(54) [発明の名称] 地盤注水工法

1

(57) [特許請求の範囲]
【請求項1】地盤に注水材を充填するにあたり、地盤に注水材を注入するための注水管を地盤中の所定位置に配置し、地盤の間隙水を排除するための排水管を前記注入管の周辺に配置し、注入管から注水材を地盤中に圧入するとともに、該注水材の注入圧を利用して前記排水管から地盤中の余剰水を排出していくことにより、前記注水材を前記地盤中に充填するとともに、前記地盤の変状を防止することを特徴とする地盤注水工法。
【請求項2】トンネルを掘削するにあたり、トンネルの切羽面の前方における掘削対象位置の周囲の地盤に、注水材を注入するための注水管を配置するとともに、該注入管の近傍に、前記地盤の間隙水を排除するための排水管を配置し、前記注入管から注水材を前記地盤中に圧入するとともに、該注入材の注入圧を利用して前記排出管から前記地盤中の余剰水を排出していくことで、前記注入材を前記地盤中に充填するとともに、前記地盤の変状を防止することを特徴とする地盤注水工法。

2
本発明は、地盤を改良するために用いられる地盤注入工法に関する。
「従来の技術」
地盤を改良する目的で用いられる地盤注入工法は、施
工方法により異なるが、地盤の間隙水圧の数倉から数十
de実施される。
従来の地盤注入工法は、周辺地盤や近接構造物に有害
な影響を与えなけりば地盤の注入圧と注入速度で実施されて
いるため、注入圧力は低い状態にある。また、注入範囲
も狭い結果となっている。
「発明が解決しようとする課題」
しかしながら、従来の地盤注入工法においては、
注入圧力と注入速度に関する管理が大切で、これで注入
圧力および注入速度を適切に設定しないと、地盤が変状
して近接構造物等に悪影響を与えやすいという問題点
がある。このため、注入速度は、地盤や近接構造物に有害
な影響を与えなけりば範囲内の注入圧力に限定される。
そこで、本発明は周辺地盤への変状の要因である余剰間
隙水圧を排水して施工中におよび施工後の地盤および近接
構造物の安全を守るとともに、注入材の注入圧力を高め
て、大きな注入速度を得ることのできる注入圧力の高い
地盤注入工法を提供することを目的としている。
「課題を解決するための手段」
上記課題を解決するために、本発明においては、以下の
手段を採用した。
すなわち、請求項1記載の発明は、地盤に注入材を充
填するにあたり、地盤に注入材を注入するための注入管
を地盤中の所定位置に配置し、地盤の間隙水を排水する
ための排水管を前記注入管の周辺に配置し、注入管から
注入材を地盤中に圧入するとともに、前記注入材の注入圧
を利用して前記排水管から地盤中の余剰水を排水してい
くことで、前記注入材を前記地盤中に充填するととも
に、前記地盤の変状を防止することを特徴としている。
請求項2記載の発明は、トンネルを掘削するにあた
り、トンネルの切羽面の前方における掘削対象位置の周
辺の地盤に、注入管を注入するための注入管を配置する
とともに、該当注入管の周辺に、前記地盤の間隙水を排水
するための排水管を配置し、前記注入管から注入材を前
記地盤中に圧入するとともに、該注入材の注入圧力を利用
して前記排水管から前記地盤中の余剰水を排水していく
ことで、前記注入材を前記地盤中に充填するとともに、
前記地盤の変状を防止することを特徴としている。
請求項3記載の発明は、トンネルを掘削するにあたり
り、トンネル本坑と断階部分で使用するトンネル先行構築
をしており、該先端部位から前記トンネル本坑の順次
対象位置の地盤に向けて、注入材を注入するための注入
管を配置し、前記地盤の間隙水を排水するための排水管
を前記注入管の周辺に配置し、前記注入管から注入材を
前記地盤中に圧入するとともに、該注入材の注入圧力を利用
して前記排水管から地盤中の余剰水を排水していくこ
材料の浸透する注入速度を実験10で、排水管5の周囲の余剰間水を排水した後に排水管5を注入管に置き換えた場合の注入材の注入範囲を実験11で示すものとする。

以上説明したように本実施例の地盤注入工法によれば、注入により高まった地下水圧を低下させ、高い注入圧力が地盤中の広い範囲に伝播するのを防止することが可能である。そして、近接構造物や、周辺地盤に有害な影響を与えることなく注入材の浸透を向上させることができるといった効果を得ることができる。さらに、この実施例によれば、高圧クラフト工法を併用した地盤注入改良工法による地盤改良は、従来の方法と比べ、より効果的な地盤改良が可能である。

次に、本発明の第2の実施例について第4図を参照して説明する。なお、前記実施例と同様の構成となる部分には、共通の符号を付してその説明を省略する。

第4図は、本発明の地盤注入工法をトンネル施工に用いた場合の使用例を示す断面図である。図中に、符号8は、トンネルに示し、符号9によって示された点線の範囲は、注入材の注入による地盤改良域を示すものである。

本実施例においても、前記実施例と同様に注入材の注入および、余剰間水の排水をすることでトンネルの切羽面の前方における掘削対象位置の周囲の地盤に対して、その変状を防止しつつ、地盤注入改良を行うことが可能で、安全性の高いトンネル工事の実施が可能である。

次に、本発明の第3の実施例について第5図を参照して説明する。なお、前記実施例と同様の構成となる部分には、共通の符号を付してその説明を省略する。

本実施例は、トンネル本坑1に先行してシールド工法で作業用トンネル16を掘削し、この作業用トンネル16からトンネル本坑15の周辺地盤を注入改良する。

本実施例においては、トンネル本坑15の掘削対象位置の地盤に対して、その変状を防止しつつ、適切な注入材を充填することができ、安全性の高いトンネル工事の実施が可能である。また、この場合、真空クラフト工法を併用した地盤注入改良と比べ、排水管5のそれぞれに真空ボンプを設ける等の必要がある、コスト的に有利である。

なお、本発明の地盤注入工法は、前記実施例のみの使用例に限られていることなく、他の使用例においても実施可能であることはいうまでもない。

「発明の効果」

請求項1に係る地盤注入工法は、地盤に注入材を充填するにあたり、地盤に注入材を注入するための注入管を地盤中の一定位置に配置し、地盤の間隙水を排水するための排水管を前記注入管の周辺に配置し、注入管から注入材を地盤中に圧入するとしても、該当材の注入圧を利用して前記排水管から地盤中の余剰水を排水していくことで注入材を充填するとともに、前記地盤の変状を防止することとしたので、注入材の注入により高まった地下水圧を低下させ、高い注入圧力が地盤中の広い範囲に伝播するのを防止して、施工中および施工後の地盤および近接構造物の安全を守ることができる。そして、近接構造物や、周辺地盤に有害な影響を与えることなく注入材の浸透を向上させることができといった効果を得ることができる。また、請求項2に係る地盤注入工法によれば、トンネルの切羽面の前方における掘削対象位置の周囲の地盤に対して、その変状を防止しつつ、地盤注入改良を行うことができ、安全性の高いトンネル工事を実施することができる。さらに、請求項3に係る地盤注入工法によれば、トンネル本坑の掘削対象位置の周囲の地盤に対して、その変状を防止しつつ、適切に注入材を充填することができ、安全性の高いトンネル工事を実施することが可能である。また、この場合、真空クラフト工法を併用した地盤注入改良と比べ、排水管のそれぞれに真空ボンプを設ける必要がある、コスト的に有利である。

【図面の簡単な説明】

第1図ないし第3図は本発明の第1の実施例を示す図であって、第1図は注入管の側面図、第2図は排水管の側面図、第3図は注入管と排水管の使用状態の一例を示す状態図、第4図は本発明の第2の実施例を示す側面図、第5図は本発明の第3の実施例を示す正断面図である。

1……注入管、
5……排水管、
G……地盤。
(72)発明者 岩藤 正彦
茨城県北相馬郡守谷町みずき野7-5-8
(72)出願番号

(56)参考文献
特開 昭61-237717 (J P, A)
特公 昭46-5183 (J P, B 1)
特公 昭35-7425 (J P, B 1)

(58)調査した分野(Int.Cl.*、DB名)
E02D 3/12 101