成 24 年度 PRTR 届出外排出 量の推計方法等の概要、2014
- 経済産業省製造産業局化学物質管理課、環境省環境 保健部環境安全課:平成 25 年度 PRTR 届出外排出 量の推計方法等の概要、2015
- 9) (社)日本下水道協会:下水道統計(平成 22 年度版)、
 2012 年
- 10) (社)日本下水道協会:下水道統計(平成 23 年度版)、
 2013 年
- (社)日本下水道協会:下水道統計(平成24年度版)、
 2014年
- 12) 中央環境審議会水環境部会水生生物保全環境基準専門 委員会:水生生物の保全に係る水質環境基準の設定に ついて(第一次報告)、2003
- 13) 環境省:水産動植物の被害防止に係る農薬登録保留基準の設定に関する資料、2007
- 14) 環境省環境保健部環境リスク評価室:化学物質の環境 リスク初期評価、
 http://www.env.go.jp/chemi/risk/index.html (2012年 12月確認)
- 15) (独) 製品評価技術基盤機構:初期リスク評価書、 http://www.safe.nite.go.jp/japan/sougou/view/Selec tingListsList_jp.faces?child_flg=child&service_id= APDisplayFirstList_jp&tb_form=S_41_SHO(2015

年3月確認)

- 16) 環境省:生態毒性試験結果(平成27年3月版)、2015、 https://www.env.go.jp/chemi/sesaku/02e.pdf
- 17) 環境省環境保健部環境リスク評価室:化学物質の環 境リスク初期評価ガイドライン(平成 26 年度 12 月 版)、2014、

http://www.env.go.jp/chemi/risk/index.html

- 18) 清水大吾、田中宏明、鈴木穣、山下尚之:土木
 学会年次学術講演会講演概要集、60、7、165-166、2005
- 19) 鈴木穣、小森行也、北村清明、北村友一:平成 20年度下水道関係調査研究年次報告集、土木研究所 資料、4157、131-143、2009
- 福永彩、山下尚之、田中宏明:藻類生長阻害試 験を用いた医薬品類の毒性評価、環境工学研究 論文集、43、57-63、2006
- 21) Yamashita N, Yasojima M, Miyajima K, Komori K and Suzuki Y: Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms. *Water Sci. Technol.*, 53(11), 65-72, 2006
- 22) Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT: Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga *Pseudokirchneriella subcapitata. Environ. Toxicol. Chem.*, 27, 5, 1201–1208, 2008
- 23) Tamura I, Kagota K, Yasuda Y, Yoneda S, Morita J, Nakada N, Kameda Y, Kimura K, Tatarazako N and Yamamoto H: Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J. Appl. Toxicol., 33, 11, 1222–1229, 2013

下水処理プロセスにおける化学物質の制御技術に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平23~平27 担当チーム:水環境研究グループ(水質) 研究担当者:岡本誠一郎、小森行也、北村友一

【要旨】

本研究では、社会生活の中で身近に使用されている医薬品類や PRTR 対象物質の一部に生物影響が指摘されている ものがあることから、下水道を経由する化学物質等の環境インパクト低減を目的として下水処理プロセスにおけるこれ ら化学物質(医薬品類)及び総毒性の挙動把握とリスクを低減するための制御技術の検討を行った。

その結果、医薬品類の担体処理における除去率は、活性汚泥処理の除去率に比べ大きな値を示したことから、微生物 担体を用いる高度処理が二次処理水に残存する医薬品類の除去に有効であることがわかった。また、流入下水がメダカ に及ぼす影響は、発達(development)、輸送(transport)、信号伝達(signaling)、筋肉(muscle)への影響が大き いことがわかった。発達への影響は下水処理過程で低減したが、輸送、シグナル伝達、筋肉への影響は、下水処理後も 残存する可能性があった。

キーワード: 医薬品、担体処理、メダカ、バイオアッセイ、遺伝子発現解析

1. はじめに

社会生活の中で身近に使用されている医薬品類や PRTR 対象物質(462物質)については、環境分野や 水道分野において実態調査が進められており、医薬品 類では、クラリスロマイシン等の抗生物質の一部に生 態影響が指摘されているものがある。また、PRTR 制 度では、人の健康や生態系に悪影響を及ぼすおそれが ある物質を(化管法)第一種指定化学物質としている。 医薬品類、PRTR 対象物質の一部の物質については、 既往調査により下水処理場での除去特性について明ら かになっているものがあるが、多くの物質についての 実態は不明である。下水道を経由する化学物質の環境 影響の可能性を考慮すると調査未実施の多くの化学物 **質についての実態解明は急務であり、早期に下水道で** の実態を把握するとともに、処理水中に残存する物質 については新たな除去手法の開発と併せて、リスクを 低減するための制御技術の開発を行う必要がある。

本研究は、①優先的に調査が必要な化学物質を選定 し、その分析方法を提案する。②下水処理プロセスに おける除去特性の把握と下水処理プロセスにおける総 毒性の除去特性の把握を行う。③下水処理水中に残存 する化学物質と総毒性の除去手法を提案することを目 的としている。

平成26年度は、活性汚泥処理法プロセスと微生物担体を用いた高度処理プロセスにおける医薬品類の除去

特性について調査を行った。また、流入下水、砂ろ過水、担体処理水に曝露したメダカの次世代シーケンサーによる網羅的遺伝子発現解析による総毒性の低減効 果に関する調査を行った。

2. 活性汚泥処理プロセスと微生物担体を用いた高 度処理プロセスにおける医薬品類の除去特性

2. 1 調査方法

調査は、有効水深が約 2mの最初沈殿池(0.5m³)、エ アレーションタンク(0.5m³×4 槽)、最終沈殿池(0.7m³) で構成される活性汚泥処理実験装置と微生物保持担体 を添加した反応槽(10L×4 槽)の担体処理実験装置を用 いて行った(図⁻¹参照)。実下水処理場の流入下水を定 量ポンプを用いて活性汚泥処理実験装置に導入した。 生汚泥、余剰汚泥の引抜はタイマーコントロールによ る間欠運転で行った。活性汚泥処理実験装置は、流入 下水量 6.8m³/d、汚泥返送率約 38%、エアレーション タンク HRT 約 7 時間で運転した。担体処理実験装置 は担体を嵩比率 35%で添加、反応槽は担体が浮遊する よう機械攪拌し、担体表面に自然発生的に付着した生 物膜により高度処理した。担体処理実験装置の各反応 槽の HRT は約 30 分であり、担体処理水④では約 2 時 間の HRT となる。

分析試料は、運転開始から2ヶ月以上経過した後に、 流入下水、初沈流出水、AT-1 混合液、AT-3 混合液、終

沈流出水(二次処理水)、担体処理水①~④を2時間間 隔で採取し、それぞれ採取した各試料を等量混合した コンポジット試料とした。

調査対象医薬品類は、クラリスロマイシン、アジス ロマイシン、ケトプロフェン、トリクロサンの4物質 とした。これら4物質は下水処理水に残存し、藻類生 長阻害¹⁾²⁾又はミジンコ繁殖阻害³⁾があることが報告さ れている物質である。

クラリスロマイシン、アジスロマイシン、ケトプロ フェンは、ガラス繊維ろ紙(GF/B)でろ過したろ液を Oasis HLB を用い固相抽出した後、LC-MS/MS により 分析 4 した。また、トリクロサンの分析は、ガラス繊 維ろ紙(GF/B)でろ過したろ液を Oasis HLB を用い固 相抽出した後、アセチル誘導体化し GC-MS により分 析 5 した。

2.2 調査結果

一般水質項目分析結果を表-1 に示す。本実験装置の BOD 除去率は 94%であり、本装置の処理水質は標準 活性汚泥法の実下水処理場と同レベルであった。流入 下水中の NH₄-N、NO_x-N の濃度は、それぞれ 20mg/L、 0.05mg/L 以下であるのに対し、二次処理水では 0.47mg/L、18mg/L で十分に硝化が進行していた。ま た、エアレーションタンク混合液の MLSS、余剰汚泥 引き抜き量より計算した SRT は約 13 日であった。

活性汚泥処理実験装置及び担体処理実験装置の各処

	表-1 一	般水質項目	目分析結果	른
	流入水	初沈流出水	二次処理水	担体処理水④
BOD (mg/L)	150	140	9.1	-
DOC (mg/L)	35	37	7.8	6.4
NH4-N (mg/L)	20	21	0.47	0.04
NOx-N (mg/L)	< 0.05	< 0.05	18	19
TN (mg/L)	33	31	20	20
TP (mg/L)	3.2	3.2	1.6	1.6
水温 (℃)	16.8	16.4	14.9	13.4

理プロセスにおける医薬品類 4 物質の分析結果を図-2 に示す。流入下水のクラリスロマイシン(CAM)、アジ スロマイシン(AZM)、ケトプロフェン(KP)、トリクロ サン(TCS)の濃度は、それぞれ 1,600ng/L、310ng/L、 950ng/L、340ng/L であった。図-2 は、流入下水の医 薬品類濃度をCo、各プロセスの医薬品類濃度をCとし、 C/Coで示した。CAM、AZMは、初沈流出水で流入下 水に比べ約10%高い値を示したが、エアレーションタ ンク内で減少し、二次処理水ではそれぞれ 1,400ng/L、 270ng/L となり流入下水の 0.88、0.87 の値を示した。 本調査における活性汚泥処理による除去率は、それぞ れ 12%、13%である。KP は、初沈流出水で流入下水 の 0.89 を示し、エアレーションタンク内で大きく減少 し、二次処理水では 240ng/L となり流入下水の 0.25 となった。TCS は、初沈流出水では流入下水とほぼ同 じ値を示し、エアレーションタンク内で大きく減少し、 二次処理水では69ng/Lとなり流入下水の0.2となった。 KP、TCS の活性汚泥処理による除去率は、それぞれ 75%、80%である。

担体処置実験装置での医薬品の減少は、各物質とも 処理が進むにつれ減少し、担体処理水④では二次処理 水(担体処理実験装置流入水)の1/5以下となった。 担体処理における医薬品類除去率は、合計HRTが約2 時間の担体処理水④では、CAMが84%、AZMが91%、 KPが90%、TCSが88%であった。CAM、AZMは、 活性汚泥処理での除去率(12%,13%)に比べ大きな 除去率を示し、担体処理水④の濃度は220ng/L、23ng/L であった。KP、TCSは、活性汚泥処理における除去 率が75%、80%であり、活性汚泥処理により比較的除 去され易い物質ではあるが、流入下水の20~25%は二 次処理水に残存している。これら二次処理水に残存す る KP、TCS は担体処理により更に除去することがで き、担体処理水④の濃度は 25ng/L、8.5ng/L となった。 また、担体処理における医薬品類除去は、DOC 除去率 18%に比べ大きな値を示したことから、二次処理水に 残存する溶存有機物の中でも比較的除去され易い物質 ということができる。

3. 下水処理プロセスにおける総毒性の低減効果

医薬品などの化学物質は活性汚泥処理過程で、種類 によるが、ある程度除去されていることが明らかにな った。しかし、個別の化学物質の濃度から生物影響を 予測することは困難である。下水処理過程での生物影 響評価の低減効果は、直接的なバイオアッセイから確 認することも重要である。本研究では、流入下水、砂 ろ過水、担体処理水に曝露したメダカについて、毒性 の多角的な評価が可能と考えられている次世代シーケ ンサーによる網羅的遺伝子発現解析から、下水処理過 程での毒性低減効果の評価を試みた。

3.1 実験方法

3. 1. 1 下水処理実験装置

図・3 に調査に使用した下水処理実験装置の概要を示 す。実験装置は、図・1 上段に示した活性汚泥処理実験 装置の後に砂ろ過と担体処理装置を加えたものである。 担体処理装置の反応槽は1 槽とし、微生物が自然発生 的に保持されたポリプロピレン製円筒担体(φ5mm,長 さ5mm,厚さ1mm)が充填され、水理学的滞留時間2 時間で砂ろ過水を処理した。メダカの曝露水は、流入 下水、砂ろ過水、担体処理水とし、対照区は水道水を 活性炭処理した脱塩素水道水とした。採水時期は、 2014年11月5~6日で、24時間連続採水とした。メ ダカの曝露水の水質分析は、DOC、NH4-N、NO2-N、 NO3-N 濃度とした。

3. 1. 2 メダカ曝露実験

メダカの曝露実験と遺伝子発現解析は、表・2の方法 で行った。曝露方式は半止水式、曝露時間は96時間と し、肝臓と鰓のRNAを抽出した。RNAサンプルは、 同曝露区の10匹分の一部を混合して1曝露区1検体

表-2 曝露実験と遺伝子発現解析の実施方法

試験魚	d-rR系 ヒメダカ(6~7カ月齡)
唱霞兀数	雄メダカ 10匹 /曝露区
*** HE W	雌メダカ 10匹 /曝露区
曝露時間	96時間
曝露水量	5L
曝露方式	半止水式(1日1回全換水)
	流入下水
=≭ ≣⋧ →	砂ろ過水
武海央小	担体処理水
	脱塩素水道水(対照区)
設定水温	24°C
照明	明期16時間/暗期8時間
給餌	なし
唱生	DOが低い試料は緩やかに曝気
	飽和溶存酸素濃度の50%以上を確保
解析臓器	肝臓、鰓
RNA抽出法	RNeay mini kitにより1個体毎に抽出
RNA 試料の 調整	同曝露区の10匹分を1つに混合
遺伝子発現解析法	次世代シーケンサー Miseq(v3 150cycle)
cDNAライブラリ調製試薬	Truseq Stranded mRNA Sample Prep Kit

とした。そして、TruSeq Stranded mRNA Sample Prep Kit (Illumina) で cDNA ライブラリを調製し、 次世代シーケンサーMiseq (Illumina) を用い、ペア エンドリード (75bp×2) で塩基配列を取得した。

3.1.3 データ解析

データ解析は、セルイノベーション(国立遺伝学研 究所データ解析拠点)⁶⁰を利用した。塩基配列が記載さ れた FASTQ ファイルをアップロードし、Tophat2 で メダカゲノムにマッピング後、Cufflinks2 でゲノム上 の遺伝子の位置と構造を推定した。Cuffmerge で 16 サンプル分の遺伝子推定結果を統合し、Cuffdiff で遺 伝子発現量を計算した。

遺伝子発現量は、シーケンスされた cDNA 断片の総 量と遺伝子の長さの両方で補正した値である、FPKM

(Flagments Per Kilobase of exon per Million reads mapped) で表した。同じゲノム領域に複数の Isoform が確認された場合は、それらの FPKM の和を求め、ゲノム上の1領域につき1遺伝子となるようにした。また、解析の都合上、FPKM が 0.001 未満の場合は 0.001 に置換した。そして、各曝露区で、対照区と比較して FPKM が2倍以上、または1/2以下になった遺伝子を、その曝露区の発現変動遺伝子とした。

発現変動遺伝子の機能を解析するにあたり、メダカ の遺伝子の機能情報が不足していたため、遺伝子の機 能は、Uniprot-GOA に登録されている、ヒトの Gene Ontology (GO) データベース[¬]を利用した。始めに、 各遺伝子の塩基配列を用い、ヒトのリファレンスシー ケンス (Refseq Protein⁸) に対して相同性検索 (Blastx) を行った。そして、それぞれの遺伝子と最も相同性が 高いヒトの Refseq ID に対応した GO を、その遺伝子 の機能とした。 遺伝子の機能の統計解析には、統計解析環境 R 3.2.0 および Excel を使用した。各曝露区の発現変動遺伝子 について、特定の機能に関与する遺伝子が有意に多く 含まれているか否かを Fisher の正確確率検定で検定 した。解析対象の遺伝子機能は、5 個以上の遺伝子が 含まれる機能に限定した。また、遺伝子機能は大きく Biological Process、Molecular Function、Cellular Component の 3 種に区分されているが、このうち Biological Process 関連の機能を対象とした。

3.2 実験結果

3. 2. 1 水質分析結果

図-4 は、試験水の NH4-N、NO2-N、NO3-N 濃度、 図-5 は、DOC 濃度である。活性汚泥処理で硝化が抑制 されていたため、砂ろ過水の NH4-N 濃度が高くなって いた。流入下水、砂ろ過水、担体処理水の NH4-N 濃度 は 18.8、14.0、4.9mgN/L であった。NO2-N 濃度は、 担体処理水の 0.17mgN/L が最大で、溶存態窒素濃度に 占める割合は低かった。DOC 濃度は、活性汚泥処理で 72%低下したが、担体処理ではさらなる低下はみられ なかった。

3. 2. 2 遺伝子発現解析結果

図-6は、雄メダカの、肝臓と鰓における、対照区に 対する曝露区の発現変動遺伝子数である。図-7は、雌

メダカの結果である。発現変動遺伝子数は、雄メダカ と雌メダカで似た傾向を示した。発現変動遺伝子数は、 上昇と低下の合計でみると、肝臓と鰓のどちらも、流 入下水と比較して砂ろ過水で低下した。雄メダカでは、 担体処理による発現変動遺伝子数の変化は小さかった。 雌メダカの鰓では、担体処理でも発現変動遺伝子数が 低下した。活性汚泥処理による発現変動遺伝子数の低 下は、肝臓よりも鰓で顕著であった。

流入下水の生体毒性を明らかにするため、Fisherの 正確確率検定による発現変動遺伝子の機能(GO)解析

$1 \rightarrow DNA$ replication initiation	$\hat{\boldsymbol{\Delta}}$
olfactory bulb interneuron development	$\diamond \blacktriangle \bullet$
4)→ muscle filament sliding	
regulation of embryonic development	$\land \diamond \bullet$
homophilic cell adhesion via plasma membrane adhesion molecules	
clathrin coat disassembly	$\diamond \blacktriangle$ \bullet
metanephros development	\diamond \bigstar
2)→ oocyte development	
negative regulation of cell proliferation involved in contact inhibition	
epidermis development	Δ \bullet
response to purine-containing compound	
3)→ cellular response to caffeine	\diamond \triangle
cell differentiation involved in embryonic placenta development	\blacktriangle \diamond \bullet
regulation of myoblast differentiation	
regulation of axonogenesis	
sarcomere organization	$\blacksquare \diamond \bullet$
nuclear matrix anchoring at nuclear membrane	
maintenance of protein location in nucleus	
spinal cord motor neuron differentiation	
spindle organization	\diamond \checkmark
positive regulation of acrosome reaction	
immune response to tumor cell	$\blacktriangle \diamond \bullet$
regulation of endopeptidase activity	$\blacktriangle \diamondsuit \bullet$
outflow tract morphogenesis	
adult heart development	
actin-myosin filament sliding	\diamond
spinal cord motor neuron cell fate specification	$\land \diamond \bullet$
positive regulation of interleukin-18 production	$\diamond \blacktriangle \bullet$
defense response to tumor cell	$\diamond \diamond \bullet$
regulation of stem cell division	Δ
negative regulation of negative chemotaxis	$\diamond \blacktriangle \bullet$
interferon-gamma production	
apoptotic process involved in luteolysis	$\Delta \Phi$
sodium ion transmembrane transport	
establishment of skin barrier	
cellular defense response	
	1 0.01 10 ⁻⁴ 10 ⁻⁶ 10
	p-value
注・図左側の丸付き数字け 木文で言及した	を機能を示す

を行った。有意水準についての客観的な基準はないが、 p-value 0.01 未満となった場合、その機能に関連した 遺伝子群に、対照区と比較して有意な変化があったと 考えることとした。図-8~図-11は、性別および臓器毎 の発現変動遺伝子の GO 解析結果である。GO の機能 名は、流入下水曝露区で p-value が低い順に示した。 以下では、p-value が最も低い機能、下水処理水中に残 存する女性ホルモン様物質や医薬品類などの影響が予 想される機能、個体の生存上重要と思われる機能につ いて説明する。雄の肝臓(図-8)の流入下水曝露区で は、36 個の機能が有意となった。流入下水で最も p-value が低い機能は、DNA 複製開始(DNA replication initiation, GO:0006270, ①) であり、流入 下水のみで有意となった。卵母細胞の発達(oocyte development, GO:0048599, ②) も、流入下水のみで 有意となった。この機能遺伝子群は、卵膜蛋白前駆物 質のコリオジェニンなどを含み、雄魚の雌性化に関連 していると考えられる。化学物質名を含んだ機能とし ては、カフェインに対する細胞応答 (cellular response to caffeine, GO:0071313, ③)が流入下水と砂ろ過水 で有意となった。筋繊維のすべり運動(muscle filament sliding, GO:0030049, ④)は、臓器(肝臓、 鰓)や性(雄、雌)によらず流入下水で有意となった 唯一の機能で、雄の肝臓では砂ろ過水と担体処理水で も有意となった。

雄の鰓の流入下水曝露区では、93 個の機能が有意と なった(図-9 には p-value が低い 50 個を示した)。流 入下水で最も p-value が低い機能は、コレステロール 合成(cholesterol biosynthetic process, GO:0006695, ①)であり、流入下水のみで有意となった。流入下水 で p-value が 2 番目に低い機能は、筋繊維のすべり運 動(②)で、これは担体処理水でも有意であった。薬

1)-	cholesterol biosynthetic process	<	> 🔺			
2-	muscle filament sliding			\diamond		
(4) -	DNA strand elongation involved in DNA replication	<u> </u>				
_	membrane depolarization during action potential		\diamond			
5-	calcium ion transmembrane transport			Δ		
	cholesterol homeostasis		\sim		•	
	visual perception			\diamond	•	
	regulation of ion transmembrane transport		<	> (4	
	steroid metabolic process			4	Ø	
	transmembrane transport					
	mitotic cell cycle	¢	2			
	epoxygenase P450 pathway					
3-	xenobiotic metabolic process		$\diamond \blacksquare$			
	muscle contraction	<	≫∆			
	cellular response to caffeine		$\hat{\boldsymbol{\Delta}}$			
	chromosome segregation		$\hat{\boldsymbol{\Delta}}$			
	cell adhesion		Δ			
	peripheral nervous system axon regeneration		L	4	\diamond	
	high-density lipoprotein particle remodeling		$\mathbf{\hat{\mathbf{Q}}}$			
	mRNA modification	¢	:			
	sarcoplasmic reticulum calcium ion transport	K	\mathbf{X})	
	nitric oxide biosynthetic process			☆ ●)	
	sodium ion transport			\$ ●)	
	cholesterol metabolic process	<	2	•		
	DNA integration			ぐ▲●		
	ion transmembrane transport			<∆●		
	striated muscle contraction		<	◇ ●		
	triglyceride metabolic process		\land			
	cholesterol efflux					
	cell-cell signaling		\land			
	L-cystine transport			◊ 🛆		
	negative regulation of fibrinolysis		\diamond			
	negative regulation of blood coagulation					
	mitotic sister chromatid segregation		Δ			
	G-protein coupled receptor signaling pathway, coupled to cyclic nucleotide second m	nessenger	$\land \land$			
	calcium ion import		\diamond			
	regulation of complement activation				▲ <	\$
	GDP-mannose biosynthetic process	\$				
	modification-dependent protein catabolic process					
	retinol metabolic process		Δ			
	DNA replication	>	\diamond			
	blood coagulation, intrinsic pathway		\diamond			
	vitamin D metabolic process		6	2 •		
	cytolysis			•		
	negative regulation of endopeptidase activity					
	release of sequestered calcium ion into cytosol by sarcoplasmic reticulum		$\diamond \Delta$			
	synaptic transmission				\diamond	
	hyaluronan metabolic process		\diamond			
	response to mercury ion		$\diamond \blacktriangle$	•		
	neuropeptide signaling pathway					
		1		.01 1	10-4 10) ⁻⁶ 10 ⁻
		1	0			10
	p-value					
	注:図左側の丸付き数字は 本文で言及した	を機能を示す	-			
			0			

物代謝酵素 Cytochrome P450 family 1, family 2 の他 多様な酵素を含み、医薬品類の影響を考える上で重要 な機能である生体外物質の代謝 (xenobiotic metabolic process, GO:0006805, ③) は、流入下水のみで有意と なった。DNA の複製は個体の生存上重要であるが、こ れに関連した機能としては、DNA 複製時の DNA 鎖伸 長 (DNA strand elongation involved in DNA replication, GO:0006271, ④) が、流入下水のみで有 意となった。物質輸送に関連した機能としては、カル シウムイオン膜輸送 (calcium ion transmembrane transport, GO:0070588, ⑤) が、砂ろ過水や担体処理 水でも有意であった。

雌の肝臓の流入下水曝露区では、57 個の機能が有意 となった(図-10 には p-value が低い 50 個を示した)。 流入下水で最も p-value が低い機能は、筋繊維のすべ り運動(①)であり、担体処理水で p>0.01 となった。

①→	muscle filament sliding	♦			
②→	DNA replication initiation				
	growth plate cartilage development			•	_
	actin-myosin filament sliding	\diamond			_
	positive regulation of glycoprotein biosynthetic process		•		
	G-protein coupled purinergic nucleotide receptor signaling pathway		$\diamond \bullet$	4	
	negative regulation of leukocyte apoptotic process	\diamond	•		
	cell adhesion		$\diamond \bullet$		
	cellular response to cytokine stimulus	<			_
	chromosome segregation	$\diamond \Delta$	•		_
	regulation of transcription involved in G1/S transition of mitotic cell cycle	\swarrow			
	homophilic cell adhesion via plasma membrane adhesion molecules			\diamond	
	negative regulation of cell proliferation involved in contact inhibition	⊘∆			
	keratinocyte development	\land			
	deoxyribonucleoside monophosphate biosynthetic process	\land			
	mitotic spindle midzone assembly	$\Diamond \blacksquare$			
	RNA polymerase II transcriptional preinitiation complex assembly	$\diamond \square$			
(3)→	G-protein coupled receptor signaling pathway		♦◀		
	actin filament-based movement	$\diamond \blacksquare$			
	positive regulation of inflammatory response		•		
(4)→	response to virus	\diamond	•		
-	positive regulation of interferon-gamma production		•		
	osteoblast differentiation	\land	•		
	DNA strand elongation involved in DNA replication	\bigtriangleup	•		
	decidualization	♦	•		
	negative regulation of cell migration	\land	•		
	positive regulation of NF-kappaB import into nucleus		$\diamond \bullet$		
	positive regulation of ion transport	\diamond			
	positive regulation of tumor necrosis factor biosynthetic process				
	negative regulation of protein autophosphorylation				
	negative regulation of growth of symbiont in host				
	nositive regulation of interleukin-12 production				
	release of cytoplasmic sequestered NE-kappaB				
	negative regulation of viral genome replication				
	nositive regulation of tissue remodeling	\sim	Ā		
	development of primary female sexual characteristics	\ ∧ ∧	-		
	nositive regulation of interleukin-1 beta secretion	Ť Ā	5		
	regulation of I-kappaB kinase /NE-kappaB signaling				_
	regulation of 1 Rappad Killase/ Ni Rappad Signaling		F		
		The second secon	5		
	elethrin east disessembly	TA -	<u> </u>		_
			<u> </u>		_
					_
		-7			_
	orfactory build axon guidance				_
	negative regulation of renal sodium excretion		<u> </u>		_
	Fc receptor signaling pathway		L		
	Interferon-gamma biosynthetic process		-		_
	positive regulation of NK I cell proliferation		-		_
	positive regulation of cytosolic calcium ion concentration	$\diamond \blacksquare$			_
	negative regulation of cytokine secretion				
		1 0	0.01 1 p-v	D ⁻⁴ 1 alue	10-6 10
図-	注:図左側の丸付き数字は、本文で言及した機能を 10 雌、肝臓の流入下水曝露区で有意となった機能の一覧と、処	示す。 し 理過程	でのp	valu	e の変

流入下水で p-value が 2 番目に低い機能は、DNA 複製 開始(②)であり、流入下水のみで有意となった。こ の 2 つを含む 6 つの機能が、雄の肝臓と雌の肝臓で共 通して、流入下水で有意となっていた。G タンパク質 連結型受容体関連シグナル(G-protein coupled receptor signaling pathway, GO:0007186,③)は、砂 ろ過水と担体処理水でも有意であった。G タンパク質 連結型受容体は、神経伝達物質受容体や、網膜の光受 容体など様々な種類のものが存在し、医薬品の標的と しても重要となっている。ウイルスへの応答 (response to virus, GO:0009615, ④) は、流入下水のみで有意と なった。

雌の鰓の流入下水曝露区では、74 個の機能が有意となった(図-11 には p-value が低い 50 個を示した)。流入下水で最も p-value が低い機能は、コレステロール 合成(①)、2 番目に低い機能は、体細胞の分裂サイク

1)-	cholesterol biosynthetic process	Þ				۲		
2-	→mitotic cell cycle	\	\triangle					
	visual perception		0	>		Δ		
	mitotic sister chromatid segregation	<	◇.	4		•		
	ion transmembrane transport					•		
	cholesterol homeostasis		∆⊘			•		
	calcium ion transmembrane transport				$\Delta > $	•		
	muscle filament sliding			▲ <	> ()		
	meiotic nuclear division		•		•	(
3–	▶ cell division	<	>		▲ ●			
4)-	retinoid metabolic process		\square	\diamond	•			
	peptidyl-cysteine S-nitrosylation		Ľ	>				
	sarcoplasmic reticulum calcium ion transport	\diamond	• 🛆					
	positive regulation of dendritic spine morphogenesis			∕∆				
	calcium ion import							
	sulfate transport		\land		•			
	chromosome segregation		\diamond					
	pyrimidine nucleotide metabolic process	\diamond						
	response to nitrosative stress	\land	0					
	CENP-A containing nucleosome assembly	<	◇ △					
	transmembrane transport							
	regulation of ion transmembrane transport) 💠	,		
	mitotic spindle midzone assembly		$\diamond I$					
	membrane depolarization during SA node cell action potential		\diamond			Δ		
	formaldehyde catabolic process	Å		0				
	retinal metabolic process			•		\diamond		
	regulation of G2/M transition of mitotic cell cycle							
	mitotic nuclear division		>	Δ.)			
	DNA strand elongation involved in DNA replication			•				
	positive regulation of synapse maturation		K					
	positive regulation of blood pressure		<u> </u>	$\diamond \bullet$				
	release of sequestered calcium ion into cytosol		>					
	skeletal muscle tissue growth	\$	Δ	•				
	attachment of spindle microtubules to kinetochore	\$						
	ethanol catabolic process		\diamond	•				
	pyrimidine nucleoside salvage	<u> </u>	Δ	•				
	striated muscle contraction		0				-	
	chloride transmembrane transport		6	2 •				
	anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein cat	taboli 🗘	Δ	•				
	regulation of cyclin-dependent protein serine/threonine kinase activity	k	Δ	•				
	skeletal muscle adaptation		\diamond					
	microtubule polymerization		K	>•				
	cellular response to caffeine		Δ	•				
	transport			0				
	muscle contraction		\wedge	•				
	response to axon injury		5	λŌ				
	mitotic chromosome condensation		<u> </u>	0				
	low-density lipoprotein particle clearance		3	Ō			-	
	ethanol oxidation		$\overline{\diamond}$	Ō			-	
	male meiosis I		\diamond	Ō			-	
			•	0.01	10	-4 ·	10-6	10
		-			10	- Luc		10
					p-va	iue		
	注:図左側の丸付き数字は、本文で言及した機能な	を示す	~					
		/	~					

 ル (mitotic cell cycle, GO:0000278, ②) であり、いず れも流入下水のみで有意となった。細胞分裂 (cell division, GO:0051301, ③) は、流入下水と砂ろ過水で 有意であった。レチノイド (ビタミンA前駆体)の代 謝 (retinoid metabolic process, GO:0001523, ④) は、 流入下水と担体処理水で有意であった。生体外物質の 代謝は、雄の鰓とは異なり、雌の鰓の流入下水では有 意にならなかった。雌の鰓の流入下水曝露区で有意と なった機能のうち 35 個は、雄の鰓の流入下水曝露区で も有意であった。また、雌の鰓と雄の鰓で、流入下水 曝露区で p-value が低い 10 個の機能を比較すると、5 個の機能が共通していた。流入下水が鰓の遺伝子発現 に及ぼす影響は、雄と雌で共通した要素が多いと考え られる。

各下水試料曝露で有意となった遺伝子機能について、 性別や臓器についての共通性や特異性を把握するため、
表-3 遺伝子機能名に含まれる主な単語の、流入下水曝露区で有意となった機能名と、流入下水と担体処理水 の両方で有意となった機能名における出現頻度(表の数値は、各単語を含む機能の個数)

注:本文中で言及した単語は太字で示した。

		流入下水で有意(t̄(p < 0.01)		流入下水でp < 0.01 かつ 担体処理水でp < 0.01			
		加	ŧ	此	É	加	É	此	隹
	単語	肝臓	鰓	肝臓	鰓	肝臓	鰓	肝臓	鰓
	development(発達)	7	2	3	0	0	1	0	C
	growth(成長)	0	1	2	1	0	1	0	(
	stress (ストレス)	0	0	0	1	0	0	0	(
急	muscle(筋肉)	1	8	2	6	1	2	0	1
戡	mitotic(有糸分裂)	0	3	2	8	0	1	0	1
を見て	transport(輸送)	1	12	1	9	1	7	0	Ę
薎	apoptotic(細胞死)	1	0	2	0	0	0	0	(
	signaling (シグナル)	0	4	5	2	0	2	3	0
	immune(免疫)	1	0	0	0	0	0	0	(
	xenobiotic (生体外物質)	0	1	0	0	0	0	0	(
	protein	1	3	1	4	0	0	0	(
	lipoprotein	0	1	0	1	0	0	0	(
A	collagen	0	1	0	0	0	0	0	(
Ō	DNA	1	5	2	1	0	1	0	C
ein.	RNA	o	0	1	0	0	0	0	(
prot	mRNA	0	1	0	0	0	0	0	(
<u>u</u>	nucleotide	0	2	1	1	0	0	1	(
	nucleoside	0	0	. 0	1	0	0	0	(
	G-protein	0	1	2		0	0	2	
ルミ	donamine	0	1	0	0	0	0	0	(
ナ泥	cytokine	0	0	2	0	0	0	1	(
1 m	interferon-gamma	1	0	2	0	0	0	0	0
	T (T細胞)	0	0	3	0	0	0	1	(
	ion	1	12	2	7	1	4	0	
	cation	0	1	0	1	0	0	0	(
5	acid	0	1	0	1	0	0	0	(
戁	sulfate	0	0	0	1	0	0	0	(
兼	calcium	0	8	1	5	0	2	0	2
	sodium	1	1	1	0	1	- 1	0	(
	ammonium	0	1	0	0	0	0	0	C
	organic	0	1	0	1	0	0	0	(
	steroid	0	1	0	0	0	1	0	(
	cholesterol	0	5	0	3	0	0	0	C
	triglyceride	0	1	0	0	0	0	0	(
祾	vitamin	0	2	0	0		0	0	(
萄	retinal	0	1	0	1	0	n	0	
TC -	pyrimidine	0	1	0	2	0	n	0	(
	ethanol	0	0	0	2		0	0	6
	drug	ň	2	n	ñ		1	ň	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~		5	1 V			

遺伝子機能名を構成する様々な単語について、出現個 数を集計した。流入下水で有意となった遺伝子機能名 の一覧は、341 個の単語で構成されていた。表・3 は、 流入下水で有意となった遺伝子機能名についての、主 な単語の出現回数である。表右側は、処理で影響が残 存した機能、すなわち、流入下水で有意かつ担体処理 水でも有意となった機能の集計結果である。表には、 代表的な概念 10 個と、主な物質名 30 個を掲載した。 流入下水で有意な機能のうち、発達 (development) を含む機能名は、雄の肝臓で多かった。筋肉 (muscle) と輸送 (transport) は、雄と雌のどちらも、鰓で多か った。mitotic (mitosis = 有糸分裂) は、体細胞の分 裂に関連した単語で、雌の鰓で多かった。apoptotic (apoptosis = アポトーシス、細胞死) は、雄と雌の肝 臓で有意な機能があった。免疫(immune)は、雄の 肝臓でのみ有意な機能があった。

タンパク質 (protein) を含む機能は、鰓で多かった。 DNA を含む機能は、雄の鰓で多くみられたが、RNA は少なかった。

G-protein は、肝臓では雌のみで有意となった。免疫 に関連する単語である cytokine、inteferron-gamma、 T (T 細胞) は、雌の肝臓で比較的多くみられ、鰓では 該当するものはなかった。

ion および calcium は雄と雌のどちらも、鰓で多かった。カルシウムイオンは、筋繊維の運動とシグナル 伝達の両方で重要な働きを担っており、流入下水曝露 区では、雄雌を問わず、これらの機能について何らか の影響が生じていたものと考えられる。本実験の曝露 水はアンモニアを多く含んでいたが、ammonium を含 む機能は雄の鰓以外では有意にならなかった。

有機物関連では、コレステロール (cholesterol) が、 雄と雌のどちらも、鰓で多かった。薬物 (drug) は雄 の鰓でのみ有意となった。カフェイン (caffeine) は鰓 だけでなく、雄の肝臓でも有意であった。

流入下水で有意かつ担体処理水でも有意となった機能の集計結果をみると、発達(development)は、雄の鰓で1機能のみ有意で、他は0であることから、流入下水がメダカの発達関連の機能に及ぼす影響は、活性汚泥処理+担体処理で低減できていたと考えられる。

輸送(transport)、信号伝達(signaling)、筋肉 (muscle)は、担体処理後でも比較的有意な機能が多 く残っていた。ionや calcium についても同様であっ た。流入下水が輸送、シグナル伝達関連および筋繊維 関連の機能に及ぼす影響は、担体処理後も残存してい たと考えられる。

担体処理後、drug は雄の鰓で1つ有意な機能が残った。この機能は薬物の膜輸送(drug transmembrane transport, GO:0006855)であった。caffeine は、有意な機能の数が 0 になった。生体外物質の代謝

(xenobiotic metabolic process)が担体処理水で有意 ではなくなっていたことから、薬物の代謝に関する機 能についての影響は、活性汚泥処理+担体処理で低減で きていたと考えられる。

4. まとめ

下水処理水に残存し水生生物への影響が懸念される 医薬品類4物質について活性汚泥処理法プロセスと微 生物担体を用いた高度処理プロセスにおける除去特性 の調査を行い以下の結果を得た。 ・CAM、AZMは、活性汚泥処理による除去率は12%、 13%であるが、微生物担体処理では84%、91%であり、 全体除去率は86%、93%であった。また、KP、TCSの 活性汚泥処理による除去率は、75%、80%であるが担 体処理により更に90%、88%除去が可能であり、全体 除去率は97%、98%であった。

・担体処理における医薬品類の除去率は、活性汚泥 処理の除去率に比べ大きな値を示したことから、微生 物担体を用いる高度処理が二次処理水に残存する医薬 品類の除去に有効であることがわかった。

また、メダカ成魚の下水処理水曝露実験と次世代シ ーケンサーによる網羅的遺伝子発現解析を行い、下水 が生物に及ぼす遺伝子レベルでの影響について、下水 処理過程での低減効果について検討した。得られた知 見を以下に記す。

・対照区と下水処理工程水曝露区で発現量が変動した遺伝子の個数は、肝臓、鰓とも流入下水曝露区で高く、砂ろ過水や担体処理水で低下した。特に、鰓の発現変動遺伝子数は、活性汚泥処理で大きく低下することがわかった。

 ・流入下水曝露区で有意となった発現変動遺伝子の うち、発達、免疫に関連する遺伝子機能は肝臓で、筋 肉、輸送、イオンに関連する遺伝子機能は鰓で多くみ られた。肝臓と鰓では生体影響の現れ方が異なること がわかった。

・流入下水曝露区では雄の肝臓で発達(development) に関わる遺伝子の発現変動が多かったが、担体処理水 では少なくなっていた。流入下水が発達関連の機能に 及ぼす影響は、下水処理工程で低減したものと考えら れた。一方で、輸送(transport)、信号伝達(signaling) および筋肉(muscle)への影響は、担体処理後でも残 存していた。

参考文献

福永他,藻類生長阻害試験を用いた医薬品の毒性評価,環境工学研究論文集,43, pp.57-63,2006

 A. Harada et al., Biological effects of PPCPs on aquatic lives and evaluation of river water, Water Science & Technology, Vol.58, No.8, pp.1541-1546, 2008

3) 環境省, 化学物質の生態影響試験について, http:// www.env.go.jp/chemi/sesaku/seitai.html, 2006

4) 小西他, 水環境中医薬品の LC-MS/MS による一斉 分析法の検討, 環境工学研究論文集,43,pp.73-82 (2006)

5) 宝輪他, GC-MS による水環境中の PPCPs 一斉分析

法の基礎的検討, 第16回環境化学討論会講演要旨集, pp.774-775 (2007)

6) セルイノベーション(国立遺伝学研究所データ解析 拠点),最終利用日:2015/5/29

https://cell-innovation.nig.ac.jp/members/index.html

7) Uniprot-GOA, 利用日:2015/3/3

http://www.ebi.ac.uk/GOA

 Refseq データベースおよび Blastn 検索プログラム (National Center for Biotechnology Information, NCBI),最終利用日:2014/1/29
 http://www.ncbi.nlm.nih.gov/

生物応答手法を用いた下水処理水の評価の高度化に関する研究

研究予算:運営費交付金(一般勘定)

研究期間:平26~平30

担当チーム:水環境研究グループ(水質)

研究担当者:岡本誠一郎、小森行也、北村友一、

真野浩行、武田文彦

【要旨】

日本でも化学物質管理の一環として総排水毒性(WET)試験の導入が検討され、国立環境研究所より試験法が公表 されている。しかし日本の下水・下水処理水の生物影響について、公表された試験法に基づき評価した知見は乏しく実 態が良く分かっていない。そこで本研究は標準活性汚泥法を用いた下水処理場で得た流入下水と塩素消毒した放流水を 対象とし、藻類ムレミカヅキモ、オオミジンコ、ゼブラフィッシュを用いた生物応答試験を行うことにより、生物影響 の評価や生物影響物質の推定を行うことを目的とした。その結果、流入下水では3種の試験生物いずれも生物影響が確 認されたが、放流水ではいずれの生物も影響がなかった。よって下水処理によって水生生物に対する生物影響が改善さ れたことが明らかになった。流入下水に対する毒性同定評価により、藻類に対しては界面活性剤、ゼブラフィッシュに 対しては複数の化学物質が影響していると推定された。

キーワード:WET 試験、下水処理、生物影響、ムレミカヅキモ、オオミジンコ、ゼブラフィッシュ

1. はじめに

近年、個別の化学物質の毒性を評価するのではなく、 生物学的な応答から毒性の判定などの生物影響を評価 する生物応答試験が世界的に注目されている。個別の 化学物質等の定量などによる従来の物理化学的分析方 法と比べて、生物応答試験は試験水中に含まれる全て の化学物質による複合影響を評価できる、生物への直 接的な影響により評価するため一般市民が評価結果を 実感しやすいなどの特長がある。海外では排水中の化 学物質の生物影響について、米国で導入されている総 排水毒性 WET (Whole Effluent Toxicity) 試験¹⁾のよ うに生物応答を用いた試験により定量的に評価がなさ れている。日本でも国立環境研究所が生物応答を用い た排水試験法(検討案)²⁾を公表するなど、生物応答 に基づく排水管理の制度化と導入が検討されている。

下水処理水は主要な排水のひとつであるが、国内で は公表された試験法に基づいて下水を試験した研究例 ^{3,4}は極めて少ないのが現状である。よって下水に対す る生物応答試験を行い、生物影響の有無や、下水処理 によって生物影響が低減できるかどうかなどの知見を 収集する必要がある。また、生物影響が確認され、そ の影響を低減させることを検討する場合、生物影響を 引き起こす化学物質を明らかにした上で影響物質の除 去方法を考案することになると考えられる。しかしな がら公表された試験法に基づいて下水に含まれる影響 物質を評価した知見 ⁴はほとんどなく、情報の収集が 必要である。

そこで本研究では下水処理場から得た実下水を対象 に緑藻ムレミカヅキモ、オオミジンコ、ゼブラフィッ シュを用いた生物応答試験を行うことにより、下水に よる生物影響の評価を行った。また、影響が見られた 排水に対して毒性同定評価 TIE (Toxicity Identification Evaluation)を行い、排水中の生物影響 物質の推定を行った。

2. 実験材料および実験方法

2.1 下水試料の採水

2014年11月に標準活性汚泥法で処理するA下水処 理場で採水を行った。採水はオートサンプラーを用い て行い、採水期間は24時間とし、1時間ごとに1リッ トルずつ、合計24リットル採水した。採水箇所は生物 反応タンクの流入口および塩素混和池の出口付近で実 施し、それぞれ流入下水、放流水とした。これらの排 水は採水後すぐに土木研究所に持ち帰り、それぞれの 24リットルの排水をコンポジットした。コンポジット した流入下水、放流水に対し水質分析を行い、表・1に 示す結果が得られた。また、流入下水と放流水は60µm ポアサイズのメッシュでろ過を行い、ろ液を4℃の冷 暗所で保管した。これらのろ液は下水試料として以下 に示す生物応答試験に用いた。

2. 2 藻類生長阻害試験

2. 2. 1 排水試験

本試験は藻類を下水試料に一定期間曝露し、対数増 殖期における生長速度を調べ、対照区と比較すること により、藻類の生長に対する下水試料の影響を明らか にする。

試験生物には、生物応答を用いた排水試験法(検討 案)²⁰の推奨種となっている単細胞緑藻ムレミカヅキモ

(Pseudokirchneriella subcapitata、NIES-35株)を 用いた。各試料に対して蒸留水による希釈で5段階の 割合(試料割合 80%、40%、20%、10%、5%)の試 料を作製し、各試料に AAP 培地作製時と同等の栄養塩 を添加した。対照系は AAP 培地とした。これらの試料 は細胞濃度の測定に支障がないよう、0.22µm ポアサ イズのフィルターでろ過滅菌を行った。容量は 30mL/ 容器とし、生物応答を用いた排水試験法(検討案)¹⁾ に基づき対照区は6連、各下水試料は3連とした。培 養条件は初期細胞濃度 1.0×10⁴ cells/mL、温度 24°C、 光強度 3000 Lux 連続照射、回転振とう速度 100 rpm とした。開始から 72 時間後に粒子計数分析装置 (CDA-1000B、100µm アパチャー、Sysmex 社)を

用いて対照区と各下水試料での細胞濃度を求め、その 結果に基づき各試験水での生長速度を算出した。下水 試料による生長阻害率は、以下の式(1)により算出した。 生長阻害率(%) = (対照区の生長速度 - 下水試料で の生長速度) ÷ 対照区の生長速度×100 ···(1)

2.2.2 毒性同定評価を組み合わせた藻類生長阻 害試験

2.2.1の試験で流入下水では生長速度に影響が

表-1 コンポジットした流入下水、放流水の水質

項目	単位	流入下水	放流水
水温*	°C	21.2	21.3
pН		7.17	6.98
電気伝導度	mS/cm	0.457	0.429
DO	mg/L	1.72	8.17
塩分濃度	%	0.0	0.0
TRC	mg/L	-	0.08
水の硬度	mg/L	96	91
T-N	mg/L	27.3	13.7
T-P	mg/L	2.47	0.286
NH ₄ –N	mg/L	16.8	8.10
NO _x	mg/L	0.093	1.46
PO ₄ -P	mg/L	1.26	0.134
тос	mg/L	26.4	10.7

*コンポジット時の水温

DO:溶存酸素濃度 (Dissolved Oxygen)、TRC:総残 留塩素濃度 (Total Residual Chloride)、TOC:全有機 炭素濃度 (Total Organic Carbon)、-:未測定。

見られたため、米国環境保護庁 (USEPA) が公布する 慢性毒性同定評価 ³を参考に毒性同定評価 TIE

(Toxicity Identification Evaluation)を行った。**表-2** に、各前処理と生物影響に寄与する化学物質(群)と の関係を示す。流入下水 20%に対し、無処理、チオ硫 酸ナトリウム添加(5mg/L)、EDTA[エチレンジアミン 四酢酸]添加(0.25mg/L、EDTA 二水素二ナトリウム を使用)、ばっ気(流入下水 100% 1L/1L air、1 時間、 ばっ気後に 20%に希釈)、pH 調整(pH 約 6.5 に調整) の前処理を行った。また、SPE [Solid Phase Extraction、

表2 試験水に対する谷種則処理により生物影響が変化す	「る物質の一覧。)
----------------------------	----------	---

	pН	ろ過	ばっ気	SPE	チオ硫酸ナト リウム	EDTA	備考
酸化物			0		0		4℃保存で時間とともに 生物影響消失
アンモニア	\bigcirc^1						
無極性有機物				0			SPEカラムのメタノール溶 出物に生物影響あり
界面活性剤		0	0	0			4℃保存で時間とともに 生物影響消失
陽イオン金属		\bigcirc^2		0	0	0	
全溶解固形分 (TDS)							

○:生物影響が低下 ○¹:pHが低いほど生物影響小

○²: pH調整とろ過を組み合わせると生物影響低下

SPE: 固層抽出 (Solid Phase Extraction) 、EDTA: エチレンジアミン四酢酸

固層抽出] カラム (Sep-Pak C18, Waters 社) を用い、 試料を 1.0µm ポアサイズフィルターでろ過後に SPE カラムに通水したもの (SPE カラム通過水)、及び SPE カラムに吸着した物質をメタノールで溶出し蒸留水に 添加したもの (メタノール溶出物) も前処理水として 同様に試験した。ろ過の系については、藻類試験では 全ての試験水に対して 0.22µm ポアサイズのフィルタ ーでろ過することから実施していない。各試料に AAP 培地作製時と同等の栄養塩を添加し、0.22µm ポアサ イズのフィルターでろ過減菌を行ったものを藻類試験 に供した。対照区は AAP 培地とし、試験条件は2.2. 1と同一とした。

2.3 オオミジンコ繁殖試験

本試験は、オオミジンコを下水試料に一定期間曝露 し、ミジンコの繁殖に対する下水試料の慢性毒性を明 らかにする。生物応答を用いた排水試験法(検討案) ¹⁾では、ニセネコゼミジンコ(*Ceriodaphnia dubia*) を用いた試験を行うが、本試験では、OECDテストガ イドライン No.211⁶を参考に、初産ではない親個体か ら 24 時間以内に生まれたオオミジンコ(*Daphnia magna*)を用いて実施した。

本試験には藻類試験と同様に4段階の割合(試料割 合80%、40%、20%、10%)の下水試料および対照区 を用意した。容量は50mL/容器とし、試験連数は10 連/試験区とした。各下水試料の希釈および対照区に使 用する試験水として、脱塩素水道水を用いた。試験区 ごとに生後24時間以内の個体を10匹(1容器1匹) 曝露し、曝露期間を17日間とした。曝露方式は半止水 式(少なくとも週3回、2日または3日ごとに換水) とし、照明は白色蛍光灯で明期16時間、暗期8時間、 水温は21±1℃とした。餌としてクロレラ(Chlorella vulgaris)を使用し、試験個体ごとに炭素含有量で 0.15mgのクロレラを1容器ごとに毎日与えた。曝露終 了後まで、試験個体の生存と産仔数を毎日観察し、下 水試料の試料割合ごとに生存率と累積産仔数を求めた。

なお、オオミジンコでは下水試料が多量に必要であ り、試験期間が長期にわたるため、毒性同定評価を実 施しなかった。

2. 4 ゼブラフィッシュ胚・仔魚試験

2.4.1 排水試験

本試験は、胚仔魚期の魚類を下水試料に一定期間曝 露し、ふ化率などを調べ、対照区と比較することによ り、胚・仔魚期の魚類に対する下水試料の急性および 亜慢性毒性を明らかにする。国立環境研究所より分譲 されたゼブラフィッシュ(Danio rerio)を使用し、環 境省が提案している生物応答を用いた排水試験法(検 討案)²に基づき実施した。

試験には藻類試験と同様に5 段階の割合(試料割合 80%、40%、20%、10%、5%)の下水試料および対照 区を用意した。各下水試料の希釈および対照区に使用 する試験水として、脱塩素水道水を用いた。容量は 50mL/容器とし、試験連数は4連/試験区とした。試験 区ごとに受精4時間以内の胚を40個(1容器10個) 曝露し、曝露期間を9日間(対照区の生存胚の半数以 上がふ化した日をふ化日とし、ふ化日から5日後まで ²⁾とした。曝露方式は半止水式(少なくとも週3回、 2日または3日ごとに換水)とし、ふ化率、生存率を 求めた。照明は白色蛍光灯で明期16時間、暗期8時間 とし、水温は26±1℃とした。

2.4.2 毒性同定評価を組み合わせたゼブラフィ ッシュ胚・仔魚試験

2.4.1の試験で影響が見られた流入下水に対し、 藻類試験同様に TIE を行った。流入下水 80%に対し、 前処理は2.2.2に示したものに加え、ろ過(1.0µm ポアサイズフィルター使用)も行った。対照系には脱 塩素水道水を用い、曝露期間は8日、それ以外の試験 条件は2.4.1と同一とした。

2. 5 統計解析方法

各試験でのエンドポイント(藻類:0-72時間の生長 速度、オオミジンコ:累積産仔数、ゼブラフィッシュ: ふ化率と生存率)について、Bartlett 検定(有意水準α = 0.05)により等分散性を評価した。等分散が確認さ れた場合、Dunnett 検定による多重比較(有意水準α= 0.05) で対照区と下水試料との比較を実施した。等分 散が棄却された場合はSteel 検定(有意水準α=0.05) で対照系と下水試料との生長速度の比較を実施した。 これらの解析にはフリーの統計解析ソフト R7を用い た。排水試験では、対照系と比較して統計学的に有意 な低下が認められない最も高い試料割合を、無影響濃 度 NOEC (No Observed Effect Concentration) とし て求めた。全ての下水試料割合で対照系と生長速度に 有意差が認められない場合、最も高い試料割合を NOEC とした。毒性同定評価においては、各試料での 生長速度、ふ化率および生存率について、Bartlett 検 定(有意水準α = 0.05) により等分散性を評価した。 等分散が確認された場合、Dunnett 検定による多重比 較(有意水準α=0.05)で対照区との比較を実施した。 等分散が棄却された場合はSteel 検定(有意水準α= 0.05)で対照区との比較を実施した。無処理区と比較 して統計学的に生長速度、ふ化率あるいは生存率の有 意な増加が認められた場合、前処理による生物影響の 改善が見られたと評価した。メタノール溶出物につい ては対照区と同様にAAP 培地(藻類)、脱塩素水道水

(ゼブラフィッシュ)に添加して試験しているため、 対照区との比較を行い、生長速度、ふ化率あるいは生 存率の有意な低下が見られた場合はメタノール溶出物 による影響があったと評価した。

3. 実験結果

3. 1 藻類生長阻害試験

図-1 に各下水試料割合に対する藻類の生長速度を示 す。流入下水は、割合が10%以上の試料割合で対照区 よりも生長速度が有意に低下した(p<0.05)。放流水で は最大の試料割合である80%でも生長速度の低下がみ られず(p>0.05)、藻類の生長速度への影響はなかった。 よって NOEC は流入下水で 5%、放流水で 80%と求め られた。流入下水(割合 20%)に対する毒性同定評価 の結果を図・2 に示す。無処理に比べ、生長速度が有意 に増加する前処理区はなかった。一方、メタノール溶 出物でも生長速度に対する悪影響は確認されなかった ため、無極性物質は藻類に対して無影響であると分か った。TIE は排水試験より 3 週間後に実施したが、排 水試験(図-1)では影響があったのに対し毒性同定評 価(図-2)では影響がなかった。このことから、流入 下水を 4℃暗所で保管している間に生物影響は低下し たことが明らかになった。

3. 2 オオミジンコ繁殖試験

図・3に、オオミジンコの累積産仔数と生存率を示す。 対照区の死亡率は20%以下で、試験個体あたりの産仔 数の平均値は60を超えた。流入下水は20%以外の区 では産仔数が対照区に比べて有意に低下した(p<0.05)。 流入下水20%では対照区と同等(p>0.05)であったこ とから、累積産仔数に関する流入下水のNOECは20%

図-1 流入下水、放流水に曝露した緑藻ムレミカヅキモの生長速度。*:対照区よりも有意に低下(p<0.05)

図-2 流入下水(割合 20%)に対する緑藻ムレミカヅキモを用いた毒性同定評価

と判断した。一方、放流水での累積産仔数は全ての試 験区において対照区よりも多くなった。このことから、 放流水によるオオミジンコの産仔数への生物影響は検 出されなかった。よって累積産仔数に関する放流水の NOEC は 80%と求められた。生存率は累積産仔数と類 似した変化を示し、流入下水では 0~40%の範囲に低下 していた。放流水では 40%以上で低下する傾向にあっ たが、総じて高い生存率を示した。

3.3 ゼブラフィッシュ胚・仔魚試験

図-4 に各試料におけるゼブラフィッシュのふ化率と 生存率を示す。流入下水の割合が 80%の場合のみふ化 率と生存率は対照区よりも有意に低下した (p<0.05)。 このため両指標に対する流入下水の NOEC は 40%と 求められた。一方、放流水では全ての試験区でふ化率 および生存率は対照区と有意差はなく (p>0.05)、影響 は見られなかった。よって両指標に対する放流水の NOEC はいずれも 80%と求められた。 流入下水 80%に対し毒性同定評価を実施した結果を 図-5 に示す。ふ化率では全ての系で対照系と同等であった(p>0.05)。メタノール溶出物の系では対照系とふ 化率と生存率が同等となり、(p>0.05)無極性有機物は 影響しないことが分かった。一方、無処理区に比べて ばっ気区でふ化率が有意に大きくなった(p<0.05)。以 上のことから、ふ化率を改善したのはばっ気処理のみ であることが明らかになり、生存率を改善する前処理 は導出できなかった。

毒性同定評価は排水試験より2週間後に実施したが、 各試験での対照区のふ化率と生存率はt検定(有意水 準α=0.05)より有意差がなく(p>0.05)、試験生物の 性状として同等であると判断した。また、排水試験で の流入下水80%と毒性同定評価での無処理(流入下水 80%)におけるふ化率と生存率は有意差がないことが 確認され(p>0.05)、藻類とは異なり4℃暗所で保管し ている間に生物影響が低下しなかったことが明らかに なった。

図-3 流入下水、放流水に曝露したオオミジンコの累積産仔数と生存率。*:対照区よりも有意に低下 (p<0.05)

図-4 流入下水、放流水に曝露したゼブラフィッシュのふ化率と生存率。*:対照区よりも有意に低下 (p<0.05)

図-5 流入下水(割合80%)に対するゼブラフィッシュ胚・仔魚を用いた毒性同定評価

4. 考察

藻類に対する TIE は排水試験の 4 週間後に実施し、 その間は下水試料は 4℃冷暗所で保管していた。表・2 より酸化物と界面活性剤は 4℃保存で生物影響が失わ れると考えられている。一方、平成 25 年度のデータを 用いた「PRTR けんさくん」⁸より、A 下水処理場では 界面活性剤であるポリ=(オキシエチレン)=アルキル エーテルの年間推定移動量が極めて多いと推定された。 これらを鑑みれば、藻類を用いた排水試験(図・1)の 流入下水で見られた生長速度に対する影響は界面活性 剤が原因物質であると考えられた。

ゼブラフィッシュに対する毒性同定評価は排水試験 の2週間後に実施した。毒性同定評価よりばっ気でふ 化率が改善したこと、また有意差こそなかったものの 毒性同定評価において無処理のふ化率と生存率の平均 値が排水試験よりも大きかったことから、ゼブラフィ ッシュに対しても藻類と同様に界面活性剤が生物影響 を引き起こしている可能性があると考えられた。しか し藻類と異なり4℃保存で生物影響が完全には失われ ないこと、個々の前処理ではほとんど改善が見られな いことから、ゼブラフィッシュに対して生物影響を引 き起こす化学物質群は複数存在することが推定された。

表-3 に各試験生物に対する流入下水、放流水の NOECを示す。いずれの試験生物においても流入下水 では低い NOEC を示したが、放流水では最高割合の 80%となった。このことから A 下水処理場における標 準活性汚泥処理によってこれらの試験生物に対する生 物影響を削減できることが明らかになった。希釈系の 設定条件のため NOEC は 80%となり 1.25 倍以上の希 釈で生物影響が見られなくなると判定されるが、通常 の下水処理場では環境水中に処理水を放流しており、 この程度の希釈倍率は確保されると考えられることか ら、本試験結果からは放流水の水生生態系への影響は 見られないと判定できると考えられる。しかしながら 放流水の性質、特に生物影響物質の種類や量、排水処 理能力は季節においても変化すると考えられるため、 今後も繰り返し生物応答試験を行い、情報を蓄積する

表-3 各試験生物に対する流入下水、放流水の無影響濃度 NOEC のまとめ

計除止物	莎 /赤圪埵	NOEC(%)		
武殿 土 初	計测招标	流入下水	放流水	
ムレミカヅキモ	生長速度	5	80	
オオミジンコ	累積産仔数	20	80	
ドブニコ へいこう	ふ化率	40	80	
セノリノイツシュ	生存率	40	80	

ことが必要であると考えられる。

下水の生物影響は時期や地域によって異なることが 推定されることから、今後は複数の下水処理場におい て季節ごとに採水した下水に対する生物応答試験と毒 性同定評価を実施し、更なる知見の収集に努める。ま た、下水処理水の放流先での環境水に対する生物影響 評価の実施や、下水処理水で生物影響が見られた場合 にその影響を低減可能な高度処理方法についても検討 する予定である。

5. まとめ

標準活性汚泥法を用いた下水処理による生物影響の 低減効果を明らかにするとともに、生物影響を引き起 こす化学物質を推定するために、本研究では流入下水 と塩素消毒した放流水に対して藻類、オオミジンコ、 ゼブラフィッシュを用いた生物応答試験を実施した。 本研究で得られた知見は以下のとおりである。

1) 藻類生長阻害試験により、流入下水の割合が10%以上の場合において生長速度への影響がみられた。放流水による生長速度への影響はいずれの試料割合においても検出されなかった。よって下水処理により藻類生長への影響の低減が確認できた。流入下水中の主要な生物影響物質は界面活性剤であると考えられた。

2) オオミジンコ繁殖試験により、流入下水は10、40、 80%において累積産仔数が低下し影響が見られた。放 流水ではいずれの試料割合においても産仔の低下は確 認されなかった。生存率は流入下水の場合は全ての試 料割合で大きく低下したが、放流水では総じて高かっ た。よって下水処理によりオオミジンコの産仔・生存 への影響の低減が確認できた。

3) ゼブラフィッシュ胚・仔魚試験により、ふ化率、生 存率は流入下水 80%のみ影響があり、放流水ではいず れの試料割合においても影響がなかった。よって下水 処理によりゼブラフィッシュのふ化・生存への影響の 低減が確認できた。流入下水中の主要な生物影響物質 は界面活性剤であると考えられるものの、複数の化学 物質群が影響していると推定された。

参考文献

- USEPA, Draft National Whole Effluent Toxicity (WET) Implementation Guidance, EPA832-B-4-003, 2004
- 2) 国立環境研究所・環境省:生物応答を用いた排水試 験法(検討案)、排水(環境水)管理のバイオアッセ イ技術検討分科会、2013
- 山本裕史、安部香緒里、池幡佳織、安田侑右、田村 生弥、中村友紀、鑪迫典久:徳島県内の下水処理施設 放流水を対象にしたWET試験、環境工学研究論文集、 47、727-734、2010
- 4)山本裕史、矢野陽子、森田隼平、西家早紀、安田侑 右、田村生弥、鑪迫典久:下水処理施設放流水中の残 留塩素に着目した毒性同定評価、土木学会論文集 G (環境)、69(7)、III_375-III_384、2013
- 5) USEPA, Toxicity Reduction Evaluation Guidance for Municipal Wastewater Treatment Plants, EPA/833B-99/002, 1999
- 6) Organization for Economic Co-operation and Development (OECD) (2012) *Daphnia magna* Reproduction Test. No. 211. OECD, Paris, France.
- 7) R Core Team : R: Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austraria. http://www.r-project.org/, accessed on May 2015
- 8) 経済産業省ホームページ http://www.meti.go.jp/policy/chemical_managemen t/law/prtr/6a.html、平成27年5月アクセス

地球温暖化が水環境に与える影響評価と適応策に関する研究

主任研究員 北村 友一

主任研究員 對馬 育夫

【要旨】

地球温暖化が水環境に与える影響は徐々に顕在化しており、大幅な温室効果ガス排出削減を直ちに行って も、今後少なくとも20年間は地球温暖化を伴う気候変動が進行すると予想されている。本研究では、ダム貯 水池を対象とした既往の水質3モデルについて特徴を整理し、温暖化に伴い変動が予想される流入水質等の 入力情報と、それらが関係するモデル構造を調べ、予測水質に与える影響を検討した。その結果、気温・水 温上昇は各モデルでそのまま反映されること、WECモデル、ELCOM-CAEDYMは水温、DOの変化による 栄養塩の溶出量、底泥によるDOの消費量の変化を考慮しているのに対し、CE-QUAL-W2では、それらの変 化は考慮していないこと等を確認した。また、流入量の増加によって懸念される「洪水規模・頻度の増加に よる濁水長期化」、「流入負荷の増加することによる富栄養化」については、流量の増加に伴う水質の変化の 影響を強く受けると考えられ、これらを予測する必要があると考えられた。

キーワード:地球温暖化、湖沼・貯水池、水質モデル、文献調査

1. はじめに

地球温暖化が水環境に与える影響は徐々に顕在化して おり、大幅な温室効果ガス排出削減を直ちに行っても、 今後少なくとも 20 年間は地球温暖化を伴う気候変動が 進行すると予想されている¹⁾。このため、温暖化影響の 緩和策とともに適応策の検討が重要であり、精度の高い 影響予測に基づく適応策の評価と、その実施に向けた取 り組みが必要となっている。環境省は平成 25 年 8 月に、 中央環境審議会地球環境部会に「気候変動影響評価等小 委員会」を設置し、各省庁が各分野の適応策の策定に向 けた検討をしており、平成 27 年度を目途に政府の適応計 画を閣議決定する見通しとなっている。また、環境省は 気温、日射量、降水量の変化を考慮し、琵琶湖を対象に 影響予測を実施している²⁾。

これまで水質チームでは、本課題の先行研究にあたる 『地球環境の変化が河川湖沼水質に及ぼす影響に関する 調査(H21~H25)』を実施してきた。この先行研究では、 流域からの流出への影響も考慮し、河川・湖沼水質の変 動傾向を明らかにし、ラボ実験により、水質の変化が藻 類種・量の変化に与える影響等を明らかにした。また、 これらの結果を用いて簡易湖沼モデルを構築し、将来の 水質や藻類の変動動向を予測した。しかしながら、適切 な適応策の提案にはこれらの予測精度の向上が必要であ り、このためには、土地利用の変化や降雨パターン、藻 類種の影響を加味した予測が重要である。また、流域か ら発生する温室効果ガス量についても信頼のおける排出 量データの取得が重要である。

したがって、本研究では、水環境における地球温暖化 の影響予測の精度向上を目指し、流域における適応策と その効果、優先度を評価することを目的とし、地球温暖 化が湖沼や貯水池等の水環境に与える影響とその適応策 について検討する。計画初年度に当たる今年度は、ダム 貯水池を対象とした既往の水質モデルについて特徴を整 理し、地球温暖化に伴う流入水質等の変化が湛水域の水 質に与える影響を検討するとともに既往の類似研究を調 査した。

2. 水質モデルの入力条件に関する調査

2.1 調査する水質モデルの選定

2.1.1 水質モデルの種類と特徴

日本のダム貯水池は主に山間部に建設されるため、縦 断的に長い形状をしている場合が多い。このようなダム 貯水池の地形的・水理的な特性を踏まえて、貯水池の水 質シミュレーションでは、水域を水深方向に分割したメ

ッシュで計算される鉛直1次元モデルや、縦断・水深方 向に分割した鉛直2次元モデルが広く利用されている。 鉛直1次元モデルは計算負荷が少なく長期的(十数年~) な水理・水質予測が可能であるが、縦断的・平面的な水 質変化を予測することができない。このことから、貯水 池内の流動・水質が縦断・水平方向にほぼ一様となるよ うな貯水池(形状が複雑でない貯水池、比較的小規模な 貯水池等) に適用性の高いモデルとなる。鉛直2次元モ デルは、横断方向の水質変化を一様と捉えて鉛直・縦断 方向の水質変化を予測できることから日本のダム貯水池 形状での適用性が高いモデルである。また、支川が枝分 かれするような形状を考慮できるモデルもあり、比較的 複雑な貯水池・湖沼でもある程度適用可能なモデルでも ある。さらに、近年、計算機の能力の向上により、より 計算負荷のかかる3次元流動・水質シミュレーションも 行われている。3 次元モデルは、水平・鉛直方向に水質 変化が生じる貯水池・湖沼での適用性が高く、局所的な 流動や水質変動を表現できるという特徴がある。一方で 計算負荷が大きく、長期的な計算は不向きである。

2.1.2 モデル選定の条件

水質モデルの選定にあたっては、日本国内または世界 で多くの利用実績があり、ユーザーが多く、研究・業務 等で広く利用され、マニュアル等で基礎式が確認できる ものを選定した。

2.1.3 モデル選定の結果

2.1.2の選定基準を基に3モデルを選定した。選定した3モデルを以下に示し、モデルの特徴をまとめる。

(1) WEC モデル(鉛直2次元モデル)

水源地環境センター(WEC)で開発された水質モデル であり、研究や実務で幅広く使用されており、日本国内 のダム貯水池において多くの適用実績がある(鶴田ダム 貯水池(国土交通省)、土師ダム貯水池(国土交通省)な ど多数)。モデルは鉛直2次元モデルで、支川等のブロッ ク分けして接続させることで複雑な貯水池形状にも対応 できるモデルとなっている。

(2) CE-QUAL-W2 (鉛直2次元モデル)

CE-QUAL-W2 は米国工兵隊水工学センターで開発された河川や貯水池を対象とした水質シミュレーションモデルである。日本における適用事例は比較的少ないものの世界的に有名な水質シミュレーションモデルであり、アメリカ・Hills Creek 湖や韓国・Daecheong ダム貯水池、Soyang ダム貯水池など多くの適用実績がある。モデルは鉛直 2 次元モデルであり、WEC モデルと同様に支川等のブロック分けして接続させることで複雑な貯水池形状

にも対応できるモデルとなっている。

(3) ELCOM-CAEDYM (3 次元モデル)

ELCOM-CAEDYM は、西オーストラリア大学 CWR 研究所で開発された貯水池やエスチャリーを対象として 世界で広く使用されている流動・水質予測モデルである。 世界ではアメリカ・Hoover ダム貯水池、韓国・Daecheong ダム貯水池など、日本国内では琵琶湖、浦山ダム貯水池 (水資源機構)、殿ダム貯水池(国土交通省)などで適用 実績がある。モデルは 3 次元水理流体モデル ELCOM (Estuary, Lake and Ocean Model) と湖沼生態系モデル

CAEDYM (Computational Aquatic Ecosystem Dynamic Model) とをリンクさせたものであり、湖沼・ダム貯水 池の水質や生態系の3次元解析を行うことができる。

2.3 各モデルの比較

各水質モデルの比較を表1に示し、以下に概要をまとめる。

2.3.1 予測項目

どの水質モデルも生態系モデルでは植物プランクトン・ 動物プランクトンを含んでいる。また、ELOCM-CAEDYM では、魚類やバクテリアを含んだ計算を行っている。

2.3.2 熱収支の計算

熱収支の式は各モデルで違いが若干あるもの、主に「日 射による熱伝導」と、「気温の熱伝導の式」で構成されてい る点や、計算に用いられるパラメータや概念に大きな違い は確認されい。どのモデルも水面からの気温の熱伝導は 水面温度からの差分で評価されている。また、WEC モデ ルでは熱収支の計算に長波放射は含まれておらず、 Rohwer式、Swinbankの式で熱損失や潜熱等を計算してい る。一方、CE-QUAL-W2、ELCOM-CAEDYM は長波放射 を含んだ計算を行っている。

2.3.2 底質からの溶出

WEC モデルと CE-QUAL-W2 は底泥からの栄養塩の溶 出や酸素消費を、溶出速度や酸素消費速度を定数パラメ ータとして設定している。さらに、WEC モデルでは、底層 の水温や DO の変化による溶出速度の変化が考慮されて いる。一方、ELCOM-CAEDYM では、底質モデルも組み 込まれており、栄養塩類の溶出、酸素消費については逐次 計算される。

各モデルの比較	
-	
表	

モデル名	WECモデル	CE-QUAL-W2	ELCOM-CAEDYM
ごがり開全	鉛直2 次元モデル	鉛直2次元モデル	3 次元モデル
	計算項目:水晶、鉛直方向流速、流下方向流速	計算項目:水温、鉛直方向流速、流下方向流速	計算項目:流速 (u,v,w)、水温、水位、SS
	熱収支式:水面反射等を考慮した短肢放射	烈収支式: $H_n=H_s+H_a+H_c+H_c-(H_a+H_m+H_m)$	熱収支式:水面反射等を考慮した長波放射、短波放射
	• Rohwer \overrightarrow{zt}_{c} : $\Phi_{c} + \Phi_{c} = (0.000308 + 0.000185W)\rho(e_{c} + \Psi e_{c}) \left\{ L_{c} + CT_{c} + \frac{269.1(T_{c} - T_{c})}{(e_{c} - \Psi e_{c})} \right\}$	水面の熱伝導:Hc=Ccf(W)(Ts-Ta) H ・毎時お針 (W/m ³) H ・長速お針 (W/m ²) H ・	0)式 水面の熱伝導: $Q_{\rm sh} = C_{\rm s} \rho_{\rm s} C_{\rm P} U_{\rm s} (T_{\rm a} - T_{\rm s}) \Delta t$
水面での 数回去式	• Swinbank \mathcal{O} 元、 $\Phi_{n_d} = 0.97k \left\{ T_{n_d}^{*4} - 0.937 \times 10^{-5} \times T_{n_d}^{*6} (1.0 + 0.17C_d^{-2}) \right\}$ • 水市应貨4款 • 月島書 • 水市団切口菜 • · · · · · · · · · · · · · · · · · ·	Maile Control Contro	pa:空気の密度、Ua:風速、Cs, Cp:輸送係数、Ta:気 an
マインシャン	a_{1} - a_{1} - a_{2} - a_{1} - a_{2} - a_{1} - a_{2} - a_{2	201Xまり(W/III)、Ing.: 天成以たり21X時(W/III)、Ing.: 水面からの放射(W/Ing)、F(W):風応力の作用、Cc:	i血、1S://s/阻/面/支
	発の潜熱 [Kcal/Kg], $_{T_{s}}$:表層水温 [°C], $_{T_{s}}$:気温 [°C], $_{k}$:Stefan Bolzman 常数 [Kcal/m²/day/K]	Bowen S 沐焱(U.4./mmHg ⁻ C) IS:	
少弱子" 超个	項目:クロロフィル a(植物プランクトン)、COD、無機態リン(IP、リン酸塩)、無機態窒素(IN、ア	計算項目:植物プランクトン、動物プランクトン、DO、	計算項目:無機態浮遊物質(SS)、植物プランクトン、動物
小貝"王晓宋	ンモニア態窒素+亜硝酸態窒素+硝酸態窒素)、 懸濁態有機リン(O-P)、懸濁態有機窒素	BOD、N、P、浮遊物質	プランクトン、魚類、バクテリア等を含めた C、N、P、
-L / /V	(0-N)、溶存酸素(D0)、SS		DO, Si
	$DO: DO = \alpha_{DO} \cdot EXP\{\beta_{DO}(T - T_B\}/h$	$DO: DO = -S_{od} \gamma_{om} A_s$	N・P については底質モデルで計算され、DO の消費、
	$I-N : B_N = \alpha_N \cdot EXP\{\beta_N \cdot T - \gamma_N \cdot [DO]\}/h$	$I-N: B_N = S_{NH4} \gamma_{om} A_s$	N,P の溶出等が別途計算される。溶出等については、
底層での	I-P : $B_p = \alpha_P \cdot EXP\{\beta_P \cdot T - \gamma_P \cdot [DO]\}/h$	$I-P: B_p = S_P \gamma_{om} \gamma_{om} A_s$	水温、DO 等により変化するモデルとなっている。(詳細
溶出関係式	azo:T=Tg(C)での酸素消費速度(g/m²/day)、/pzo:温度補正係数(1/C)、axp:溶出量(g/m²/day)、	Sat:酸素消費速度 (g/m³)、SNutt: I-N 溶出速度 (g/m³)、	(法未記載)
	Bur: 溶出量の温度係数 (1/C)、Yur: 溶出の DO 依存度 (1/(mg/l)	$S_p: I-P$ 溶出速度 (g/m ³)、 A_s : 溶出面積 (m ²)、 γ_{om} :	
		溶出量の温度係数	
気象データ	気温、日射量、湿度、風速、雲量	気温、雲量、短波放射、露点温度、風速、風向	気温、温度、降雨、風速・風向、大気圧、日射、大気 長波坊射、湖面長波坊射及び短波坊射、雲量
	COD、I-N、O-N、I-P、O-P、DO、SS (粒径别)	計算項目と同様	植物プランクトン、DO、無機能リン(IP、リン酸塩)、 血味能やま(N1、マンティアがやま)正元回時がでま
流入水質			※咳略至糸(FrA、ノンモーノ胺至糸TΨ啡酸脂至糸 +硝酸態窒素)、懸濁能有機能リン(粒子性:POP、
			溶解性:DOP)、懸濁態有機窒素(粒子性:PON、溶解性:DOP)
	植物プランクトン:最大増殖速度(0.32-3.9[1/day])、最適水温(実験値 or 20°C)、最適日射量	植物プランクトン:最大増殖水温、最大増殖速度	植物プランクトン:最大増殖水温、最適水温、基本水
	(2.09-14.65[MJ/m ²])	DO:底泥の酸素消費速度(0.1~5.8 [gO2m ² day ¹])・温	温、最大増殖恵度など
	DO: : 再曝気係数(0.1~1.0[ng/m²/day*(m³/L)])、	度補正係数	DO・P・N:底泥からの溶出速度などは底質モデルで
主なパラメ	底泥の酸素消費、速度(0-7.0[gm²/day])	P:底泥からの溶出速度、温度補正係数	計算される。
4-	I-P:底泥からの溶出速度(0.000035-0.154g/m ² /day])、温度係数(1.072-1.145)	N:底泥からの溶出速度(0.001~13 [day ⁻¹])、温度補	(設定範囲等記載なし)
	I-N:底泥からの溶出速度(0.0012-0.360[g/m ² /day])、温度係数(1.040-1.117)	正孫数	
	※設定範囲は「HANDBOOK」、「湖沼工学」、「援用モデル」、「公害研究所報告」の文	※設定範囲はマニュアルに記載の貯水池・河川にお	
	献値を参照	ける適用事例を参照	

3.1 近年の地球温暖化および水質に関する研究

3.1.1 文献調査

地球温暖化に伴う流入負荷等の変化が湛水域の水質に 与える影響を検討するにあたり、既往研究について、文 献調査を行った。その結果、地球温暖化によるダム貯水 池の水質への影響について研究しているのは大きく2つ の研究グループであった。表2に地球温暖化に関する論 文の概要と結果のまとめを示し、以下に概要をまとめる。

3.1.2 浦山ダムにおける気候変動に伴う長期間の将来水 質予測³⁾

3 次元モデル(ELCOM-CAEDYM)を用いて、浦山ダム における現況と将来の9ヶ年2期間の計算を実施して、 地球温暖化によるダム貯水池の水質変化について詳細に 検討している。地球温暖化による与条件の変化としては、 気象(気温、湿度、日射量、雲量、風速、降水量)と流 入量を考慮し、これに応じて流入条件も既存の回帰式や L-Q 式を基に変化させている。貯水池の変化としては、 水温が上昇、成層が強固になる傾向と、出水頻度・規模 の増加による濁水長期化、Chl-a が低下する可能性を予測 している。

3.1.3 気候変動による国内のダム湖水質への影響評価4)

鉛直1次元モデルを用いて国内37箇所のダム貯水池 (国土交通省及び水資源機構)を対象とした現況、今世 紀半ば、今世紀末を想定した20年3期間の計算を実施し、 全国規模の貯水池水質の変化を検討している。地球温暖 化による与条件の変化としては、気象項目の気温・日射 量のみとして、流入については水温のみを変化させてい る。貯水池内の変化としては、将来の年平均表層Chl-a 濃度が全国的に増加する可能性を示唆している。また、 特に、東日本で富栄養湖が増加する傾向を示した。

3.1.4 まとめ

両論文を比較するとモデルの検討項目や、精度に違い があるものの、前者の論文からは気象の変化による流入 水質を変化させた場合に濁水長期化と Chl-a 濃度の低下 を予測した。一方、後者の論文は全国的に表層 Chl-a 濃 度が増加する可能性があるとしている。より高度な水質 予測を行う際には流入量及び流入負荷量の変化、底面の 境界条件の変化や底層の酸素消費速度、栄養塩類の溶出 速度についても検討する必要があると考えられる。

表2 気候変動がダム湖水質に与える影響について検討

		した論文の概要	要		
項	目	論文①	論文22		
		浦山ダムにおける気候変動に	気候変動による国内のダム		
		伴う長期間の将来水質予測	湖水質への影響評価		
使用モ デル		3 次元モデル(ELCOM-CAEDYM)	鉛直1次元モデル		
計算領域		浦山ダム貯水池(水資源機構)	国内37箇所のダム貯水池		
計算	章年	2002~2010 年、2062~2070	1980~1999 年、2046~		
数		年の9年・2期間	2065 年、2080 年~2099		
			年の20年・3期間(現況、		
			今世紀半ば、今世紀末)		
検討	寸水	水温、DO、SS、Chl-a	水温、Chl-a(※)		
質項	目		※流入河川のTP、表層水温20℃以上		
			かつ水温勾配0.5℃/m以上の日数の重		
			回帰式より推定		
	F	気温、湿度、日射量、雲量、風	気温・日射量		
	子冬	速、降水量、流入量等の入力条	※MIROC3.2 (hires)の月別データを		
	木	件	統計的ダウンスケーリングし、日デー		
	件の変化	※米国大気海洋庁の温暖化実験結果を用	タに変換している。		
		い、現在気候との差分を利用して疑似温暖			
		化の WEP モデルによるダウンスケーリン			
Hh	16	グを行っている。			
邧	流入	既存の回帰式や L-Q 式等を用	流入水温および流入量を考		
洞		いて予測し、流入水温が上昇、	慮している。その他、流入		
1000		DO が低下するという結果とな	水質については変化なし。		
収		った。			
лц Ф		・貯水池内では、表層水温が上	・将来の年平均表層 Chl-a		
影		昇し水温成層が強固になった。	濃度が全国的に増加する可		
郷		・出水規模、出水頻度の増加に	能性が示された。		
Ŧ	睦	より、頻繁な高濁水の流入・残	・既往の分類に沿って富栄		
	页] 水	留・放流が予想された。	養化度合いを判別した結		
	小油	・Chl-a は水温上昇、放流、出	果、富栄養湖と分類される		
	10	水による成長阻害等により、現	貯水池が増加し、これが東		
		況よりも低下する可能性が高	日本に多い結果となった。		
		いことが確認された。	(元々富栄養湖が西日本に		
			タ い)		

3.2 地球温暖化がもたらす入力データへの影響

入力データへの影響としては、以下のような要素が考 えられる。

3.2.1 気温・日射量の増加による水温上昇

湖内の水温上昇の影響として、表層水温の上昇による アオコの発生や底層の貧酸素化が進行し、底層からの溶 出量の増加することによる富栄養化が懸念される。以下 にそれぞれの現象のモデルの予測に関する考察を行う。

(1) 水温上昇への影響

地球温暖化の影響として与える気温・日射量について、 大気循環モデルによる予測結果や IPCC の温暖化予測値 等を基に作成している研究が多い。表2の論文①では、 米国大気海洋庁 (NOAA)の Geophygical Fluid Dynamics Laboratory による CM3(GFDL-CM3)の温暖化実験結果を 用いて、現在の気候との差分を利用した将来における疑 似温暖化のダウンスケールを行い、これを境界条件とし ている(論文①の対象地である浦山ダム貯水池近辺では、 2001~2010 年と 2061 年~2070 年の比較で平均気温が 2.9°C、平均日射量が3.4 W/m2 上昇すると予測している。)。 WEC モデル、CE-QUAL-W2、ELCOM-CAEDYM では、

「日射による熱伝導」と、「気温の熱伝導」の式で構成さ れており、長波放射・短波放射の考慮や用いているパラ メータに大きな違いは見られない。このことから、どの モデルにおいても気温の増分と日射量の増分がそのまま モデルに反映され、モデルの係数による違いが生じるも のと考えられ、気温・日射量の増加による水温の増加傾 向は、各モデルで同様に表現されるものと考えられる。

(2) 底層水質への影響

WECモデル、ELCOM-CAEDYM については、底層からの栄養塩の溶出は水温、DOの変化を考慮したモデルになっており、貯水池内の水温変化による底層の水質変化にも対応しているものと考えられる。CE-QUAL-W2は栄養塩の溶出速度とDOの消費速度のパラメータ値に依存していることから、貯水池の水温変化に伴う底層の水質変化(栄養塩の溶出速度の変化、底泥のDOの消費速度の変化等)は大きく生じない可能性がある。

3.2.2 流入量の増加・減少に伴う流入水質の変化

降水量の増加に伴う流入量の増加によって、洪水規 模・頻度の増加による濁水長期化や、流入負荷の増加す ることによる富栄養化が懸念される。また、降水量の減 少に伴う流入量の減少によって、貯水池内の滞留性が高 まり、湖内の水温分布に変化が生じてアオコが発生する 可能性が考えられる。流入量の変化に伴う湖内の予測水 質の変化は、境界条件に依存する部分が大きいため、モ デルの特性による違いは大きく生じないものと考えられ る。

流入量の増加によって懸念される「①洪水規模・頻度 の増加による濁水長期化」、「②流入負荷の増加すること による富栄養化」については、流量の増加に伴う水質の 変化の影響を強く受けると考えられ、これらを予測する 必要があると考えられる。予測する方法としては、**表 2** の論文①のような既存の回帰式やL-Q式を基に設定する 手法や、別途、流出解析を行う手法が考えられる。また、 流入量の低下に伴う湖内の予測水質の変化は、貯水池内 部の流動や水温変化による影響が大きいと考えられる。 滞留性や水温分布の変化については各モデルで鉛直 2 次 元モデル、3 次元モデルの違いがあるものの、基礎式等 に大きな違いは見られないことから、同様にこれらの現 象を評価できるものと考えられる。

3.3 地球温暖化がもたらす設定パラメータ変動と水質 への影響

地球温暖化がもたらす設定パラメータの影響として、 近年の地球温暖化及び水質に関する研究を確認したが、 設定パラメータを変更する事例は見当たらなかった。こ れは、地球温暖化の影響についての感度分析をする上で 検討が煩雑になることや、設定パラメータを変化させる 根拠が明確にはないことが考えられる。

4. おわりに

本研究では、ダム貯水池を対象とした既往の水質3モ デルについて特徴を整理し、温暖化に伴い変動が予想さ れる流入水質等の入力情報と、それらが関係するモデル 構造を調べ、予測水質に与える影響を検討した。その結 果、気温・水温上昇は各モデルでそのまま反映されるこ と、WECモデル、ELCOM-CAEDYMは水温、DOの変 化による栄養塩の溶出量、底泥によるDOの消費量の変 化を考慮しているのに対し、CE-QUAL-W2では、それ らの変化は考慮していないことを確認した。流入量の増 加によって懸念される「洪水規模・頻度の増加による濁 水長期化」、「流入負荷の増加することによる富栄養化」 については、流量の増加に伴う水質の変化の影響を強く 受けると考えられ、これらを予測する必要がある。次年 度は湖沼に焦点を当て、底層環境の変化が水環境に与え る影響を水質モデルを用いて検討する予定である。

参考文献

 IPCC, 2007: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 976.

 環境省(2013)気候変動による水質等への影響解明調 査報告、pp. 1-68.

3) 崔貞圭、矢島啓、谷口健司、馬籠純、2014、浦山ダム における気候変動に伴う長期間の将来水質予測、土木学 会論文集 B1(水工学) 70(4)、1633-1638.

 4) 梅田信、落合雄太、2012.、気候変動による国内のダ ム子水質への影響評価、土木学会論文集G(環境)、68(5)、 127-135.

微量金属を対象とした藻類抑制手法の提案

研究予算:運営費交付金(一般勘定) 研究期間:平23~平26 担当チーム:水環境研究グループ(水質) 研究担当者:岡本誠一郎、南山瑞彦、平山孝浩、 柴山慶行、武田文彦

【要旨】

本研究では、藻類の大量増殖により景観障害や異臭味等の利水上の問題を抱えているダム湖や下水処理水の放 流先の水中に含まれる微量金属に着目した藻類抑制手法の提案を目的としている。微量金属の抑制手法としては、 水質チームの過年度の研究にて、固定化担体を用いることで下水処理水中のマンガン濃度が低下することが報告 されている。そこで、下水処理再生水に微生物固定化担体による処理を行った水を修景水路の実施設へ適用した。 また、底層が貧酸素化してアオコが発生する停滞水域の底層に適用して、水域内の藻類抑制に対する効果を調べ た。二つの水路中に素焼きタイルを設置してタイル上のクロロフィル a を比較した結果、担体処理を追加した水 路では、付着藻類増殖の低下が確認された。また、下水再生水と同様に停滞水域においても担体処理による効果 が期待されると判断された。

キーワード:下水再生水、ダム貯水池、藍藻類、微量金属、マンガン

1. はじめに

地球上に存在する水のうち、人が利用可能な水は表 流水などのごく限られた量であり、今後の気候変動に よる水循環系への影響などにより、地域で利用可能な 水がさらに減少する可能性もある。そのため、ダム貯 水池における水の管理や、現在わが国では利用が十分 に進んでいない下水処理水の活用などが、今後一層重 要になってくると考えられる。さらにそれに伴い、こ れらの水の利用上の障害となる藻類の異常増殖の抑制 等の対策についても、さらに重要な課題となってくる と考えられる。 例えば下水処理水の利用状況を見ると、わが国では 下水処理水量の約1.3%しか処理場外での再利用が行 われていない(図-1)。その用途としては、修景用水、 河川維持用水の2つで半分以上の水量を占めている。 水資源の確保とせせらぎ創出を通した都市のうるおい づくりという、相反するニーズを満たすために下水処 理水が利用されている一方で、処理水のほとんどが再 利用されずに放流されており、再利用の余地が大きい こともうかがえる。下水処理水再利用の普及に関して は、下水を再利用することに対する人々の意識の問題 や、コストと技術面での問題など課題を抱えているの

も事実である¹⁾。

下水処理水の再利用時の課題として、修景用水利用 施設及び親水用水利用施設における美観確保対策や、 安価で高度な水処理技術の開発が求められている²。 下水処理水は、窒素やリン等の栄養塩類を比較的高濃 度に含む場合があるため、都市内の水路や修景池など に利用した場合に藻類の大量増殖を引き起こし、景観 障害等の問題が生じる場合がある。この問題に対応す るため、下水処理水中の栄養塩類を極めて低くする手 法(凝集剤の使用によるリンの高度除去等)が適用可 能であると考えられるが、現状では設備費・運転費と もに高価である。

そこで本研究では、従来方法よりも安価な微生物保 持担体を用いた技術を下水処理水に適用して、修景水 路に通水することで問題の解決を試みた³⁴。これは、 下水処理水に対して好気性の生物膜処理を適用し、微 量元素濃度を低下させることにより、藻類増殖の抑制 を図るものである。

また、ダム湖や湖沼等の閉鎖性水域において、藍藻 類が異常増殖してアオコ状態になる現象に対して、曝 気装置の適用等の対策が行われるが、アオコ発生の抑 制に対しては効果が不十分な事例がみられる。土木研 究所における既往の研究で、底層の貧酸素化に伴って 底質から溶出してきたマンガンの濃度を低減させるこ とによって、アオコの抑制が可能であることを明らか にしている⁵。

本研究では、水質チームで開発した水中の溶存マン ガン濃度を選択的に低減できる処理手法を用いた装置 (担体処理装置)を、底層が貧酸素化してアオコが発 生する閉鎖性水域の底層に適用して、水域内の藻類抑 制に対する効果を調べるとともに富栄養化現象の見ら れるダム貯水池において、底層 D0 の制御を行いながら、 水質の変化と藻類増殖の挙動を調査した。

2. 下水再生水の藻類増殖抑制

2. 1 微生物固定化担体による藻類増殖抑制手法[®] 本手法の概要は次の通りである。

下水処理水を微生物保持担体(ポリプロピレンを基 材とした中空円筒状の固体 4mmOD × 3mmID × 5mmL) を投入した反応槽に導入する。反応槽内では、下部よ り曝気が行われており比重が水と同程度の担体は曝気 によって流動する。馴致期間を置くことで、自然発生 的に担体上に生物膜が発生し、この生物膜により処理 水中の溶存マンガンが酸化され懸濁態となるが、懸濁 態のマンガンを後段の砂ろ過装置で除去することによ り処理水中のマンガン濃度を高効率に低下させた処理 水(以下、担体処理水)を得ることができる。

土木研究所で実施した過去の研究によると、担体処 理水を、模擬的な水路と池に導水したところ、糸状藻 類の発生が抑制されることがわかっている^{例によ 7)}。こ の実験では、担体処理水中の窒素やリンの濃度は低減 しておらず、マンガン濃度が大幅に低下していたこと を確認している。この実験での糸状藻類抑制の詳しい メカニズムは明らかではないが、藻類にとって微量必 須元素の一つであるマンガン濃度の低下が、藻類増殖 に影響を与えたものと考えられる。本手法は、設備費 用や運転経費が安価であるため、必要な費用を抑えつ つ、下水処理水を再利用している施設の藻類増殖を抑 制することが期待される。

2.2 藻類増殖抑制手法の実施設における適用

2. 2. 1 方法

藻類増殖抑制手法の効果を調べるために下水処理水 を修景利用している人工水路(写真-1、写真-2) 施設において適用実験を行った。水路は、実験のため に設置したものではなく、実施設であるため、せせら ぎ水路Aは底が砂質、せせらぎ水路Bは岩やモルタル に石を埋め込んだものである等、水路間の構造に違い がある。そのような状況では、水路の壁に増殖する藻 類の量も異なってくる可能性がある。そのため、素焼 きタイルを設置してその上で増殖した藻類の量を測定 するとともに、タイル間の日射量の差が少なくなるよ うにタイルを設置し、水路間の状況の差が小さくなる ように努めた。

平成21年10月~平成23年12月には、担体処理水 をせせらぎ水路Bに導水し、導水していないせせらぎ 水路Aの藻類発生状況と比較することで藻類の増殖状 況を確認した。藻類発生量は、水路内に設置した素焼 きのタイルを、定期的に回収することで定量した。平 成24年1月~平成24年10月には、二つの水路に担体 処理水を導水せず、平成22年の藻類発生量の結果と比 較した。

写真-1 せせらぎ水路A

写真-2 せせらぎ水路B

図-2には担体処理水を導水した際の実験系概念図 を示す。標準活性汚泥法とオゾン処理が施された下水 処理水を、微生物保持担体(写真-3)が添加された 円筒形の反応槽(写真-4)2槽(有効容量0.56m³、 水理学的滞留時間計2時間)に流入させた。担体処理 水中の懸濁態マンガンは、せせらぎ水路Bの再生水処 理施設内の砂ろ過装置を通して除去され、マンガン濃 度が低下した水が水路に流れる仕組みになっている。 ただし、この実験系では担体処理してない下水処理水 の混合を完全には防げない仕組みとなっている。

水質分析は、平成21年10月~平成24年10月まで、 平成23年の一部の期間を除き、1~2か月に1回を目 途に実施した。平成22年5月から9月までの計5回、 平成24年6月から10月までの計4回については、水 路内に設置したタイル上に発生した藻類量の分析を実 施しており、本報告書では、この期間の水質分析結果 をもとに藻類増殖抑制効果について考察することとす る。採水は、以下の場所で実施した。

- ・せせらぎ流入水(試料水A)
- ・担体処理水 (試料水 B)
- ・せせらぎ水路A流入水(試料水C)
- ・せせらぎ水路B流入水(試料水D)

※採水箇所については、図-2も参照。また、平成24 年の7月と8月は、せせらぎ流入水が不足していたた め、採水していない。

採水試料中の溶解性有機性炭素(DOC)、総窒素(T-N)、 アンモニア性窒素(NH₄-N)、亜硝酸性窒素(NO₂-N)、

図-2 実験系概念図

写真-3 微生物保持担体

写真-4 担体処理反応槽

硝酸性窒素(NO₃-N)、総リン(T-P)、オルトリン酸態 リン(PO₄-P)、総鉄(D-Fe)、溶存態鉄(D-Fe)、総マ ンガン(T-Mn)、溶存態マンガン(D-Mn)の各濃度を測 定した。また、せせらぎ水路では、浮遊物質(SS)、有 機性浮遊物質(VSS)の測定も行った。懸濁態と溶存態 の分離は採水時に行い、金属成分以外の試料水にはガ ラス繊維ろ紙(GF/B、粒子保持能1µm)を、金属成分 用の試料水には、メンブレンフィルター(孔径0.2µm) を用いた。窒素とリンの定量分析には、オートアナラ イザー(ブランルーベ、TRAACS2000)を使用し、金属 類は、ICPMS(サーモフィッシャーサイエンティフィッ ク、X7CCT)により分析を行った。窒素とリンの有機態 の測定においては、ペルオキソニ硫酸カリウムによる 分解を行った。

写真-5と写真-6は、せせらぎ水路内に設置した 素焼きタイルの写真である。タイルは、付着藻類の発 生状況を観察するとともに、クロロフィルa (Chl.a) の定量分析を行った。タイルは、平成22年分は5月、 平成24年分は4月にまとめて設置し、設置後は採水時 に1枚ずつ回収した。回収したタイルは付着物を樹脂 のブラシでこすり落とし、分析に供した。Chl.aの測 定方法は、単波長吸光光度法を用いた。

2.2.2 結果と考察

a) 平成 22 年実験

表-1には、せせらぎ流入水と担体処理水の水質分 析結果の平成22年実験期間における平均値を示す。 T-N、T-Pについては、大きな差が見られない一方、担 体処理水ではFe濃度とMn濃度の低下が確認された。 反応槽前後のD-Feの形態は、曝気処理により、また、 D-Mnの形態は、担体上のマンガン酸化細菌等の活動に より溶存態から懸濁態へと変化したと考えられる。今 回の実験結果では、D-Fe、D-Mnだけでなく、T-Fe及び T-Mnの濃度も低下する結果となっている。

写真-5 せせらぎ水路Aにおけるタイル設置状況

写真-6 せせらぎ水路Bにおけるタイル設置状況

表一1 担体処理実験における平均水質(平成22 年実験期間平均値)

項目	単位	せせらぎ 流入水	担体処理水
DOC	mg/L	2.91	2.22
T-N	mg/L	7.28	7.23
NH ₄ -N	mg/L	0.02	0.01
NO ₂ -N	mg/L	0.28	0.12
NO ₃ -N	mg/L	6.35	6.69
T-P	mg/L	0.81	0.59
PO ₄ -P	mg/L	0.51	0.46
T-Fe	µg/L	118.59	38.19
D-Fe	µg/L	28.64	5.52
T-Mn	μg/L	43.05	17.88
D-Mn	μg/L	2.16	0.26

次に、水路内における水質分析結果を比較する。表 -2に、下水処理水を通水したせせらぎ水路Aと、担 体処理を行った後にろ過処理を行った水を通水したせ せらぎ水路Bの実験期間中の水質測定結果(平均値) を示す。T-N、T-PとNO₃-N等、多くの項目で、せせら ぎ水路Bがせせらぎ水路Aより、大幅に減少していた。 金属類に関しては、D-Feには大きな差はみられなかっ たが、T-Feはせせらぎ水路Bがせせらぎ水路Aの1/6 程度であり、Mnは懸濁態、溶存態ともに1/10程度で あった。Feは曝気により、Mnは担体処理により懸濁化 し、砂ろ過で取り除かれたものと考えられる。

項目	単位	せせらぎ 水路 A	せせらぎ 水路B			
SS	mg/L	6.2	2.6			
VSS	mg/L	2.4	1.3			
DOC	mg/L	2.8	3.6			
T-N	mg/L	4.26	0.87			
NH4-N	mg/L	0.02	0.01			
NO ₂ -N	mg/L	0.04	0.01			
NO ₃ -N	mg/L	3.58	0.23			
T-P	mg/L	0.16	0.02			
PO ₄ -P	mg/L	0.09	0.01			
T-Fe	μg/L	57.19	10.00			
D-Fe	μg/L	6.75	5.70			
T-Mn	μg/L	4.67	0.50			
D-Mn	µg/L	1.62	0.33			

表-2 水路内の平均水質 (平成 22 年実験期間平均値)

次に、素焼きタイル上に発生した藻類量の定量結果 について示す。**写真-7、写真-8**は、平成22年7 月のタイルの写真である。せせらぎ水路Aでは実験期 間を通じて表面全体を覆うほどの付着物が確認された が,せせらぎ水路Bでは付着物はみられたものの、表 面全体が覆われることは無く、付着藻類の長さも短か った。せせらぎ水路Bのタイルと比較して、せせらぎ 水路Aのタイルは藻類が多く発生している様子がうか がえる。表-3には、期間中におけるタイル上のChl.a の値の平均値を示す。Chl.aの定量値からもせせらぎ 水路B内の付着藻類の発生が抑制されていることが確 認できる。

写真-7 平成22年7月せせらぎ水路Aのタイル

写真-8 平成22年7月せせらぎ水路Bのタイル

表-3 付着物の分析結果 (平成 22 在宝 時期間平均値)

	-510/
ササらぎ水路 A	ササらぎ水路B

百日	畄位		
-7,1	+4	付着物	付着物
Chl-a	$\mu g/m^2$	26.2×10^4	8.5×10^4

b) 平成 24 年実験

平成 24 年実験期間に水路に流入していたせせらぎ 流入水の平均水質を表-4に示す。また、平成 24 年の 水路内の水質分析結果の平均値を表-5に示す。ここ で、せせらぎ水路 A の 10 月の値は、8 月の値の 10 倍 程度となっており、糸状の藻類が大発生する夏場の水 質を代表しているとはいえない可能性が考えられたた め、10 月の値を除いて水質平均値を算出した。平成 22 年のデータと同様に、せせらぎ水路 B 内では、せせら ぎ水路 A と比較して、窒素やリン類の濃度が低い傾向 にあった。また、NO₃-N や PO₄-P 等の値が、平成 22 年 と比較して高い値であった。T-Mn、D-Mn の濃度も、平 成 22 年と比較して、やや高い値を示していることがわ かる。

写真-9、写真-10は、平成24年6月における水

路内の素焼きタイルの写真である。二つの水路の間で、 藻類発生量の明確な差は確認できない。表-6にタイ ル上のChl.a定量結果の平均値を示す。同程度の数値 となっており、この結果からも二つの水路間で、藻類 発生量に大きな差はなかったことがわかる。

•		
項目	単位	せせらぎ流入水
SS	mg/L	0.90
VSS	mg/L	0.55
DOC	mg/L	5.84
T-N	mg/L	6.33
NH ₄ -N	mg/L	0.01
NO ₂ -N	mg/L	0.04
NO ₃ -N	mg/L	5.31
T-P	mg/L	1.38
PO ₄ -P	mg/L	1.43
T-Fe	µg/L	32.09
D-Fe	µg/L	28.01
T-Mn	µg/L	25.71
D-Mn	µg/L	24.32

表-4 せせらぎ流入水の平均水質 (平成 24 年実験期間平均値)

表-5 水路内の平均水質 (平成24年実験期間平均値)

項目	単位	せせらぎ 水路 A	せせらぎ 水路B
SS	mg/L	7.23	2.65
VSS	mg/L	3.45	1.55
DOC	mg/L	4.74	4.70
T-N	mg/L	3.33	2.02
NH ₄ -N	mg/L	0.01	0.01
NO ₂ -N	mg/L	0.02	0.01
NO ₃ -N	mg/L	2.17	1.25
T-P	mg/L	0.39	0.22
PO ₄ -P	mg/L	0.09	0.10
T-Fe	µg/L	89.87	13.07
D-Fe	µg/L	11.81	6.05
T-Mn	µg/L	6.90	1.03
D-Mn	μg/L	2.12	0.52

写真-9 平成24年6月せせらぎ水路Aのタイル

写真-10 平成24年6月せせらぎ水路Bのタイル

表-6 付着物の分析結果

(平成24年実験期間平均値)

百日	出任	せせらぎ	せせらぎ
項日	中世	水路A	水路B
Chl.a	$\mu g/cm^2$	50.3	54.0

c) 平成 22 年と平成 24 年の比較

平成22年と平成24年の藻類発生量が大きく異なったことについて、NO₃-N、PO₄-P、D-Fe、D-Mnのデータに基づいて考察する。

ここで、平均値ではなく、実験中の濃度の推移も確認する。 $図-3 \sim Q-7$ に $NO_3-N \ge PO_4-P$ 、D-Fe $\ge D-Mn$ 、Chl.aの推移を示す。また、表-7に水質平均値を抜き出して整理した結果を示す。

次に、藻類増殖量に影響を与えた因子について検討 を行った。せせらぎ流入水とせせらぎ水路内の濃度と その差について検討するため、表-8に、濃度変化を 整理したものを示す。

		平成	22 年	平成	24 年
項目	単位	せせらぎ水路 A	せせらぎ水路 B	せせらぎ水路 A	せせらぎ水路 B
PO ₄ -P	mg/L	0.09	0.01	0.09	0.10
T-Mn	μ g/L	4.67	0.50	7.72	1.23
D-Mn	μ g/L	1.62	0.33	2.22	0.58
Chl-a	$\mu g/cm^2$	20.8	3.6	47.0	52.0

表-7 水質平均値の比較

					K e c			
		流入水の変化	() ()		濃度変	乞	流入からの変化	水路内残存 濃度
		せせらぎ流入水→せせらぎ水路 A	(<u>1</u> / - ··· /	$0.2 \sim 1$	î	$0.02 \sim 0.2$	→	0
	PO4-P	担体処理水 →せせらぎ水路 B	(mg/L)	$0.2 \sim 1$	1	ほぼ 0	\rightarrow	×
╠		せせらぎ流入水→せせらぎ水路 A	(I/)	$4{\sim}10$	1	2~6	\rightarrow	0
崁	NO3-IN	担体処理水 →せせらぎ水路 B	(mg/L)	$4{\sim}10$	1	0~0.5	\rightarrow \rightarrow	×
22	Ĺ	せせらぎ流入水→せせらぎ水路 A		$20 \sim 40$	Î	6	\rightarrow \rightarrow	×
年	D-Fe	担体処理水 →せせらぎ水路 B	(/ng/L)	$5 \sim 10$	1	6~9	\rightarrow	×
		せせらぎ流入水→せせらぎ水路 A	(I/~···)	$1 \sim 3$	1	1~2	ſ	0
	n-Min	担体処理水 →せせらぎ水路 B	(//g/L)	$0.1 \sim 0.6$	1	0.1~0.6	ſ	×
		せせらぎ流入水→せせらぎ水路 A	(I/)	0.7	1	0.04~0.13	\rightarrow	0
	rO4-r	せせらぎ流入水→せせらぎ水路 B	(mg/L)	0.7	1	$0.01 \sim 0.2$	\rightarrow	0
₽		せせらぎ流入水→せせらぎ水路 A	(1/~····)	5.1	1	$0.8 \sim 2.2$	\rightarrow	0
戍	NO3-IN	せせらぎ流入水→せせらぎ水路 B	(mg/L)	5.1	1	0.5~2.5	\rightarrow	0
24		せせらぎ流入水→せせらぎ水路 A	(1/)	27	1	11.1~12.3	\rightarrow	0
件	D-FG	せせらぎ流入水→せせらぎ水路 B	(1/8/L)	27	1	5.9~6.2	\rightarrow \rightarrow	×
		せせらぎ流入水→せせらぎ水路 A	(1/~)	47	1	1.8~2.5	\uparrow \uparrow	0
		せせらぎ流入水→せせらぎ水路 B	(Jug/L)	47	1	0.3~0.7	\rightarrow	\bigtriangledown

表一8 流入水と水路内水質の比較

(網掛けは、制限因子になった可能性のある項目)

水路内水質について、藻類増殖の半飽和定数や湖沼 等で測定した半飽和定数値⁸⁰と比べると、平成22年の せせらぎ水路Bでは、PO₄-PとNO₃-Nの値が半飽和定数 と同程度かそれより低く、藻類増殖の制限因子となっ ていたと思われる。さらに、D-Fe、D-Mnは、実験期間 を通じて低い値となっていたことから、これらも藻類 増殖の制限因子となっていたと思われる。平成22年の せせらぎ水路AではD-Feがせせらぎ水路Bと同程度だ ったため、この項目が制限因子となっていた可能性が 高い。

一方で、平成24年では、二つの水路で、PO₄-PとNO₃-N は制限因子となるほど値が低くないため、制限因子と はならなかったと考えられる。せせらぎ水路Bでは、 D-Feが平成22年と同程度なため、制限因子となった 可能性が高い。また、D-Mnも低濃度まで低下している。 次に、せせらぎ流入水と水路内の濃度差について検討 する。この濃度差は、藻類が増殖に伴って摂取あるい は利用した結果生じるものと考えられる。

図-8~図-11は、せせらぎ流入水と水路内流入 水の濃度差と藻類量(Chl.a)との関係を示している。 濃度は、平均値を用いた。 NO_3 -N は、濃度差と Chl.a の関係が顕著でないようである。 PO_4 -P と D-Fe、D-Mn については、相関傾向が見られる。

図-9 流入水と水路内濃度の差 (PO₄-P)

図-11 流入水と水路内濃度の差(D-Mn)

2.2 まとめ

以下に、本実験のまとめを記述する。 ①担体処理水を導入した平成22年のせせらぎ水路B では、担体処理水を導入していない同時期のせせらぎ 水路Aや平成24年度のせせらぎ水路A,Bと比較して、 付着藻類量が著しく少なかった。 ②水路流入水と水路内の水質変化より、せせらぎ水路 Bでは、平成22年にP04-PとN03-N、D-Fe、D-Mnが、 平成24年には、D-Feが藻類発生の制限因子となって いたと思われる、また、せせらぎ水路Aでは、平成22 年にD-Feが制限因子となっていた可能性が高い。 ③水路への流入水と水路内の水質の濃度差と、水路の 単位壁面当りCh1-aとのを比較からは、P04-P及びD-Fe、 D-MnとCh1-aとの間には相関関係が見られた。

3. 微生物保持担体による停滞水域の藻類増殖抑制

3. 1 実験方法

本研究では、水質チームで開発した水中の溶存マン ガン濃度を選択的に低減できる微生物保持担体による 処理を用いた装置(担体処理装置)を、底層が貧酸素 化してアオコが発生する停滞水域の底層に適用して、 水域内の藻類抑制に対する効果を調べた。

実験は、霞ヶ浦(西浦)の中でも特に閉鎖性の高い

土浦市内の船だまりで実施した。この実験水域は底泥 の有機物含有量が高く、夏季には水が滞留して底層が 貧酸素化するとともに、藍藻類が異常発生しやすい水 域となっている。

図-12に実験概念図を示す。直径 1.2mの蛇腹状 風管を用いて、水面側には浮きを取り付け、底泥側に はステンレスの枠を取り付けて底泥内に枠がささるよ うに設置して隔離水塊を設けた。風管 No.1には、担体 処理装置を底層付近(水導入部が底泥から 30cm の位 置)に設置して、他方の風管 No.2 は比較のための対照 系とした。なお、風管には水面下 1.5m の位置に、周囲 の水位変化に風管内の水位が追随できるよう、直径 5cm 程度の水位調整用の穴を開けている。

図-13に、担体処理装置の概要を示す。陸上に設置したエアーコンプレッサーから空気が送気され、アクリル状の筒の下部から曝気され、筒内に上昇流をつくるとともに、底層付近に循環流をつくる。筒内には、微生物固定化担体が封入された籠が入っており、エアレーションによって、担体上には、自然発生的にマンガン酸化細菌を含む生物膜が生じる。底泥から溶出してきたマンガンはこの生物膜により酸化されて底層に水質改善層が作られることになる。

平成25年6月24日に装置一式を設置して担体処理 装置の運転を開始した。装置の運転開始以降、1週間 に1回または2回の頻度で、多項目水質計(堀場製作 所、U-50シリーズ)を用いた鉛直方向の現地水質測定 を行うとともに、風管内の表層(水面下0.5m)、下層

(2.5m)の水を水質分析のために採水し、各層の Chl.-a(単波長吸光光度法)、金属類(ICP-MS)、リン と窒素(栄養塩自動分析装置)について測定した。ま た、風管による隔離水塊の周辺の底泥を7月初旬に柱 状採泥器を用いて採取し、深さ30cmまでを混合して定 量分析に供した。担体上の付着物についても実験終了 後に回収して圧力容器法による酸分解を実施し、含有 金属成分について定量した。水質分析については、河 川水質試験方法(案)【1997年版】を、底質や担体上 の付着物については、底質調査方法(平成24年、環境 省)に従った。なお、現地観測と採水は、10~11時頃 に実施した。

3. 2 実験結果

図-14に実験期間中の気温を示す。データは気象 庁土浦アメダスの日平均気温である。平成25年の夏季 は、7月初旬の気温の高い期間の後、7月末まで天候が 不順な時期が続いたが、7月末から8月にかけて気温 が高い状態が続き天候が安定していた。

下層 D0、D-Mn、P0₄-P、(NH⁴⁺ + N0³⁻) - Nの表層と底 層の経日変化を図-15~図-18に示す。対照系で ある No. 2 では、天候が安定するにつれて、下層 D0 が 低下しており、7月末以降で底層がほぼ嫌気化してい るが、一方で No. 1 では、装置のエアレーションの効果 もあり、底層は好気状態が保たれていた(図-15)。

 $P0_4$ -Pは、下層 D0 が低下する7月中旬以降に No.2 の底層で増加しており、底層の貧酸素化による底泥からの溶出と考えられる。No.1 では濃度が低くなっているのは、好気状態が保たれているためと考えられる。 表層では、No.1、No.2 ともに概ね0.01mg/L以下で低く推移しており、表層の藻類に摂取されて値が低くなっていたと考えられる(図-17)。

D-Mn は、表層では No. 1、No. 2 ともに概ねゼロに近 い値で推移していた (データは掲載していない)。底層 では、No. 2 で 7 月 23 日に特に高濃度となっており、 Mn についても底泥から溶出していたと考えられる。 その後次第に D-Mn 濃度が低下して 8 月 5 日にはほ ぼゼロとなり、その後は低濃度のまま推移した。No.1 の底層では実験期間を通じて低濃度であった(図-1 6)。

図-15 下層 DO の推移

7/9 7/16 7/23 7/30 8/6 8/13 8/20

7/2

図-16 D-Mnの推移

Fe は、表層ではNo.1、No.2 でほとんど濃度に差は 見られず、T-Fe は 200~400 μ g/L 程度で推移、D-Fe は 20 μ g/L 程度でほぼ一定だった。一方、底層ではNo.1 ではD-Fe は 50 μ g/L 程度で大きな変動が無かったのに 対し、No.2 では底層が貧酸素化した7月23日にT-Fe が 1120 μ g/L、D-Fe が 151 μ g/L に急上昇した。D-Fe はその後7月30日には 11 μ g/L に急減している。T-Fe も次第に濃度が低下し、8月5日には 312 μ g/L まで低 下した(図-19、図-20)。

底質と担体上の付着物の分析結果を表-9に示す。 担体上の付着物の金属成分はマンガンが鉄より多くなっており、底質の成分とは異なることから、担体上の 生物膜の働きによって、溶存態マンガンが懸濁化して 担体上に付着していたと考えられる。

表層の Chl.a の推移を図-21に示す。天候が安定 してきた7月末以降で No.1の方が、No.2と比較して 低く推移しており、No.1において藻類量が抑制されて いることが確認された。なお、実験期間中の藻類種で あるが、No.1、No.2とも7月2日の分析では珪藻類が 優占していたが、7月23日の分析以降では、アナベナ やフォルミディウム、ミクロキスティスが優占してお り、藍藻類が主体になっていた。

P0₄-P 濃度は、実験期間を通じて表層では低濃度と なっており、表層では枯渇傾向にあったと考えられる。 底層は No. 1 では低濃度となっており、底層 D0 がほぼ ゼロとなって以降の No. 2 の高濃度の状態とは対照的 だった。

全屋	底質(0~30cm深)	担体上の付着物		
並周	mg/kg(DS)	mg/kg(DS)		
Mn	1,162.41	2,400.74		
Fe	62,294.41	718.60		

表-9 周辺土壌と担体上の金属成分

図-21 表層の Chl.a 量の経日変化

3.3 考察

本研究では、霞ヶ浦西浦湖内の停滞水域(船だまり) に隔離水塊をつくり、その下層に曝気と微生物保持担 体を充填した装置を設置して(No.1風管)、対照系の 隔離水塊(No.2風管)と比較することにより、鉄やマ ンガン等の金属類、栄養塩類の濃度の変化と藻類増殖 に及ぼす影響を検討した。

3. 3. 1 栄養塩類・金属類の挙動

実験期間における栄養塩類の経日変化をみると、ア ンモニア態及び硝酸態の窒素濃度は、7月中旬ころに いったん低濃度となるがその後は回復しており(図-18)、藻類増殖が窒素制限となっていた形跡は見られ ない。

状態となった No. 2 の 7 月 23 日以降で P0₄-P が高濃 度の期間が継続していた(図-17)。ミクロキスティ ス等の藍藻類は、表層の必要元素が枯渇すると、ガス 胞を調節して沈降し下層の必要元素を摂取することが 知られている⁹。しかし No. 1 の底層は曝気の影響で底 泥からの溶出が抑制されており、No. 1 ではリンが藻類 増殖の制限因子となっていた可能性がある。

No.1風管内では底層のD-Mn は安定的に低濃度となっていたこと(図-16)、また担体の付着物中のMn 含有量の結果(表-9)から、No.1では底泥からのマンガンの溶出が抑制されるとともに、微生物保持担体 によって水中のマンガンも担体に付着あるいは懸濁化 物が沈降することによって低濃度が維持されたと考え られる。本実験で用いた曝気・微生物保持担体による 装置は、第2章に示した担体処理装置と同様に、水中 のマンガン濃度を抑制する効果が確認された。

3. 3. 2 金属類の挙動が藻類バイオマスに及ぼす影響

微量金属の挙動と藻類増殖との関連を確認するため、図-22に表層のChl.aと底層のFe、Mnの濃度推

移のグラフを再掲した。

No.1ではリンや鉄などの必須元素の枯渇傾向から、 7月16日をピークに次第にChl.aが低下していったと 考えられる。一方でNo.2では7月中旬以降、Chl.aが 高い状態が継続しており、目視観測でも周辺の停滞水 域と同様にNo.2表層でアオコ状態が観測されていた。

底層 Fe の濃度変化を見ると、底層が貧酸素化した7 月 23 日には D-Fe の上昇が見られ、溶存しやすい第一 鉄が還元により底泥から溶出したと考えられるが、そ の後すぐに D-Fe は枯渇状態となっている。一方、7月 23 日からは T-Fe の減少も進行しており、8月5日まで 急速な濃度低下が継続していた。種々の藍藻類はシデ ロフォア¹⁰によって Fe を可溶化すること、水中での 鉛直移動が可能である⁹ことから、No.2で7月23日 以降に底層 T-Fe 濃度が急速に低下したのはアオコ形 成藻の底層への移動と鉄の取り込みが原因であると考 えられる。

底層 Mn の濃度変化を見ると、No.2では7月23日に は濃度が急増しているが、ほぼすべて溶存態となって いることから、貧酸素化に伴う底泥からの溶出による 濃度増加と判断できる。その後、T-Fe と同様に急激な 濃度低下が見られ、8月5日には D-Mn はゼロとなって いた。前述のとおり8月5日までは T-Fe の濃度低下傾 向が続いていたが、それ以降は T-Fe の濃度はおおむね 横ばいで8月下旬まで推移している。

これらの濃度変化は、D-Mn が植物プランクトンの鉄 の消費に何らかの形で関与していることを示すものと 考えられ、8月5日時点でのD-Mn の枯渇とともに植物 プランクトンの鉄の取り込みが抑制された可能性があ る。水質チームの既往研究では、ダム貯水池において 底層 DOを安定的に維持することにより底層 D-Mn 濃度 を抑制し、表層の藻類濃度をも抑制されることを示し ており⁵⁰、本実験でみられたものと同様の機構による 藻類抑制効果が発揮されていたものと推察される。

図-22 表層 Chl.a と底層金属類の挙動

3.4 まとめ

本実験の結果、No.2風管におけるD-Mn及び T-Fe, D-Feの濃度変化から、D-Mnは植物プランクトン の鉄の消費に何らかの形で関与していることが示唆さ れ、これが植物プランクトンの増殖に影響を与えた可 能性がある。

一方、No.1風管では曝気及び担体処理により、表層 ~底層のD-Mn 濃度が安定的に低濃度に保たれたこと、 さらに PO₄-P の濃度も抑制された結果として、藻類の 増殖が抑制されていたと考えられ、下水再生水と同様 に停滞水域においても担体処理による効果が期待され ると判断された。

4. ダム貯水池における藻類増殖と金属類の挙動

富栄養化現象の見られるダム貯水池において、底層 D0 濃度の制御を行いながら、水質の変化と藻類増殖の 挙動を調査した。藍藻類が異常増殖した際に金属類の 挙動が特徴的であったことから、その濃度変化を明ら かにするとともに、藍藻類増殖との関係について考察 した。

4. 1 実験方法

島根県Aダム貯水池において、ダム堤体から130m 上流(水深27m)の底層に高濃度酸素水供給装置を設 置し(図-23)、2012年4月末から装置の運転と水 質計測・分析を行った。溶解性試料はGF/Bろ紙を用い て作成した。

装置に不具合が生じたことから,7/10~9/12に排気 ホースを外し、装置上端から気泡が排出される状態で 運転を行った。

4.2 実験結果

4. 2. 1 水温・DO 濃度・EC 分布の推移

水温躍層は、当初,取水口がある水深 15m 付近に形成されていたが、排気ホースを取り外した 7/10 以降,排出気泡の穏やかな撹拌により水深 22m より上方が混合される状態となった。これに伴い、水深 15~22m の水温は最大で約 10℃上昇した(図-24)。また当該部分の酸素消費速度が上昇したため、D0 濃度が 5mg/L以下に低下した。さらに、装置鉛直方向近傍において、底層水の上昇により EC が上昇した。

4. 2. 2 **藻類・金属類濃度の変化**

8/29 に、突如として藍藻の Aphanizomenon flos-aquae

が、主に装置鉛直方向近傍で大増殖した(表層 Ch1 a 濃度は1,055µg/L)。同時に、底層に高濃度で蓄積され ていた D-Mn 濃度が大きく低下した(図-25)。また、 表層・中層の D-Fe 濃度は、降雨(8/12~14 に約 90mm) 時以外は経時的減少が見られていたのに対し、8/29 に 増加が観察された(図-26)。

藻類の鉄摂取に当たって、環境水中の3価鉄が有機 物錯体と強く結合している場合には、光化学還元によ って2価鉄への還元が必要であると言われている。本 実験でのD-MnおよびD-Feの挙動から、藍藻類は3価 鉄の還元、摂取の際に、D-Mnを電子供与体として利用 していることも考えられ、本実験結果からもD-Mnが植 物プランクトンの鉄の消費に何らかの形で関与してい ると考えられた。

図-26 水深方向 D-Fe 濃度分布の変化

4.3 まとめ

ダム貯水池における底層 D0 の制御実験の結果、底 層水の緩やかな撹拌に伴い、酸素供給装置近傍で藍藻 の急激な増殖が観測された際、底層の高濃度の D-Mn 濃度が急速に減少し、一方で表層の D-Fe は上昇に転じ る現象が見られた。本実験結果からも、D-Mn が植物プ ランクトンの鉄の消費に何らかの形で関与していると 推定された。

5. 本研究の結論

本研究では、ダム貯水池内の滞留水や下水処理水に 含まれる微量金属を制御・除去することにより景観障 害や異臭味等の利水障害の原因となる藻類の増殖抑制 手法の提案を目的とした。

4ヶ年の研究結果から以下の結論を得た。 1) 下水処理水(標準活性汚泥処理+オゾン処理)を 修景用水利用しているせせらぎ水路において、担体処 理による藻類抑制効果の検証実験を行った。この結果、 担体処理水を導入した水路では、導入していないケー スと比較して、水路への付着藻類量が少なくなった。 また、水路への流入水と水路内の水質の濃度差と、水 路の単位壁面当り Ch1-a とを比較すると、PO₄-P 及び D-Fe、D-Mn と Ch1-a との間には相関関係が見られた。 2) 霞ヶ浦の船溜まりにおける隔離水塊実験の結果、 曝気等を行っていない隔離水塊における D-Mn 及び T-Fe, D-Fe の濃度変化から、D-Mn は植物プランクトン の鉄の消費に何らかの形で関与していることが示唆さ れた。このことが植物プランクトンの増殖に影響を与 えた可能性がある。一方、曝気及び担体処理を行った 隔離水塊では、表層~底層の D-Mn 濃度が安定的に低濃 度に保たれたこと、さらに PO₄-Pの濃度も抑制されて いた。水塊の表層では藻類の増殖が抑制されており、 担体処理は、下水再生水と同様に停滞水域においても 効果が期待されると判断された。

3)ダム貯水池における底層 D0 の制御実験の結果、底 層水の緩やかな撹拌に伴い、酸素供給装置近傍で藍藻 の急激な増殖が観測された際、底層の高濃度の D-Mn 濃度が急速に減少し、一方で表層の D-Fe は上昇に転じ る現象が見られた。本実験結果からも、D-Mn が植物プ ランクトンの鉄の消費に何らかの形で関与していると 推定された。

参考文献

- 1) 国土交通省:下水処理水の再利用のあり方を考え る懇談会報告書, 2009.
- 国土交通省:下水処理水の再利用水質基準等マニ ュアル,2005.
- 久岡ら: せせらぎ水路における付着藻類の抑制技術,第48回下水道研究発表会,235,2011.
- 4) Hisaoka 5: 8th IWA International Conference on Water Reclamation & Reuse, Barcelona, 2011.
- 5) 鈴木穣、柴山慶行、増木信吾、戸島邦哲:ダム貯 水池の底層水質改善による表層藻類の抑制、p. 17、 第48回日本水環境学会年会講演集、2014
- 6) 鈴木穣、岡安祐司:下水処理水の藻類増殖抑制方 法及びその装置、特開2009-207985
- 岡安祐司:担体による都市河川の藻類抑制技術、 河川整備基金助成事業成果報告書、2009
- 8) 岩佐義朗編著:湖沼工学、山海堂、1990
- 9) アレキサンダー・J・ホーン他著、手塚泰彦訳:陸水 学、PP.249-251、京都大学学術出版会、1999
- 10) 伊藤裕才、村上昌弘: 藍藻類のユニークなシデロ フォア、pp. 289-291、No. 5、化学と生物、2003

レポータージーンアッセイを用いた再生水の安全性評価に関する研究

研究予算:運営費交付金(一般勘定) 研究期間:平25~平27 担当チーム:水環境研究グループ(水質) 研究担当者:岡本誠一郎、北村友一

【要旨】

下水処理工程でのエストロゲン、アンドロゲン、甲状腺ホルモン、抗エストロゲン、抗アンドロゲン、抗甲状腺ホルモン様活性の実態と低減効果を明らかにするため、流入下水、活性汚泥処理水、微 生物保持担体処理水中のこれらのホルモン様活性値を測定した。その結果、流入下水では、エストロ ゲン、アンドロゲン、抗甲状腺ホルモン様活性が検出された。二次処理水では、エストロゲン様活性 が微量であるが検出された。活性汚泥処理でエストロゲン、アンドロゲン、抗甲状腺ホルモン様活性 は低下することがわかったが、エストロゲン様活性は、活性汚泥処理後も残存する可能性があった。 担体処理水では、エストロゲン様活性は検出されなかった。

キーワード:レポータージーンアッセイ、メダカ、下水処理水、遺伝子発現解析

1. はじめに

下水処理水は水資源であり、気候変動による水 不足や環境保全への対策として、下水再生水の利 用拡大が求められている。そのためには、再生水 の安全性評価法の開発、実態、リスク評価に関す る研究の推進が必要である。これまで、下水処理 水の魚類に対する影響は、魚の下水処理水への直 接曝露試験から調査されてきた。その結果、下水 処理水中に女性ホルモン (エストロゲン) が残存 している場合、魚類に雌性化影響を与えることが 明らかになってきた。下水処理水への魚類の直接 曝露法は説得力があり有用な方法であるが、マー カー蛋白質や遺伝子発現を指標とする場合は、試 験に要する時間・労力や試験生物をと殺すること が課題となり、簡易モニタリングへの適用が困難 だったり、動物愛護上の問題が発生したりするな どの難点がある。

ここ数年、エストロゲン、アンドロゲン、甲状 腺ホルモン様活性などが試験管内で評価できる レポータージーンアッセイが開発され、レポータ ージーンアッセイは排水を対象とした評価にも 有望¹⁾であると考えられる。

レポータージーンアッセイを下水処理水の安 全性評価として利用するためには、下水試料への 適用方法(濃縮方法、固相抽出条件)の最適化や 実験動物の応答との関係解明が必要となる。

本年度は、実下水試料を用いて、レポータージ ーンアッセイによる下水試料に含まれるエスト ロゲン、アンドロゲン、甲状線ホルモン、抗エス トロゲン、抗アンドロゲン、抗甲状腺ホルモン様 活性の測定を行い、これらのホルモン様活性の実 態と下水処理過程での低減効果を評価した。

2. 実験方法

2.1 下水処理実験装置の運転

下水処理実験装置の概要を図-1 に示す。下水 処理実験装置は、最初沈殿池(500L)、生物反応 槽(500L×4 槽)、最終沈殿池(700L)、担体処 理槽(10L×4 槽)から構成されている。

流入下水は、分流式下水道として整備され主に 生活排水が流入する下水処理場の生下水を用い た。生物反応槽は、第1槽から第4槽まで全面 エアレーションを行う、標準活性汚泥法による処 理を行った。水理学的滞留時間(HRT)は、7 時間となるように流入水量を制御した。担体処理 槽では、微生物が自然発生的に保持されたポリプ ロピレン製円筒担体(φ5mm,長さ5mm,厚さ 1mm)が充填され、水理学的滞留時間2時間で活 性汚泥処理水を処理した。流入下水、二次処理水、 担体処理水をH25年10月23~24日およびH26 年11月5~6日に24時間連続採水を行い、本試 料をレポータージーンアッセイに供した。

図-1 下水処理実験装置の概要

2.2 固相抽出方法

固相抽出の条件は以下のとおりとした。

(1) 固相の種類

固相種類: Oasis HLB Vac cartridge (Waters 社製) カートリッジ容量: 6 cc 充填剤重量: 500 mg 充填剤粒径: 60 μm (2) コンディショニング ① ジクロロメタン/メタノール (1:1) 10mL ② メタノール 10 mL ③ 純水 20 mL (3) 通水 通水量: 1L 通水速度: 10 mL/min (4) 脱水 吸引および遠心分離(3,500 rpm、5 min) に よる脱水 (5) 溶出 ① メタノール 10 mL ② ジクロロメタン/メタノール(1:1) 10 mL (6) 乾固

窒素気流を吹き付け、40 ℃に加温しながら乾 固、乾固後、DMSO 50 µL で再溶解させ、メタ ノール画分とジクロロメタン/メタノール画分 の DMSO 溶液を混合し、10,000 倍濃縮試料 100 µL を調製。

2.3 レポータージーンアッセイ方法

レポータージーンアッセイの方法は以下のと おりとした。

(1) 受容体の種類

検出するホルモン様活性は、エストロゲン、ア ンドロゲン、甲状腺ホルモン、抗エストロゲン、 抗アンドロゲン、抗甲状腺ホルモン様活性とし、 以下のメダカ受容体を用いた。

・メダカエストロゲン受容体 α (ER α)

- ・メダカアンドロゲン受容体 β (AR β)
- ・メダカ甲状腺ホルモン受容体 β (TR β)
- (2) リファレンス物質
 - リファレンス物質は、以下のとおりとした。
 - ・ER α : 17 β -エストラジオール (E2)
 - 抗 ER α: 4-ヒドロキシタモキシフェン (4OHT)
 - ・AR β : 11-ケトテストステロン (11KT)
- ・抗AR β :2-ヒドロキシフルタミド (20HF)
- ・TR β:トリヨード-Lチロニン (T3)
- ・抗 TR β : Thyroid hormone receptor antagonist, 1-850 (1-850)

(3) ER a レポータージーンアッセイの方法
 (3)-1 細胞の播種

96 穴マイクロプレートにヒト胎児腎臓由来の HEK293 細胞を 1.4×10⁴ cells/well となるよう 播種し、24時間培養した。

(3)-2 ベクターの細胞導入

メダカの ER αを発現するベクター、ER 応答 エレメントをホタルルシフェラーゼ遺伝子の上 流に組み込んだベクターERE-TK-Luc および恒 常的にウミシイタケルシフェラーゼが発現する 内部標準ベクターpRL-TK-RLuc を導入した。導 入試薬は FuGENE 6 (プロメガ社)を用いた。

(3)-3 リファレンス物質と被験試料の添加

ベクターの導入 4 時間後に任意に濃縮倍率を 調整したリファレンス物質および被験試料を添 加した。このとき、DMSOの最終濃度は0.1%と した。また、DMSOを最終濃度0.1%で添加する 陰性対照区を設けた。

(3)-4 発光強度の測定

リファレンス物質および被験試料の添加後、 CO₂インキュベータ内で 40 時間静置培養した。 培養完了後、細胞を溶解し、基質を添加してホタ ル及びウミシイタケルシフェリンの発光強度を Dual-Luciferase Assay System (プロメガ社)を 用いてルミノメーターで測定し、相対発光強度 (ホタル/ウミシイタケ)を算出した。

(3)-5 転写活性化倍率の算出

被験試料の濃度区の相対発光強度を、陰性対照 区の相対発光強度の平均値で除した転写活性化 倍率を算出した。

(4) 抗 ER α レポータージーンアッセイの方法 (4)-1 細胞の播種

- (3)-1と同様に操作した。
- (4)-2 ベクターの細胞導入
- (3)-2 と同様に操作した。
- (4)-3 E2、リファレンス物質および被験試料 の添加

ベクターの導入 4 時間後に、最終濃度が 2× 10⁻¹⁰ M となるように E2 の DMSO 溶液を添加し た後、任意に濃縮倍率を調整したリファレンス物 質および被験試料を添加した。DMSO の最終濃 度は 0.2%とした。また、DMSO を最終濃度 0.2% で添加する陰性対照区を設けた。

- (4)-4 発光強度の測定
- (3)-4と同様に操作した。
- (4)-5 転写活性化倍率の算出
 - (3)-5と同様に操作した。
- (5) AR β レポータージーンアッセイの方法
- (5)-1 細胞の播種

96 穴マイクロプレートにヒト肝がん細胞由来 の HepG2 細胞を 1.4×10⁴ cells/well となるよう 播種し、24 時間培養した。

(5)-2 ベクターの細胞導入

メダカの AR β を発現するベクター、AR 応答

エレメントを持つMMTV プロモーターをホタル ルシフェラーゼ遺伝子の上流に組み込んだベク ターMMTV-Luc および恒常的にウミシイタケル シフェラーゼが発現する内部標準ベクター pRL-TK-RLuc を導入した。

- (5)-3 リファレンス物質と被験試料の添加
 (3)-3 と同様に操作した。
 - (5)-4 発光強度の測定
 - (3)-4 と同様に操作した。
 - (5)-5 転写活性化倍率の算出
 - (3)-5と同様に操作した。
- (6) 抗 AR β レポータージーンッセイの方法
 - (6)-1 細胞の播種
 - (5)-1 と同様に操作した。
 - (6)-2 ベクターの細胞導入
 - (5)-2と同様に操作した。
- (6)-3 11KT、リファレンス物質および被験試料 の添加

ベクターの導入 4 時間後に、最終濃度が 1× 10⁸ M となるように11KTのDMSO 溶液を添加 した後、任意に濃縮倍率を調整したリファレンス 物質および被験試料を添加した。DMSO の最終 濃度は 0.2%とした。また、DMSO を最終濃度 0.2%で添加する陰性対照区を設けた。

- (6)-4 発光強度の測定
- (3)-4と同様に操作した。
- (6)-5 転写活性化倍率の算出 (3)-5 と同様に操作した。
- (7) TR *β* レポータージーンアッセイの方法
 - (7)-1 細胞の播種
 - (3)-1と同様に操作した。
 - (7)-2 ベクターの細胞導入

メダカの TR β を発現するベクター、TR 応答 エレメントをホタルルシフェラーゼ遺伝子の上 流に組み込んだベクターTRE-minP-Luc および 恒常的にウミシイタケルシフェラーゼが発現す る内部標準ベクターpRL-TK-RLuc を導入した。

- (7)-3 リファレンス物質と被験試料の添加
 (3)-3と同様に操作した。
- (7)-4 発光強度の測定
- (3)-4と同様に操作した。
- (7)-5 転写活性化倍率の算出
- (3)-5 と同様に操作した。
- (8) 抗 TR β レポータージーンアッセイの方法
 - (8)-1 細胞の播種
 - (3)-1と同様に操作した。
 - (8)-2 ベクターの細胞導入
 - (7)-2 と同様に操作した。
- (8)-3 T3、リファレンス物質および被験試料 の添加

ベクターの導入 4 時間後に、最終濃度が 5× 10⁹ M となるように T3 の DMSO 溶液を添加し た後、任意に濃縮倍率を調整したリファレンス物 質および被験試料を添加した。DMSO の最終濃 度は 0.2%とする。また、DMSO を最終濃度 0.2% で添加する陰性対照区を設けた。

- (8)-4 発光強度の測定
 - (3)-4と同様に操作した。
- (8)-5 転写活性化倍率の算出
- (3)-5 と同様に操作した。
- 2.4 データ解析の方法

(1) ホルモン受容体レポータージーンアッセイ 結果の解析

(1)-1 EC₅₀または PC₁₀の算出

解析ソフト GraphPad Prism (GraphPad Software 社)を用いて、3-parameter の非線形 回帰モデルにより最大活性値の 50%の転写活性 を示す濃度(EC₅₀)を算出した。

EC₅₀ が試験最高濃度よりも高濃度となった場合は、リファレンス物質の最大転写活性の 10% 値を挟む 2 点の転写活性化倍率を用いて直線回帰により陽性対照物質の最大転写活性値の 10%の転写活性を示す濃度(PC₁₀)を算出した。

試験濃度範囲において試料の転写活性化倍率 に陰性対照区と比較して主に Dunnet のパラメ トリック検定で有意 (p<0.05) な上昇が認めら れなかった場合、または、最高試験濃度における 転写活性化倍率がリファレンス物質の試験から 得られた最大転写活性の 10%値を超えなかった 場合は、被験試料は試験濃度範囲において試験対 象としたホルモン受容体に対する転写活性化が 認められないと結論した。

(1)-2 ホルモン様活性値の算出

EC50またはPC10が得られた被験試料について は、それらのリファレンス物質(E2、11KT、T3) の EC50または PC10で除して各ホルモン様活性 値を算出した。

(2) 抗ホルモン受容体レポータージーンアッセ イ結果の解析

(2)-1 IC₅₀または linIC₃₀の算出

リファレンス物質(4OHT、2OHF および 1-850) について、解析ソフト GraphPad Prism (GraphPad Software 社)を用いて、 3-parameter の非線形回帰モデルにより最大転 写活性が 50%阻害を示す濃度(IC₅₀)を算出した。

IC₅₀ が試験最高濃度より高濃度となった場合 は、リファレンス物質の最大転写活性化倍率の 70%値を挟む 2 点の転写活性化倍率を用いて直 線回帰により陽性物質の転写活性を 30%阻害す る濃度(linIC₃₀)を算出した。

試験濃度範囲において転写活性化倍率が陰性 対照区と比較して主に Dunnet のパラメトリッ ク検定で有意 (p<0.05) な低下が認められなか った場合、または、最高試験濃度における転写活 性化倍率がリファレンス物質の 70%値を超えて いる場合は、被験試料は試験濃度範囲において試 験対象としたホルモン受容体に対する転写活性 化阻害が認められないと結論した。

(2)-2 ホルモン様活性値の算出

IC₅₀又は linIC₃₀が得られた被験試料について は、それらのリファレンス物質(4OHT、2OHF、 1-850)の IC₅₀または linIC₃₀で除して各ホルモ ン様活性値を算出した。

3. 結果および考察

3.1 ホルモン受容体レポータージーンアッセイ (1) 転写活性化倍率

H25 年度調査の流入下水、二次処理水、担体 処理水、脱塩素水道水について、メダカの ER α 、 AR β および TR β レポータージーンアッセイの 転写活性化倍率と被験試料の濃縮倍率との関係 を表す用量反応曲線を、それぞれ図-2、図-3 およ び図-4 に示す。図には陽性コントロール(E2、 11KT、T3)の結果も示した。

(2) EC₅₀、PC₁₀およびホルモン様活性値の算出 被験試料およびリファレンス物質について、メ ダカの ER α、AR β および TR β レポータージー ンアッセイで得られた転写活性化倍率から算出 した、EC₅₀ または PC₁₀値および各ホルモン様活 性値をそれぞれ表-1 に示した。

ER α レポータージーンアッセイにおける EC₅₀ は、流入下水についてのみ算出され、1.73 であった。このとき、E2 の EC₅₀ は 7.18×10⁻¹⁰ M (logEC₅₀:-9.14) であった。PC₁₀ は流入下水お よび二次処理水について算出され、それぞれ 0.63 および 6.51 であった。このとき、E2 の PC₁₀ は 1.20×10⁻¹⁰ M であった。担体処理水および脱塩 素水道水についてはエストロゲン受容体の転写 活性は認められなかった。

AR β レポータージーンアッセイにおける PC₁₀は、流入下水について算出され、2.03 であ った。このとき、11KT の PC₁₀は 1.77×10⁹ M であった。二次処理水、担体処理水および脱塩素 水道水についてはアンドロゲン受容体の転写活 性が認められなかった。

TRβレポータージーンアッセイにおいては、 すべての被験試料について甲状腺ホルモン受容

図-2 各下水試料の ER α の転写活性化倍率

体の転写活性は認められなかった。

流入下水および二次処理水のエストロゲン様 活性値は、EC50 PC10値を用いて算出した結果、 それぞれ 20.1 および 5.0 ng-E2/L となった。担 体処理水および脱塩素水道水については、エスト ロゲン受容体の転写活性が認められなかったた め、エストロゲン様活性値は算出しなかった。

流入下水のアンドロゲン様活性値は、264 ng-11KT/L であった。二次処理水、担体処理水 および脱塩素水道水については、アンドロゲン受 容体の転写活性が認められなかったため、アンド ロゲン様活性値は算出されなかった。

TRβレポータージーンアッセイでは、すべて の被験試料について甲状腺ホルモン受容体の転 写活性が認められなかったため、甲状腺ホルモン 様活性値は算出しなかった。

表-1 エストロゲン、アンドロゲン、甲状腺ホルモン 様活性値の結果(H25年度調査)

10.01					
社 略計 約	EC50 (濃縮倍率)	PC ₁₀	エストロゲン様活性値		
1汉 初天 正气不干		(濃縮倍率)	(M)	(ng-E2/L)	
流入下水	1.73	0.63	7.36E-11	20.1	
2次処理水	-	6.51	1.84E-11	5.0	
高度処理水B	na	na	n.d.	n.d.	
脱塩素水道水	na	na	n.d.	n.d.	
E2	7.18E-10	1.20E-10	-	-	
被験試料	EC50	PC_{10}	アンドロゲン様活性値		
	(濃縮倍率)	(濃縮倍率)	(M)	(ng-11KT/L)	
流入下水	-	2.03	8.73E-10	264	
2次処理水	na	na	n.d.	n.d.	
担体処理水	na	na	n.d.	n.d.	
脱塩素水道水	na	na	n.d.	n.d.	
11KT	1.96E-08	1.77E-09	-	-	
 拔	EC50	PC_{10}	甲状腺ホルモン様活性値		
12,425,125,125	(濃縮倍率) ((濃縮倍率)	(M)	(ng-T3/L)	
流入下水	na	na	n.d.	n.d.	
2次処理水	na	na	n.d.	n.d.	
担体処理水	na	na	n.d.	n.d.	

3.2 抗ホルモン受容体レポータージーンアッセ イ

na

1.23E-10

n.d.

n.d.

転写活性化倍率 (1)

na

2.23E-09

脱塩素水道水

T3

H25 年度調査の流入下水、二次処理水、担体 処理水、脱塩素水道水について、メダカの抗 ER α 、抗 AR β および抗 TR β レポータージーンア ッセイの転写活性化倍率と被験試料の濃縮倍率 との関係を表す用量反応曲線を、それぞれ図-5、 図-6 および図-7 に示す。図には陽性コントロー ル(4OHT、2OHF、1-850)の結果も示した。

(2) IC₅₀、linIC₃₀ および各抗ホルモン様活性 値の算出

被験試料およびリファレンス物質について、メ

図-5 各下水試料の抗 ER a の転写活性化倍率

図-7 各下水試料の抗 TR β の転写活性化倍率

ダカの抗 ER α 、抗 AR β および抗 TR β レポータ ージーンアッセイで得られた転写活性化倍率か ら算出した。IC₅₀ または linIC₃₀の値をそれぞれ 表-2 に示した。

抗 ER $\alpha \nu$ ポータージーンアッセイおよび抗 AR $\beta \nu$ ポータージーンアッセイにおいて、すべ ての被験試料について各ホルモン受容体の転写 活性の阻害が認められなかった。抗 TR $\beta \nu$ ポー タージーンアッセイにおいて、流入下水の linIC₃₀ は 2.04 となった。このとき 1-850 の linIC₃₀ は 9.71×10⁶ M であった。

抗 ER α および抗 AR β レポータージーンアッ セイにおいて、すべての被験試料について各ホル モン受容体の転写活性阻害が認められなかった ため、各抗ホルモン様活性値は算出しなかった。

抗 TR β レポータージーンアッセイにおいて、 流入下水の抗甲状腺ホルモン様活性値は 2.20× 10⁶ ng-1-850/L と算出された。

表-2 抗エストロゲン、抗アンドロゲン、抗甲状腺ホ ルモン様活性値の結果(H25 年度調査)

社 話会 計 実し	IC ₅₀	linIC ₃₀	抗エストロゲン様活性値		
1汉 视天 正气不干	(濃縮倍率)	(濃縮倍率)	(M)	(ng-4OHT/L)	
流入下水	na	na	n.d.	n.d.	
2次処理水	na	na	n.d.	n.d.	
担体処理水	na	na	n.d.	n.d.	
脱塩素水道水	na	na	n.d.	n.d.	
40HT	1.19E-08	1.92E-09	-	-	
	IC ₅₀	linIC ₃₀	抗アンドロゲン様活性値		
做映武科	(濃縮倍率) (濃縮倍率)	(M)	(ng-2OHF/L)		
流入下水	na	na	n.d.	n.d.	
2次処理水	na	na	n.d.	n.d.	
担体処理水	na	na	n.d.	n.d.	
脱塩素水道水	na	na	n.d.	n.d.	
20HF	4.61E-08	2.61E-08	-	-	
	**		古田状腹ホパ	レモン様活性値	
被験試料	IC50	IC ₅₀ linIC ₃₀ (濃縮倍率) (濃縮倍率)			
	(濃縮倍率)		(M)	(ng-1-850/L)	
流入下水	-	2.04	4.75E-06	2.20E+06	
2次処理水	na	na	n.d.	n.d.	
担体処理水	na	na	n.d.	n.d.	
脱塩素水道水	na	na	n.d.	n.d.	
1-850	7.29E-01	9.71E-06	-	-	

3.3 25年度と26年度調査の結果の比較

図-8、9は、H25とH26年度調査の各ホルモン様活性値の測定結果である。H25とH26とも 同様の傾向を示し、流入下水では、エストロゲン、 アンドロゲン、抗甲状腺ホルモン様活性が検出さ れ、二次処理水では、エストロゲン様活性が微量 に検出された。活性汚泥処理でエストロゲン、ア ンドロゲン、抗甲状腺ホルモン様活性は、低下し ていることがわかるが、エストロゲン様活性は、 活性汚泥処理後も残存する可能性があった。担体 処理後は、エストロゲン様活性は検出されなかっ た。担体処理は二次処理水に残存するエストロゲン様活性の低下に効果があることがわかった。

図-8 H25 年度の各ホルモン様活性値の測定結果

図-9 H26 年度の各ホルモン様活性値の測定結果

4.おわりに

下水処理工程でのエストロゲン、アンドロゲン、 甲状腺ホルモン、抗エストロゲン、抗アンドロゲン、 抗甲状腺ホルモン様活性の実態と低減効果を 明らかにするため、流入下水、活性汚泥二次処理 水、微生物保持担体処理水中のこれらのホルモン 様活性値を測定した。

その結果、流入下水では、エストロゲン、アン ドロゲン、抗甲状腺ホルモン様活性が検出された。 二次処理水では、エストロゲン様活性のみが微量 であるが検出された。活性汚泥処理でエストロゲ ン、アンドロゲン、抗甲状腺ホルモン様活性は低 減されることがわかったが、エストロゲン様活性 は、活性汚泥処理後も残存する可能性があった。 担体処理水は、エストロゲン様活性は検出されな かった。

今後は、レポータージーンアッセイの結果とメ ダカの遺伝子レベルでの反応との関係を調査し ていく予定である。

参考文献

 M. Ihara et. al. (2014), Environ. Sci. Technol., 48(11), 6366-6373.

消毒副生成物の水環境中での挙動とその影響に関する研究

水質チーム 上 席 研 究 員 岡本誠一郎総括主任研究員 小 森 行 也

1. はじめに

平成24年5月に利根川水系の浄水場で、水道水質基準を上回るホルムアルデヒドが検出されたことから、取水 停止等による断水等が発生する事故があった。この事故の原因は、ホルムアルデヒドが直接流出したのではなく、 利根川の上流で流れ出した化学物質(ホルムアルデヒド前駆物質)と浄水場の消毒用塩素が反応してホルムアル デヒドが生成し、水道水質基準を超過したものと推定され、その後の原因調査により、河川に排出されたヘキサ メチレンテトラミン(HMT)が下流に流下し、利根川水系の広範囲の浄水場において、浄水過程で注入される塩 素と反応し、消毒副生成物としてホルムアルデヒドが生成されたと推定されている¹⁾。下水道における下水処理水 の多くは塩素消毒した後、公共用水域へ放流されることから、ホルムアルデヒド前駆物質が下水処理水中に残存 する場合、浄水処理の塩素消毒と同様にホルムアルデヒドが生成する可能性がある。

そこで本研究では、下水処理水にホルムアルデヒド前駆物質として HMT を添加し、下水処理水の塩素消毒におけるホルムアルデヒド生成実験を行なった。

2. 実験方法

ホルムアルデヒド生成実験は、下水処理水 2 種(二次処理水と急速ろ過水)について実施した。実下水を流入 水とする活性汚泥処理実験装置より供試水を採取し実験室に持ち帰った後、直ちに 20℃恒温水槽内に沈め、生成 実験直前まで 20℃で保温した。20℃恒温室で行なった実験手順を以下に示す。

(1) 試料 500 mL を 500 mL 容三角フラスコに移し、HMT を 0.01mg/L、0.025mg/L、0.05mg/L、0.075mg/L、0.1mg/L の 5 段階となるように添加した。

(2) 次亜塩素酸ナトリウム水溶液(遊離塩素:1,000 mg/L)を二次処理水の塩素消毒 ²における塩素の注入率(2~4mg/L)を参考に、その上限値の 4 mg/L となるように添加した。

(3) マグネチックスターラー(攪拌子; テフロン被覆)を用い、30分間 300rpm で攪拌した。

(4) 攪拌 30 分後、残留塩素測定用試料として試料 50 mL をねじ口瓶に分取した後、残った試料にチオ硫酸ナト リウム水溶液を添加した。

(5) 試料 50 mL を 100 mL 容分液漏斗に分取し、上水試験方法 2011 年版「5.アルデヒド」の方法に従い各試料 2 検体ずつ前処理を行ない、抽出試料中のホルムアルデヒドを GC/MS により測定した。

3. 実験結果

試験に供した二次処理水、急速ろ過水の一般水質項目の分析結果を表-1に示す。二次処理水のBODが39mg/Lと高い値を示した他は、通常の二次処理水、急速ろ過水と同等の水質であった。また、NH4-Nが15mg/L、14mg/Lであり硝化抑制型の運転となっていた。BODが通常の二次処理水に比べ高い値となった原因は、二次処理水中に流出がみられた活性汚泥によるものと考えられる。

表-1 供試水の水質 (mg/L)

	二次処理水	急速ろ過水
BOD	39	9.7
COD	13	8.0
DOC	12	12
SS	15	0.8
NH ₄ -N	15	14
NO _x -N	0.25	0.04
T-N	19	20
T-P	0.45	0.11

ホルムアルデヒド生成実験の残 留塩素測定結果を表-2、HMT 添加 濃度と塩素消毒におけるホルムア ルデヒド生成濃度の関係を図-1 に 示す。表-2より全ての試験溶液にお いて、遊離塩素(Free)は0.1mg/L であった。結合塩素を含む全塩素

(Total)は、3.6~4.0mg/L と添加

塩素濃度の90%以上を示した。次亜塩素酸ナトリウム は、水と反応し次亜塩素酸、次亜塩素酸イオンを形成 し、殺菌効果を示すことが知られているが、水中に NH4-N や有機性窒素が存在する場合には結合塩素の クロラミンを形成 ²⁾する。本実験試料には NH4-N が 15mg/L 程度存在することから、塩素添加 30 分後の残 留塩素の多くはクロラミン等の結合塩素と考えられる。 1gの HMT は塩素と反応して理論上最大で 1.29gのホ ルムアルデヒドを生成する。小林ら³⁾は、水道原水 10 検体を用いた試験において、①ホルムアルデヒド生成 能(mg/L) と②理論上生成するホルムアルデヒド (mg/L)の比(②/①)が 78~121%であったと報告 している。

表-2 塩素添加 30 分後の残留塩素濃度 (mg/L)

		HMT濃度 (mg/L)					
		0.01	0.025	0.05	0.075	0.1	
		Free	0.1	0.1	0.1	0.1	0.1
残留		Total	4.0	3.7	3.8	3.7	3.8
塩素	急速ろ過水	Free	0.1	0.1	0.1	0.1	0.1
		Total	3.6	3.6	3.8	3.7	3.8

①ホルムアルデヒド生成能/②理論上生成するホルムアルデヒドを「ホルムアルデヒド生成率」と定義すると、 下水処理水中に存在する HMT のホルムアルデヒド生成率は、二次処理水で 35%、急速ろ過水で 26%となった(図 -1 参照)。下水処理水を用いた本実験による HMT のホルムアルデヒド生成率は、水道原水を用いた試験結果に比 べ約 1/3 と低い値となったが、塩素添加 30 分後の残留塩素は、遊離塩素の濃度は低く、殆んどが結合塩素であっ たと考えられることから、添加塩素の多くが試料中の NH4-N との反応により消費されたものと考えられる。

4. まとめ

下水処理水にホルムアルデヒド前駆物質として HMT を添加し、下水処理水の塩素消毒におけるホルムアルデヒ ド生成実験を行なったところ、下水処理水中に存在する HMT のホルムアルデヒド生成率は、水道原水や理論値と 比較してかなり低い値であり、二次処理水で 35%、急速ろ過水で 26%であった。

「なお、本調査研究は、運営交付金(一般勘定)により実施されたものである。」

【参考文献】

1) 環境省、利根川水系における取水障害に関する今後の措置に係る検討会中間取りまとめ、平成 24 年 8 月、 http://www.env.go.jp/water/confs/tonegawa_intake/interim_rep.pdf、平成 27 年 4 月現在

2) 下水道維持管理指針-実務編-2014 年版、公益社団法人日本下水道協会、平成 26 年 9 月 12 日発行

3) 小林憲弘 他、ホルムアルデヒド水質汚染の原因物質の特定に至る経緯と水道水中の未規制物質の管理におけ る今後の課題、日本リスク研究学会誌、32(2)、pp.60-70 (2013)

河川水における溶存態有機物の粒径画分の特性解析と

生体·生態影響評価

水質チーム	上席研	究員		岡本調	成一郎
	主任研	究員		對馬	育夫
	研究	員		真野	浩行
中央大学	准教授	山村	寛	(共同研究	窀者)

【要旨】

本研究では、利根川水系を対象として、河川水中に含まれる微量なナノ粒子成分がヒト細胞および水生生物に与える影響を評価するため、濃縮河川水によるヒト細胞や水生生物を用いた毒性評価試験を実施するとともに、濃縮河川水に含まれる重金属成分や有機物特性を解析した。その結果、2014年8月に採水したサンプルを用いた場合、細胞毒性は上流部で最も高く、流下に伴い減少した。一方、藻類を用いた生物応答試験では、高濃度濃縮サンプルによる有意な生長阻害が見られたものの、他の水生生物では、有意な影響は観察されなかった。また、各粒径画分に含まれる有機物特性を分析した結果、河川中に含まれる溶存有機物自体もしくは複合体としての溶存有機物が直接的・間接的に毒性に影響していることが示唆された。

キーワード:ナノ物質、河川水、影響評価、ヒト細胞、水生生物

1. はじめに

近年、河川や湖沼などの環境水中から様々な人的由来 の微量汚染物質が検出されており、これら成分による健 康・生態リスクの把握および制御技術の開発が求められ ている。特に近年、ナノテクノロジーの発展に伴い、ナ ノマテリアル生産量が増加し、ナノ成分による環境汚染 が危惧されるようになっている[1]。ナノ粒子は0.1 µm 以 下の粒径を持つ成分全般を指し、炭素等の有機系とシリ カや金・銀などの無機系に分類される。これらのナノ粒 子は医療やエレクトロニクス分野、環境エネルギー分野 において既に実用的に利用されており、製造工場や家庭 排水処理場から流出していることが過去の研究により報 告されている[2]。また、全般的に、ナノ粒子は生態毒性 が極めて高いことが明かになっており、既存の微量汚染 物質に加えて、注意を要する成分とされる[2-6]。

既往の研究では、あるナノ粒子成分に着目し、各浄水 プロセスでの処理性や下水処理場内での挙動に着目した 研究が多く見られる。それらの研究の多くは、ナノ粒子 を添加し、その増減を調査しているが、自然環境中に存 在するナノ粒子の形態と大きく異なるため、これらの研 究により得られた結果では、実環境を反映していないこ とが予想される[5]。実環境下では、ナノ粒子の存在濃度 が極めて低いことに加え、塩や有機・無機コロイドなど が存在することから、ナノ粒子の挙動解明は極めて難し いとされる。そのため、これまでに自然水中に存在する ナノ粒子の挙動を検討した例は一例も存在しない。過去 のラボ実験によるスパイク実験の結果から、自然水中で ナノ粒子は、有機物の総称である Natural Organic Matter (NOM)と共存することで、安定化していると考えられ ている[4]。NOM は、広い分子量分布を示し、複雑な分 子構造、かつ多くの官能基を有することから有機・無機 物のキャリアとして機能する[7-10]。よって、ナノ粒子の 自然界での挙動を明かにするためには、ナノ粒子が共存 しやすい NOM の粒径画分や有機物特性を明かにする必 要があると考える。

自然界に存在するナノ粒子の毒性について、既往の研究では、単独のナノ粒子による毒性評価に関する研究が多く見られる。一方で、2種以上の微量汚染物質による 複合作用や夾雑物と微量汚染物質の相互作用により、毒性の強度や効果が変化することが Escher ら[11]の研究により明かになっている。したがって、自然環境水中では、 ナノ粒子はおそらく NOM と共存していることが予想さ れるため、ナノ粒子の毒性を評価するにあたっては、単 独のナノ粒子ではなく、NOM と共存した状態で毒性を 評価することが重要になると考える。

以上より、本研究では、河川水中に含まれる微量なナノ粒子成分の定量・定性方法を確立し、これらのナノ粒 子がヒト細胞および水生生物に与える影響を評価するこ とを目的とする。平成26年度は、利根川を対象として、 河川水を濃縮することによるナノ粒子分析を実施した他、 濃縮サンプルを用いた生体毒性試験および水生生物毒性 評価試験を実施した。また、利根川河川中のNOMを粒 径毎に分画し、各分画について生体影響を評価するとと もに、重金属成分・有機物特性を解析した。

2. 実験方法

2.1 採水地点

図1に示す8箇所のサンプリングポイントで20Lのサ ンプルを採水し、TOC、UV および蛍光特性が大きく変 化する点を事前に調査した。その結果、4箇所(St. 1:広 瀬橋、St. 2:渡船場、St. 3:利根橋、St. 4:若草大橋)におい て河川水質が大きく変化することが明かになったため、 本研究でのサンプリングポイントとして選択した。採水 は平成26年8月34日に行い、各サンプリングポイント で約200Lの河川水を採取した。

図1 サンプリングポイント

2.2 濃縮·分画

St. 1~4 (St.1:広瀬橋、St. 2:渡船場、St. 3:利根橋、St. 4: 若草大橋)から各 200 L 採水した後に、0.45 μmの膜によ り懸濁質を除去したサンプルを、RO 膜 (DOW 製; SW 膜)により 30 倍以上に濃縮した。濃縮の際には、RO 膜 のファウリングが進行しないように、クロスフロー流速 を1 m/s 以上に設定すると共に、有機物が膜から溶出し ないように、膜ろ過液の TOC を on-line で連続的にモニ タリングした。膜ろ過液の TOC が 0.5 mg/L を超えた際 に、濃縮運転を停止した。濃縮後に、有機物の回収率を 算出することで、本研究により用いた濃縮方法の妥当性 を判断した。濃縮したサンプルは続いて、吸引ろ過装置 (図2)を用いて、0.22 μmのPES 製 MF 膜、200 kDa の

Polysulfone 製 UF 膜、 50 kDa の Polysulfone 製 UF 膜に順次ろ過す ることで、有機物の大 きさに応じて分画した。 各膜によりろ過したサ ンプルは、細胞毒性試 験及び水質分析に供し た。また、これらのサ ンプルについて、蛍光 分光光度計による有機 物特性解析を行った。

図-2 吸引ろ過装置の外観図

2.3 有機物特性解析

有機物分析は、蛍光分光光度計を用いて、3次元励起蛍 光スペクトル分析を行うことで分析した。3次元励起蛍光分 光スペクトルは、蛍光により検出される有機物を網羅的に高 感度に検出し得る優れた方法である。本研究では、励起・ 蛍光バンド幅5 nm に設定し、220 nm から 550 nm の幅でス ペクトルを取得し、有機物を推定した。

2.4 ヒト細胞を用いた毒性評価

本実験にはヒト肝癌由来細胞株(HepG2)を用いた。細胞は、MEM 培地(10%FBS、0.1 mM NEAA、 0.03% L-グルタミン、0.2%炭酸水素ナトリウム添加)を用い、飽和 水蒸気、CO25%、37°C条件下で培養した。ろ過試料と 10倍濃縮 MEM 培地を体積比9:1の割合で混合(FBS 1%) し、pH を 7.2~7.5 に調整した。本液を細胞の培養液と置 換し、48 時間暴露後、各試料につき 3 枚のディッシュを 用い、トリパンブルー染色により生細胞を計数した。

2.5 水生生物を用いた毒性評価

本研究では、水生生物として、ムレミカヅキモ (Pseudokirchneriella subcapitata、NIES-35株)、オオミジ ンコ (Daphnia magna)、ゼブラフィッシュ (Danio rerio) を用いた。St. 2 の濃縮サンプルを適宜希釈し、実験に供 した。ムレミカヅキモを用いた藻類生長阻害試験では、 試験水に72時間曝露させ、生長速度を調査した。試験区 ごとに5 連実施した。オオミジンコを用いた遊泳阻害試 験では、試験水 50mL の入った 50mL ガラスビーカーに 24時間以内に産まれた5匹を入れた後に、48時間暴露し、 正常遊泳個体数を24時間ごとに調査した。試験区ごとに 4 連実施した。ゼブラフィッシュを用いた魚類胚仔魚試 験では、試験水50mLの入った50mLガラスビーカーに 胚15個を入れた後に、8日間曝露させ、孵化率、生存率、 生存仔魚率を調査した。試験区ごとに3連実施した。

3. 結果と考察

3.1 濃縮効率

表1に今回の濃縮試験方法により達成した濃縮効率を 示す。本試験では、RO 膜による濃縮を実施したため、 膜を透過したものは回収することができない。今回使用 した膜では、72%の有機物を回収でき、膜を透過した有 機物は28%となった。既往の研究結果[12]と比較しても、 遜色ない回収率を達成できたため、ほとんどの有機物を 回収することができたと判断した。今後の試験では、さ らに回収率を上げるために、膜ろ過回収の際にクロスフ ロー流速を上げるとともに、ろ過圧力を下げることが重 要となる。

	水量	TOC	Carbon 量
	(L)	(mg/L)	(mg)
初期	170	2.1	360
濃縮後	2.7	95	260
濃縮倍率		45	
回収率 (%)			72

表1河川水濃縮の結果

3.2 毒性試験

3.2.1 ヒト細胞を用いた毒性試験

図3に利根川河川水濃縮試料の細胞毒性試験結果を示 す。最大暴露濃度(濃縮倍率)がSt.2でやや低くなって しまったものの、同程度のDOCレベル(例えば40 mg/L) で比較すると、St.1の細胞生存率が10%以下であるのに 対し、St.2およびSt.3が約50%と同程度、St.4では生存 率の低下が確認されない結果となった。したがって、利 根川河川水を用いた評価によれば、利根川河川水の細胞 毒性は最上流部で最も高く、流下に伴って減少すること が明らかとなった。一方で、St.4においては、40 mg/L 以下の暴露濃度領域において細胞生存率が増加している ことから、毒性作用と断定することはできないものの、 St.4の河川水もHepG2に何らかのアブノーマルな影響 を及ぼす可能性が示唆された。

図3 河川水濃縮試料の細胞毒性試験結果

今回検討した河川水試料の水質分析結果を図4に示す。 St.1のDOCを除き、DOCおよび窒素類は下流になるほ ど濃度が高くなった。ICPによる元素一斉分析の結果、 Fe、Mn(およびZn)は採水サンプルではSt.1のみで検 出され、自然由来の成分と推察される。また、上記元素 を除き、地点間で検出される元素の種類に大差はなく、 ピーク強度は下流になるほど強くなっていた。

3.2.2 水生生物を用いた毒性試験

ムレミカヅキモを用いた毒性試験の結果を図5に示す。 その結果、濃縮倍率が10倍以上の処理区では、対照区と 比べて有意な生長速度の低下が見られた。オオミジンコ を用いた毒性試験では、濃縮倍率が20倍までの範囲で、 遊泳異常は観察されなかった(図6)。ゼブラフィッシュ を用いた毒性試験では、試験区間で孵化率、生存率、生 存仔魚率に大きな差はみられなかった(図7-9)。

図5 ムレミカヅキモを用いた毒性試験

図7 ゼブラフィッシュを用いた毒性試験(孵化率)

図8 ゼブラフィッシュを用いた毒性試験(生存率)

図9 ゼブラフィッシュを用いた毒性試験(生存仔魚率)

3.4 分画試験

図 10 に利根川河川水濃縮試料を段階的にろ過した際 の細胞毒性の変化を示す。0.22 µm 膜のろ液における細 胞死滅率(1-細胞生存率)を1とし、それに対する200kDa 膜および 50 kDa 膜のろ液における細胞死滅率を相対毒 性値(以下、毒性値)として表わしている。St.1および St.4 における毒性値は200 kDa 膜によるろ過で20%以上 低下し、50kDa 膜のろ過後には当初の約50%か、それ以 下となっていた。200 kDa 膜ろ過、50 kDa 膜ろ過におけ る毒性値の減少幅は、St.2ではそれぞれ35%、30%であ ったのに対し、St.4では22%、27%であった。本結果よ り、St. 1 および St. 4 の利根川河川水では 0.22 µm - 200 kDa、200 kDa - 50 kDa のそれぞれの画分に細胞毒性の由 来する成分が存在していることが示唆された。一方、St.2 および St. 3 では、200 kDa 膜ろ過で毒性値の顕著な変化 は確認されなかった上、St.2では50kDa 膜ろ過後に毒性 値が30%増加する結果となった。このことは、50kDa膜 ろ過によって、何らかの形で細胞毒性の原因物質をマス クしていた成分(ある種のタンパク質や NOM など)が 取り除かれたためではないかと推察する。

図 10 利根川河川水の段階的ろ過水における細胞毒性の 変化

3.5 水質分析

ろ過試験により取得した水試料の水質分析結果を図 11に示す。DOC、TN及び各種場イオン・陰イオンの観 点からは、段階的ろ過による顕著な水質の変化はなかっ た。なお、CN比はSt.1において8.4~9.3であり、その 他の地点(0.6~1.4)と比較して高い値を示した。

3.6 有機物特性解析

図 12 および図 13 に、それぞれ 200 kDa および 50 kDa 膜ろ過で除去された有機物の EEM スペクトルを示す。 St.1とSt.4のスペクトルパターンは比較的類似しており、 いずれのろ過段階においてもタンパク質に由来するピー ク(位置 A)が出現していた。加えて、50kDa 膜ろ過で はフミン質に由来するピーク(位置 B)も確認された。 一方、St.2の200kDa ろ過およびSt.3の50kDa ろ過で は、タンパク質及びフミン質由来のピークと、それらピ ークの裾野に埋もれているより小さなピークの存在も推 察され、除去された有機物中により多様な NOM を含有 する可能性が示唆された[13,14]。

以上、観察された St.1 および St.4 の EMM スペクトル

図11 ろ過試験により取得した水試料の水質分析結果

の類似性が細胞毒性の変化に対応していることから、 NOM それ自体もしくはマトリクスとしての NOM が直 接的もしくは間接的に細胞毒性に影響を与えているので はないかと考える。今回採水した水に含まれる有機物は、 EEM によりある程度判別出来たものの、より詳細な検討 が必要と考える。今後は、FTIR やNMR 等のより詳細な 化学構造を判別しうる化学分析手法を取り入れて、有機 物特性を明かにする必要があると考える

図-12 200kDa の膜で透過した有機物の 3 次元励起スペ クトル分析結果

図-13 50 kDa の膜を透過した有機物の 3 次元励起スペクトル分析結果

4まとめ

本研究では、自然環境中に存在するナノ物質の挙動、 毒性を把握するため、利根川河川水を濃縮し、生体毒性 試験および水生生物毒性評価試験を実施した。その結果、 以下の知見が得られた。

- ・有機物の回収率 72%を達成し、RO 膜を使った有機物の濃縮に成功した。
- ・PtやTiのような金属ナノ粒子は、利根川流域では検出 されなかった。
- ・今回の実験では、細胞毒性は河川上流部で最も高く、 流下に伴って減少した。上流部に、何か毒性作用を示 す成分が混入していたことを示しているが、通常の水 質分析では、St1 に特別な差異は見当たらなかった。
- ・粒径毎に毒性を比較した結果、St.1およびSt.4に共通 点が観察され、毒性値は200 kDa 膜ろ過で20%以上低 下し、50 kDa 膜ろ過で約50%以下に低下することが明 かになった。これにより、St.1およびSt.4は、0.22 µm ~200 kDa および200 kDa~50 kDa の画分に細胞毒性の 由来する成分が存在していることが示唆された。
- ・St. 2 および St. 3 に共通点が観察され、200 kDa 膜ろ過 で変化せず、St. 2 では 50 kDa 膜ろ過後に毒性値が 30% 増加した。これは、50 kDa 膜ろ過によって、何らかの 形で細胞毒性の原因物質をマスクしていた成分(ある 種のタンパク質や NOM など)が取り除かれたためで はないかと推察する。
- ・各粒径画分に含まれる有機物特性を分析した結果、St. 1とSt.4に共通点が見られたことから、NOM 自体もし くはマトリックスとしての NOM が直接的・間接的に 毒性に影響していることが示唆された。

今後は、粒径画分の解像度の向上や別の有機物特性の 評価手法を用い、検討を進めていく予定である。

参考文献

- S. Bakand, A. Hayes, F. Dechsakulthorn, Nanoparticles: a review of particle toxicology following inhalation exposure, Inhal Toxicol, 24 (2012) 125-135.
- [2] K. Donaldson, C.A. Poland, Nanotoxicity: challenging the myth of nano-specific toxicity, Curr Opin Biotech, 24 (2013) 724-734.
- [3] T. Walser, D. Meyer, W. Fransman, H. Buist, E. Kuijpers, D. Brouwer, Life-cycle assessment framework for indoor emissions of synthetic nanoparticles, J Nanopart Res, 17 (2015).
- [4] S.J. Lin, A.A. Taylor, Z.X. Ji, C.H. Chang, N.M. Kinsinger, W. Ueng, S.L. Walker, A.E. Nel, Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent, Acs Nano, 9 (2015) 2038-2048.

- [5] N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the environment, Environ Sci Technol, 42 (2008) 4447-4453.
- [6] B. Reidy, A. Haase, A. Luch, K.A. Dawson, I. Lynch, Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications, Materials, 6 (2013) 2295-2350.
- [7] V.K. Sharma, Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment-A Review, J Environ Sci Heal A, 44 (2009) 1485-1495.
- [8] A.J. Pelley, N. Tufenkji, Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media, J Colloid Interf Sci, 321 (2008) 74-83.
- [9] D.H. Lin, J. Ji, Z.F. Long, K. Yang, F.C. Wu, The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp., Water Res, 46

(2012) 4477-4487.

- [10] T. Hiemstra, J. Antelo, R. Rahnemaie, W.H. van Riemsdijk, Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples, Geochim Cosmochim Ac, 74 (2010) 41-58.
- [11] B.I. Escher, K. Fenner, Recent Advances in Environmental Risk Assessment of Transformation Products, Environ Sci Technol, 45 (2011) 3835-3847.
- [12] L. Sun, E.M. Perdue, J.F. Mccarthy, Using Reverse -Osmosis to Obtain Organic-Matter from Surface and Ground Waters, Water Res, 29 (1995) 1471-1477.
- [13] J. Chen, E.J. LeBoef, S. Dai, B.H. Gu, Fluorescence spectroscopic studies of natural organic matter fractions, Chemosphere, 50 (2003) 639-647.
- [14] W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter, Environ Sci Technol, 37 (2003) 5701-5710.

下水処理水が両生類の変態に及ぼす影響に関する基礎的研究

研究予算:運営費交付金(一般勘定) 研究期間:平26~平28 担当チーム:水環境研究グループ(水質) 研究担当者:岡本誠一郎、北村友一

【要旨】

下水処理水がオタマジャクシの変態に及ぼす影響を明らかにするため、孵化後のアフリカツメガエルのオタマ ジャシがカエルに変態するまでの間、実下水処理水中で飼育し、下水処理水中でオタマジャクシの変態が可能か を明らかにするとともに、変態遅延など指標となる生体影響の解明を目指した。その結果、下水処理水曝露区は、 対照区よりオタマジャクシの成長が早く変態開始時期が早くなった。しかし、変態に要する時間は、中央値でみ ると対照区では約20日、下水処理曝露区で約60日となり、下水処理水曝露区では変態遅延の傾向がみられた。

キーワード:アフリカツメカエル、変態、下水処理水

1. はじめに

下水処理水の再利用量の増大に伴い、一部の都市 河川では河川水に占める下水処理水の割合が 100% 近く達する場合がある。農業地域においても、農業 集落排水処理場の処理水は水田地帯の小河川に放流 されている。このように、下水処理水は河川水量の 維持用水として主要な水源となっている。さらに、 農業用水の水不足が懸念される地域では、下水処理 水の水稲の灌漑用水としての再利用も検討され始め ている。一方で、近年、下水処理水中に両生類や魚 類に奇形を生じるレチノイン酸様物質が含まれてい ることが明らかとなってきた1)。水生生態の保全の ためには、下水処理水に水生生物への影響がないこ とを確認し、河川や湖に放流または再利用する必要 がある。現在、水生生物に影響がある個別の化学物 質の排水基準は一部あるものの、多くの化学物質は 規制対象外となっており、水生生物への影響が懸念 される物質や、影響の有無すら分かっていない物質 も多いのが現状である。河川・湖水中の水生生物の 保全は、その場にいる生物個体群の存続が重要であ り、下水処理水の水生生物への安全は、繁殖、すな わち、次世代が残せるかどうかから評価する必要が ある。こうした背景から環境省では排水の安全性を 藻類、ミジンコの繁殖、魚類胚の毒性試験について 技術面と制度面から検討している。しかし、この環 境省の試験では、両生類は対象外となっており、両

生類の繁殖への影響は評価できない。一方で、オタ マジャクシを農薬に曝露した実験では、変態の遅延 が生じることが報告され²⁾、また、環境中で奇形の カエルが発見される事例の報告も見られることから、 両生類の生態影響評価についても知見を集積してい く必要がある。両生類の個体群存続評価も、フルラ イフサイクルの繁殖試験から評価することが望まし い。しかし、両生類の繁殖は実験的に困難であるこ とや1年程度の試験期間を必要とし、繁殖試験を排 水モニタリングに適用することは困難である。両生 類であるカエルは、変態後性成熟し繁殖可能となる ことから、個体群存続の評価には、変態がより安全 側での指標になると考えられる。オタマジャクシ(ア フリカツメガエル)の変態は生後 4~5 カ月程度で 終了することから、繁殖試験より短期間で評価可能 となり、オタマジャクシの変態を指標として排水の 安全性を評価できる可能性がある。

本研究は、下水処理水がオタマジャクシの変態に 及ぼす影響を明らかにするため、孵化後のオタマジ ャシがカエルに変態するまでの間、下水処理水中で 飼育し、オタマジャクシの変態への影響を明らかに するとともに、変態遅延など指標となる生体影響を 明らかにするものである。

2. 実験方法

2.1 供試カエル

実験では、浜松生物教材から購入したアフリカツ メガエルを、人工的に交尾・産卵させ試験に供する オタマジャクシを得た。交尾・産卵の手順は以下の とおりである。プラスチック製コンテナに、カゴ(コ ンテナ内に丁度収まる程度の大きさ)を合わせて底 を2重にした水槽を用意した。これに卵を包んでい るゼリーが水槽の壁へ付着するのを防ぐため、0.2% NaClの水を水槽の7分目まで入れ、さらに、カゴの 外からエアーポンプで十分にエアレーションをおこ なった。1ml の注射器でカエルの背部リンパ嚢にヒ ト胎盤性 gonadotorophin (1,000u/mL)を雄には 250 mL、雌には500 mLを投与し、プラスチックコンテ ナに一晩入れた。翌日、産卵した卵を駒込ピペット で回収し、卵を包むゼリー状物質の除去は行わず、 脱塩素水道水の流水式水槽に移し、孵化させ、孵化 後 2~3 日のオタマジャクシを下水処理水曝露試験 に供した。

2.2 下水処理実験装置とオタマジャクシ曝露水槽

下水処理実験装置とオタマジャクシ曝露水槽の概 要を図-1に示す。下水処理実験装置は、最初沈殿池 (500L)、生物反応槽(500L×4槽)、最終沈殿池(700L) から構成されている。

流入下水は、分流式下水道として整備され主に生 活排水が流入する下水処理場の生下水を用いた。生 物反応槽は、第1槽から第4槽まで全面エアレーシ ョンを行う、標準活性汚泥法による処理を行った。 水理学的滞留時間(HRT)は、7時間となるように流 入水量を制御した。二次処理水は砂ろ過を行い、砂 ろ過水をオタマジャクシの曝露水とした。オタマジ ャクシの曝露は流水式とし、水槽は10L、1水槽と し、孵化後2~3日目のオタマジャクシを50匹投入 した。対照区として脱塩素水道水曝露区を設置した。

図-1 下水処理装置とオタマジャクシ曝露水槽の 概要

2.3 オタマジャクシの飼育と変態の観察

オタマジャクシの曝露条件は、水温:23℃、明暗 周期:明期16h,暗期8h、給餌:1日1回オタマジ ャクシ用餌(浜松生物教材)を給餌した。オタマジ ャクシの変態観察は、変態が始まった頃から P.D.Nieuwkoop and J.Faberのステージ表³⁾に従って1 匹ずつ観察し、発達ステージを記録した。

2.3 水質分析

曝露水の性状を把握するため、各曝露水槽の水温、 pH、DO、EC、DOC、NH₄-N、NO₃-Nの分析を行った。

3. 実験結果

3.1 曝露水質分析の結果

曝露水の各水質項目の分析結果を図-2 に示す。水 温は下水処理水曝露区、対照区とも概ね 23℃に維持 されていた。pH、DO は対照区が高目となっていた。 活性汚泥処理が硝化抑制運転となっていたため、下 水処理水曝露区の NH₄-N が高かった。

図-3 P.D.Nieuwkoop and J.Faber のアフリカツメガエルの 43 から 66 の発達ステージ³⁾

下水処理水曝露区

図-4 対照区と下水処理水曝露区の変態期間の生残率と変態ステージの経日変化

3.2 オタマジャクシの変態試験の結果

図-3 に P. D. Nieuwkoop and J. Faber のアフリカツ メガエルの 43 から 66 の発達ステージを示した。46 ステージから後ろ足が出始め、66 ステージで変態が 完了している。

対照区と下水処理水曝露区のオタマジャクシの 46 ステージ以降の変態の進行結果を図-4 に示す。図 には各水槽の生残率も合わせて示した。

生残率は、下水処理水の方が高く、下水処理水に は致死毒性はなかったと考えられる。

下水処理水曝露区は、対照区よりオタマジャクシ の成長が早く、変態が始まる時期が早くなった。一 方で、変態に要する時間は、中央値でみると対照区 では約20日、下水処理曝露区で約60日となり、下 水処理水曝露区で変態遅延の傾向がみられた。ただ し、図よりわかるとおり、変態ステージの個体差が 大きかったことから、下水処理水がオタマジャクシ の変態に与える影響については、再実験による検証 が必要と考えられる。再実験に当たっては、飼育密 度の均一化や各個体の発達ステージが同調する近交 系のカエルの使用など、実験条件の見直しも必要と 考えられる。

4.おわりに

下水処理水がオタマジャクシの変態に及ぼす影響 を明らかにするため、孵化後のアフリカツメガエル のオタマジャシをカエルに変態するまでの間、実下 水処理水中で飼育し、下水処理水中でオタマジャク シの変態が可能かどうかを明らかにするとともに、 変態の遅延など指標となる生体影響の解明を目指し た。その結果、下水処理水曝露区は、対照区よりオ タマジャクシの成長が早く、変態が始まる時期が早 くなった。一方で、変態にかかる時間は、中央値で みると対照区では約20日、下水処理曝露区で約60 日となり、下水処理水曝露区で遅延する傾向がみら れた。

参考文献

- 澤田和子,井上大介,清和成,池道彦:都市 下水処理場におけるレチノイン酸類および4-oxo-レチノイン酸類の挙動の解析,水環境学会誌,Vol. 36, No. 2, pp.57-65, 2013
- 2)Jennifer L. Freeman and A. Lane Rayburn : Developmental impact of atrazine on metamorphing *Xenopus laevis* as revealed by nuclear analysis and morphology,Environmental Toxicology and Chemistry, Vol.24, No.7, pp.1648-1653, 2005
- 3) P.D.Nieuwkoop and J.Faber:Normal table of *Xenopus lavies* (Daudin):A Systematical & Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis (Daudin) : a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorp, Routledge, 1994

21 世紀型都市水循環系の構築のための水再生技術の開発と評価(バイオモニタリング)

研究予算:戦略的創造研究推進事業(CREST) 担当チーム:材料資源・水環境研究グループ(水質) 研究担当者:鈴木 穣、岡本誠一郎、南山瑞彦、 北村友一、真野浩行、武田文彦、 村山康樹、朴 昶範

1. はじめに

現在の都市の一過性の水循環システムでは、人口の集中化、都市開発事業などにより都市の水資源の不足 が予測されることから、量・質的に安全・安心な「新たな水利用システム」の開発を行う必要がある¹⁾。下 水処理水は都市における安定した水資源であり、その活用を進めることにより水不足が緩和できると期待さ れている。下水処理水を水資源とした「新たな水利用システム」の構築のためには、再利用水の水質リスク を利用用途別に評価し、効率的にリスクを制御する手法を開発することが重要となる。

戦略的創造研究推進事業 CREST 研究領域「持続可能な水利用を実現する革新的な技術とシステム」²⁾の研究課題「21 世紀型都市水循環系の構築のための水再生技術の開発と評価」において、土木研究所のグループは、現在の都市水資源や新しい水利用技術によって生み出された水資源について、水生生物への影響評価を担ってきた。これまでに行った研究結果の概要を報告する。

2. 方法

2.1. バイオアッセイによるモニタリング

2.1.1 メダカ遺伝子発現を用いたバイオアッセイ手法の開発

メダカの遺伝子発現の評価のために、メダカのDNAマイクロアレイの開発、遺伝子発現の一連の試験操作の確認、 メダカの曝露時間や解析臓器の検討、対象遺伝子の探索・抽出、遺伝子発現データの解析方法の検討を行った。

2.1.2 新たな水利用システムのバイオモニタリングと低減効果の評価

新たな水処理技術の工程水を対象に DNA マイクロアレイによるメダカ遺伝子発現、藻類生長阻害試験、メダカ胚 仔魚試験によるバイオモニタリングを実施した。また、得られたモニタリングデータをもとに、新たな水処理技術による 生物影響の低減効果を評価した。

2.2. 水生生物への影響評価

新たに開発された水処理システムの再生水に対して、バイオアッセイに基づいた水生生態への影響評価および再 生水中の個別化学物質の環境リスク初期評価を実施した。従来のバイオアッセイ手法として、再生水の藻類生長阻 害試験を実施した。また、下水処理水の流入状況が異なる河川や利用できる用途が異なる環境水についてバイオア ッセイを行い、新たな水処理技術の再生水のバイオモニタリングデータと比較評価を行うことにより、水処理システム の水生生物に対する影響評価を検討した。

2.3 評価手法の体系化

再生水利用の際の水生生態系への影響評価手法の体系化を検討し、Case study として沖縄における下水処理水

の再利用の影響評価を試みた。

3. 結果および考察

3.1. バイオアッセイによるモニタリング

3.1.1 メダカ遺伝子発現を用いたバイオアッセイ手法の開発

脱塩素水道水で飼育しているメダカを用いて急性毒性試験と同じ96時間の半止水式曝露実験から、DNAマ イクロアレイによりメダカの肝臓の遺伝子発現を解析する試験系を確立した³⁾。また,純物質や環境水の試 験により,水質の違いを反映する機能遺伝子を抽出し,これらの機能遺伝子の発現量を指標化した値から水 質を評価する解析方法を開発した(図1)。

3.1.2 新たな水利用システムのバイオモニタリングと低減効果の評価

水生生物への影響評価の基礎データとなる 30 種類の水処理システムのバイオモニタリングを行った。下水試料への曝露時のメダカ遺伝子発現強度を測定した結果、下水処理や再生水処理を進めると、多くの場合に遺伝子発現強度が低減するなど、下水処理や再生水処理が水生生物への影響を低下させる効果が明らかになった^{4,5)}(図 2)。

3.2. 水生生物への影響評価

Case study として、東レグループで開発した処理技術(那覇:パイロットプラント)を主な対象として農業利用、都市用 水利用時における再生水の水生生物への影響評価を行った⁶。藻類生長阻害試験から、再生水の藻類に対する安 全性を確認した。また、再生水のバイオアッセイ結果を環境水のバイオアッセイ結果と比較することにより、水生生物 への影響を評価した(図3)。その結果、河川維持用途での再生水の安全性を確認した。

図3パイロットプラント再生水の修景利用に対するメダカの繁殖に係る 遺伝子の発現に基づいた相対的評価の検討例

また、統計値や既存調査データを用いて、全国および沖縄県における二次処理水中の PRTR 化学物質に対する 環境リスク初期評価、および全国における二次処理水中の医薬品類に対する生態リスク初期評価を実施した^{7,8)}。さら に、Case study として沖縄県における農業利用、都市用水利用時における再生水中の PRTR 化学物質のヒト健康およ び生態リスク初期評価を実施することにより、利用用途に応じた再生水の安全性を評価することができた⁹⁾(図 4)。ま た、モニタリングにより得られた再生水中濃度データを用いて医薬品類の生態リスク初期評価を実施することにより、 再生水の安全性を確認した⁷⁾。

図 4 沖縄県における個別化学物質のリスク初期評価結果

3.3 評価手法の体系化

既存データを利用した個別化学物質のリスク評価と生物応答試験の結果を利用した再生水利用の際の水生 生態系への影響評価手法を検討した¹⁰⁾。沖縄本島南部の下水処理場における農業利用および河川維持利用に ついて提示した評価手法に従って評価することができた(図 5)。

化学物質等による水生生物に対する影響評価案

図 5 再生水利用における水生生物への影響評価案および沖縄ケー ススタディの評価結果

4. まとめ

再生水に含まれる化学物質による水生生物への影響評価手法として、個別物質による評価および生物応答、 メダカ遺伝子発現評価に基づく影響評価手法を構築した。また、手法の体系化を検討するとともに、沖縄本 島南部における再生水利用のケーススタディーを行い、開発した水処理方式の各種水利用用途(都市利用・ 農業利用等)への適用性を評価した。本研究で実施した影響評価手法が今後の再生水利用における水生生物 への影響評価手法の策定に反映されることが期待される。

本研究は独立行政法人科学技術振興機構(JST)、CREST 戦略的創造研究推進事業「21 世紀型都市水循環 系の構築のための水再生技術の開発と評価」の一環により実施されたものであり、土木研究所水質チーム担 当分をまとめたものである。

【参考文献】

- 1) 田中宏明、21世紀都市代謝系としての下水道への期待(2009)新都市、Vol.63、No.9、pp.16-22
- 2) McCann B, Japan's focus on water sector research (2014), Water21, pp.50-52
- 北村友一、真野浩行、岡本誠一郎、鈴木穣、李相重、山下尚之、井原賢田、田中宏明、小林憲太郎、高 畠寛生、NF, RO 膜処理によるメダカ性特異遺伝子発現の変動抑制効果(2014)土木学会論文集G(環 境)、Vol.70、No. 7、III_73-III_80
- 4) 北村友一、真野浩行、岡本誠一郎、鈴木穣、メダカの遺伝子発現解析による再生水評価方法の開発(2014) CREST 田中チームシンポジウム第3回21世紀型都市水循環系構築のための水再生技術の開発と評価 に関するシンポジウム講演要旨集、p.3
- 5) Ihara M, Kitamura T, Kumar V, Park CB, Ihara MO, Lee SJ, Yamashita N, Miyagawa S, Iguchi T, Okamoto S, Suzuki Y, Tanaka H, Evaluation of estrogenic activity of wastewater: comparison among in vitro ERa receptor gene assay, in vivo vitellogenin induction, and chemical analysis (2015) Environmental Science and Technology, Vol. 49, No.10, pp.6319-6326
- 6) 真野浩行、武田文彦、小林憲太郎、山下尚之、岡本誠一郎、有機膜処理システムによる下水再生水の河 川維持利用に向けたバイオアッセイに基づく水生生物への影響評価(2015)第49回日本水環境学会年 会講演要旨集、p.91
- 7) 真野浩行、村山康樹、鈴木穣、中田典秀、南山瑞彦、PRTR 情報等を活用した下水処理水中に含まれる 化学物質の環境リスク初期評価(2013)下水道協会誌、Vol.50、pp.85-92
- Takeda F, Mano H, Suzuki Y, Okamoto S, Initial environmental risk assessment of Japanese PRTR substances in treated wastewater (2015) Journal of Water Environment Technology, Vol.13, No.4, pp.301-312
- 9) 武田文彦、真野浩行、鈴木穣、岡本誠一郎、沖縄県における下水二次処理水中に含まれる PRTR 化学 物質の環境リスク初期評価(2014)第51回下水道研究発表会講演集、pp.319-321
- 10) 岡本誠一郎、真野浩行、北村友一、武田文彦、下水再生水の環境中における水生生物への影響評価手法の構築(2015) 第49回日本水環境学会年会講演要旨集、p. 422

附録 平成 26 年度 下水道関係刊行報告書一覧

小規模処理場施設に適した

メタンガス有効利用支援に関する共同研究報告書

共同研究報告書 第460号 平成26年6月 独立行政法人土木研究所 石川県 国立大学法人金沢大学 株式会社アクトリー 株式会社石垣 月島機械株式会社 明和工業株式会社・株式会社柿本商会

要旨

本報告書は、平成 24 年度~平成 25 年度に土木研究所が、石川県、国立大学法人金沢大 学、株式会社アクトリー、株式会社石垣、月島機械株式会社、および明和工業株式会社・ 株式会社柿本商会との間で実施した共同研究の成果である。本研究では、小規模処理場施 設に適したメタンガス有効利用技術開発を目的とし、従来よりも高濃度化した下水汚泥の メタン発酵技術の開発を試みた。石川県をフィールドとした評価を行ったところ、開発技 術の事業化の可能性が提示された。

キーワード:下水汚泥、小規模処理場、混合嫌気性消化

土 木 研 究 所 資 料 TECHNICAL NOTE of PWRI No.4309 October 2015

編集·発行 © 国立研究開発法人 土木研究所

本資料の転載・複写の問い合わせは

国立研究開発法人 土木研究所 企画部 業務課 〒305-8516 茨城県つくば市南原 1-6 電話 029-879-6754